Model description paper 11 Jul 2018
Model description paper | 11 Jul 2018
MOPSMAP v1.0: a versatile tool for the modeling of aerosol optical properties
Josef Gasteiger and Matthias Wiegner
Related authors
Alexandra Tsekeri, Vassilis Amiridis, Alexandros Louridas, George Georgoussis, Volker Freudenthaler, Spiros Metallinos, George Doxastakis, Josef Gasteiger, Nikolaos Siomos, Peristera Paschou, Thanasis Georgiou, George Tsaknakis, Christos Evangelatos, and Ioannis Binietoglou
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-30, https://doi.org/10.5194/amt-2021-30, 2021
Preprint under review for AMT
Short summary
Short summary
Dust orientation in the Earth's atmosphere is an ongoing investigation in recent years, and its potential proof will be a paradigm shift for dust remote sensing. We have designed and developed a polarization lidar that provides direct measurements of dust orientation, as well as more detailed information of the particle microphysics. We provide a description of its design as well as its first measurements.
Antonio Spanu, Maximilian Dollner, Josef Gasteiger, T. Paul Bui, and Bernadett Weinzierl
Atmos. Meas. Tech., 13, 1963–1987, https://doi.org/10.5194/amt-13-1963-2020, https://doi.org/10.5194/amt-13-1963-2020, 2020
Short summary
Short summary
This study investigates how the airflow around wing-mounted instruments on fast-flying aircraft affects aerosol and cloud measurements. It combines airborne data with numerical simulations and shows that particle speed, particle concentration, and shape of water droplets are modified by the airflow. The proposed correction strategy for optical particle counters and optical array probes considers airflow effects and significantly reduces errors of derived ambient aerosol and cloud properties.
Carlos Toledano, Benjamín Torres, Cristian Velasco-Merino, Dietrich Althausen, Silke Groß, Matthias Wiegner, Bernadett Weinzierl, Josef Gasteiger, Albert Ansmann, Ramiro González, David Mateos, David Farrel, Thomas Müller, Moritz Haarig, and Victoria E. Cachorro
Atmos. Chem. Phys., 19, 14571–14583, https://doi.org/10.5194/acp-19-14571-2019, https://doi.org/10.5194/acp-19-14571-2019, 2019
Short summary
Short summary
Ground-based sun photometers have been used to analyze the properties of long-range transported Saharan dust over Barbados. The measurements were carried out as part of the Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment (SALTRACE), carried out in the Caribbean in 2013. A variety of instruments, ground-based and airborne, were used in this research. In this paper, the sun photometer data are presented and related to data collected from other co-located instruments.
Matthias Wiegner, Ina Mattis, Margit Pattantyús-Ábrahám, Juan Antonio Bravo-Aranda, Yann Poltera, Alexander Haefele, Maxime Hervo, Ulrich Görsdorf, Ronny Leinweber, Josef Gasteiger, Martial Haeffelin, Frank Wagner, Jan Cermak, Katerina Komínková, Mike Brettle, Christoph Münkel, and Kornelia Pönitz
Atmos. Meas. Tech., 12, 471–490, https://doi.org/10.5194/amt-12-471-2019, https://doi.org/10.5194/amt-12-471-2019, 2019
Short summary
Short summary
Many ceilometers are influenced by water vapor absorption in the spectral range around 910 nm. Thus, a correction is required to retrieve aerosol optical properties. Validation of this correction scheme was performed in the framework of CeiLinEx2015 for several ceilometers with good agreement for Vaisala's CL51 ceilometer. For future applications we recommend monitoring the emitted wavelength and providing
darkmeasurements on a regular basis to be able to correct for signal artifacts.
Ka Lok Chan, Matthias Wiegner, Harald Flentje, Ina Mattis, Frank Wagner, Josef Gasteiger, and Alexander Geiß
Geosci. Model Dev., 11, 3807–3831, https://doi.org/10.5194/gmd-11-3807-2018, https://doi.org/10.5194/gmd-11-3807-2018, 2018
Short summary
Short summary
The paper presents the comparison of ECMWF-IFS model simulation of aerosol backscatter profiles to long-term measurements of an extended ceilometer network. A significant influence of the numerical description of the hygroscopic growth of sea salt aerosols on the agreement between model and observations was found. Consideration of the nonsphericity of dust particles in the model reduced the attenuated backscatter of dust by ~&thinp;30 % and improved the agreement between model and observations.
Moritz Haarig, Albert Ansmann, Josef Gasteiger, Konrad Kandler, Dietrich Althausen, Holger Baars, Martin Radenz, and David A. Farrell
Atmos. Chem. Phys., 17, 14199–14217, https://doi.org/10.5194/acp-17-14199-2017, https://doi.org/10.5194/acp-17-14199-2017, 2017
Short summary
Short summary
The depolarization ratio and the backscatter coefficient of marine particles are correlated with the relative humidity. The measurements were performed under atmospheric conditions with a multi-wavelength lidar system in pure marine conditions over Barbados in February 2014. For RH < 50 % the sea salt particles have a cubic-like shape resulting in an enhanced depolarization ratio of up to 0.15. This agrees with model results of cubic sea salt. The extinction enhancement f(RH) factor was derived.
Adrian Walser, Daniel Sauer, Antonio Spanu, Josef Gasteiger, and Bernadett Weinzierl
Atmos. Meas. Tech., 10, 4341–4361, https://doi.org/10.5194/amt-10-4341-2017, https://doi.org/10.5194/amt-10-4341-2017, 2017
Short summary
Short summary
We present a new approach to model the response of optical particle counters (OPCs) including a simple parametrization for artificial broadening of size spectra induced by the non-ideal behavior of real OPCs. We show a self-consistent way to evaluate calibration measurements and outline how particle number size distributions with realistic uncertainty estimates can be derived. The innovations will improve the accuracy of OPC-derived size distributions and allow to assess their precision.
Moritz Haarig, Albert Ansmann, Dietrich Althausen, André Klepel, Silke Groß, Volker Freudenthaler, Carlos Toledano, Rodanthi-Elisavet Mamouri, David A. Farrell, Damien A. Prescod, Eleni Marinou, Sharon P. Burton, Josef Gasteiger, Ronny Engelmann, and Holger Baars
Atmos. Chem. Phys., 17, 10767–10794, https://doi.org/10.5194/acp-17-10767-2017, https://doi.org/10.5194/acp-17-10767-2017, 2017
Short summary
Short summary
Our measurements performed with a lidar on Barbados give a vertical profile of Saharan dust, which was transported over 5000 km across the Atlantic. The new triple-wavelength depolarization technique reveals more information about the shape and size of dust, which will improve our understanding of the aging process of dust in the atmosphere and its representation in dust models. Changing properties of dust particles influence the solar radiation and the cloud properties and thus our climate.
Josef Gasteiger, Silke Groß, Daniel Sauer, Moritz Haarig, Albert Ansmann, and Bernadett Weinzierl
Atmos. Chem. Phys., 17, 297–311, https://doi.org/10.5194/acp-17-297-2017, https://doi.org/10.5194/acp-17-297-2017, 2017
Short summary
Short summary
To study aerosol transport in the Saharan Air Layer (SAL) from Africa to the Caribbean, we combine advanced optical models of Saharan aerosols with Stokes settling and two hypotheses about the occurrence of vertical mixing. By testing our hypotheses with lidar and in situ profiles measured near the top of the transported SAL, we find strong evidence that vertical mixing occurs in the SAL over the Atlantic with significant consequences for size distribution of the transported Saharan aerosols.
Silke Groß, Josef Gasteiger, Volker Freudenthaler, Thomas Müller, Daniel Sauer, Carlos Toledano, and Albert Ansmann
Atmos. Chem. Phys., 16, 11535–11546, https://doi.org/10.5194/acp-16-11535-2016, https://doi.org/10.5194/acp-16-11535-2016, 2016
Short summary
Short summary
Dual-wavelength depolarization sensitive Raman lidar measurements were used to characterize the optical properties of the dust loaded convective boundary layer over the Caribbean. Furthermore we derived the dust volume fraction and dust mass concentration within the convective boundary layer.
Claudia Emde, Robert Buras-Schnell, Arve Kylling, Bernhard Mayer, Josef Gasteiger, Ulrich Hamann, Jonas Kylling, Bettina Richter, Christian Pause, Timothy Dowling, and Luca Bugliaro
Geosci. Model Dev., 9, 1647–1672, https://doi.org/10.5194/gmd-9-1647-2016, https://doi.org/10.5194/gmd-9-1647-2016, 2016
Short summary
Short summary
libradtran is a widely used software package for radiative transfer calculations. It allows one to compute (polarized) radiances, irradiance, and actinic fluxes in the solar and thermal spectral regions. This paper gives an overview of libradtran version 2.0 with focus on new features (e.g. polarization, Raman scattering, absorption parameterization, cloud and aerosol optical properties). libRadtran is freely available at http://www.libradtran.org.
M. Wiegner and J. Gasteiger
Atmos. Meas. Tech., 8, 3971–3984, https://doi.org/10.5194/amt-8-3971-2015, https://doi.org/10.5194/amt-8-3971-2015, 2015
Short summary
Short summary
For the past few years a large number of autonomous continuously operating single-wavelength backscatter lidars, so called ceilometers, have been installed. Currently the assessment of their potential for aerosol remote sensing is a major research topic. This paper focusses on the need to consider water vapor
absorption if ceilometers emitting at wavelengths in the 905 to 910 nm range are used and proposes a correction scheme to improve the retrieval of the aerosol backscatter coefficient.
N. Hanrieder, S. Wilbert, R. Pitz-Paal, C. Emde, J. Gasteiger, B. Mayer, and J. Polo
Atmos. Meas. Tech., 8, 3467–3480, https://doi.org/10.5194/amt-8-3467-2015, https://doi.org/10.5194/amt-8-3467-2015, 2015
P. Koepke, J. Gasteiger, and M. Hess
Atmos. Chem. Phys., 15, 5947–5956, https://doi.org/10.5194/acp-15-5947-2015, https://doi.org/10.5194/acp-15-5947-2015, 2015
Short summary
Short summary
Desert dust particles in general are not spherical, which changes their scattering functions against that for spheres that often are used for remote-sensing and radiation budget investigations. In the new version of the data base OPAC (Optical Properties of Aerosols and Clouds), which easily allows one to model a large range of microphysical and optical aerosol properties for individually decided component mixtures, now typical non-spherical mineral particles are taken into account.
A. Kylling, N. Kristiansen, A. Stohl, R. Buras-Schnell, C. Emde, and J. Gasteiger
Atmos. Meas. Tech., 8, 1935–1949, https://doi.org/10.5194/amt-8-1935-2015, https://doi.org/10.5194/amt-8-1935-2015, 2015
Short summary
Short summary
Water and ice clouds affect detection and retrieval of volcanic ash clouds by satellite instruments. Synthetic infrared satellite images were generated for the Eyjafjallajokull 2010 and Grimsvotn 2011 eruptions by combining weather forecast, ash transport and radiative transfer modelling. Clouds decreased the number of pixels identified as ash and generally increased the retrieved ash-mass loading compared to the cloudless case; however, large differences were seen between scenes.
J. Gasteiger and V. Freudenthaler
Atmos. Meas. Tech., 7, 3773–3781, https://doi.org/10.5194/amt-7-3773-2014, https://doi.org/10.5194/amt-7-3773-2014, 2014
M. Wiegner, F. Madonna, I. Binietoglou, R. Forkel, J. Gasteiger, A. Geiß, G. Pappalardo, K. Schäfer, and W. Thomas
Atmos. Meas. Tech., 7, 1979–1997, https://doi.org/10.5194/amt-7-1979-2014, https://doi.org/10.5194/amt-7-1979-2014, 2014
Alexandra Tsekeri, Vassilis Amiridis, Alexandros Louridas, George Georgoussis, Volker Freudenthaler, Spiros Metallinos, George Doxastakis, Josef Gasteiger, Nikolaos Siomos, Peristera Paschou, Thanasis Georgiou, George Tsaknakis, Christos Evangelatos, and Ioannis Binietoglou
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-30, https://doi.org/10.5194/amt-2021-30, 2021
Preprint under review for AMT
Short summary
Short summary
Dust orientation in the Earth's atmosphere is an ongoing investigation in recent years, and its potential proof will be a paradigm shift for dust remote sensing. We have designed and developed a polarization lidar that provides direct measurements of dust orientation, as well as more detailed information of the particle microphysics. We provide a description of its design as well as its first measurements.
Jan-Lukas Tirpitz, Udo Frieß, François Hendrick, Carlos Alberti, Marc Allaart, Arnoud Apituley, Alkis Bais, Steffen Beirle, Stijn Berkhout, Kristof Bognar, Tim Bösch, Ilya Bruchkouski, Alexander Cede, Ka Lok Chan, Mirjam den Hoed, Sebastian Donner, Theano Drosoglou, Caroline Fayt, Martina M. Friedrich, Arnoud Frumau, Lou Gast, Clio Gielen, Laura Gomez-Martín, Nan Hao, Arjan Hensen, Bas Henzing, Christian Hermans, Junli Jin, Karin Kreher, Jonas Kuhn, Johannes Lampel, Ang Li, Cheng Liu, Haoran Liu, Jianzhong Ma, Alexis Merlaud, Enno Peters, Gaia Pinardi, Ankie Piters, Ulrich Platt, Olga Puentedura, Andreas Richter, Stefan Schmitt, Elena Spinei, Deborah Stein Zweers, Kimberly Strong, Daan Swart, Frederik Tack, Martin Tiefengraber, René van der Hoff, Michel van Roozendael, Tim Vlemmix, Jan Vonk, Thomas Wagner, Yang Wang, Zhuoru Wang, Mark Wenig, Matthias Wiegner, Folkard Wittrock, Pinhua Xie, Chengzhi Xing, Jin Xu, Margarita Yela, Chengxin Zhang, and Xiaoyi Zhao
Atmos. Meas. Tech., 14, 1–35, https://doi.org/10.5194/amt-14-1-2021, https://doi.org/10.5194/amt-14-1-2021, 2021
Short summary
Short summary
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) is a ground-based remote sensing measurement technique that derives atmospheric aerosol and trace gas vertical profiles from skylight spectra. In this study, consistency and reliability of MAX-DOAS profiles are assessed by applying nine different evaluation algorithms to spectral data recorded during an intercomparison campaign in the Netherlands and by comparing the results to colocated supporting observations.
Ka Lok Chan, Matthias Wiegner, Jos van Geffen, Isabelle De Smedt, Carlos Alberti, Zhibin Cheng, Sheng Ye, and Mark Wenig
Atmos. Meas. Tech., 13, 4499–4520, https://doi.org/10.5194/amt-13-4499-2020, https://doi.org/10.5194/amt-13-4499-2020, 2020
Short summary
Short summary
The paper presents 2D MAX-DOAS observations of vertical distributions of aerosol extinction, NO2 and HCHO in Munich. The measured surface aerosol extinction coefficients and NO2 mixing ratios are compared to in situ monitoring data. The NO2 and HCHO data are subsequently used to validate satellite measurements. The MAX-DOAS measurements are also used to investigate the spatiotemporal characteristic of NO2 and HCHO in Munich.
Matthias Wiegner, Alexander Geiß, Ina Mattis, Fred Meier, and Thomas Ruhtz
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-332, https://doi.org/10.5194/acp-2020-332, 2020
Preprint under review for ACP
Short summary
Short summary
We investigated ceilometer signals from 2 testbeds in Munich and Berlin, Germany, with respect to their representativeness. For each testbed data of 24 months from 6 ceilometers were available. Two parameters were discussed: the mixing layer height (MLH) as an indicator for the vertical distribution and the integrated backscatter as a proxy for the amount of aerosols in the mixing layer. We found that only the MLH determined from a single ceilometer is applicable for a whole metropolitan area.
Antonio Spanu, Maximilian Dollner, Josef Gasteiger, T. Paul Bui, and Bernadett Weinzierl
Atmos. Meas. Tech., 13, 1963–1987, https://doi.org/10.5194/amt-13-1963-2020, https://doi.org/10.5194/amt-13-1963-2020, 2020
Short summary
Short summary
This study investigates how the airflow around wing-mounted instruments on fast-flying aircraft affects aerosol and cloud measurements. It combines airborne data with numerical simulations and shows that particle speed, particle concentration, and shape of water droplets are modified by the airflow. The proposed correction strategy for optical particle counters and optical array probes considers airflow effects and significantly reduces errors of derived ambient aerosol and cloud properties.
Zhuoru Wang, Ka Lok Chan, Klaus-Peter Heue, Adrian Doicu, Thomas Wagner, Robert Holla, and Matthias Wiegner
Atmos. Meas. Tech., 13, 1835–1866, https://doi.org/10.5194/amt-13-1835-2020, https://doi.org/10.5194/amt-13-1835-2020, 2020
Short summary
Short summary
We present a new aerosol profile retrieval algorithm for MAX-DOAS measurements at high-altitude sites and applied to the MAX-DOAS measurements at UFS. The retrieval algorithm is based on a O4 DSCD lookup table which is dedicated to high-altitude MAX-DOAS measurements. The comparison of retrieved aerosol optical depths (AODs) to sun photometer observations shows good agreement with a correlation coefficient (R) of 0.733 and 0.798 at 360 and 477 nm, respectively.
Hans Grob, Claudia Emde, Matthias Wiegner, Meinhard Seefeldner, Linda Forster, and Bernhard Mayer
Atmos. Meas. Tech., 13, 239–258, https://doi.org/10.5194/amt-13-239-2020, https://doi.org/10.5194/amt-13-239-2020, 2020
Short summary
Short summary
Polarimetry has been established as an enhancement to classical photometry in aerosol remote sensing over the past years. We propose a fast and exact radiometric and polarimetric calibration method for polarized photometers. Additionally, a technique for correcting an alt-azimuthal mount is introduced.
These methods are applied to measurements obtained with our SSARA instrument during the A-LIFE field campaign. For 2 d, the data are subjected to an inversion of aerosol optical properties.
Carlos Toledano, Benjamín Torres, Cristian Velasco-Merino, Dietrich Althausen, Silke Groß, Matthias Wiegner, Bernadett Weinzierl, Josef Gasteiger, Albert Ansmann, Ramiro González, David Mateos, David Farrel, Thomas Müller, Moritz Haarig, and Victoria E. Cachorro
Atmos. Chem. Phys., 19, 14571–14583, https://doi.org/10.5194/acp-19-14571-2019, https://doi.org/10.5194/acp-19-14571-2019, 2019
Short summary
Short summary
Ground-based sun photometers have been used to analyze the properties of long-range transported Saharan dust over Barbados. The measurements were carried out as part of the Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment (SALTRACE), carried out in the Caribbean in 2013. A variety of instruments, ground-based and airborne, were used in this research. In this paper, the sun photometer data are presented and related to data collected from other co-located instruments.
Matthias Wiegner, Ina Mattis, Margit Pattantyús-Ábrahám, Juan Antonio Bravo-Aranda, Yann Poltera, Alexander Haefele, Maxime Hervo, Ulrich Görsdorf, Ronny Leinweber, Josef Gasteiger, Martial Haeffelin, Frank Wagner, Jan Cermak, Katerina Komínková, Mike Brettle, Christoph Münkel, and Kornelia Pönitz
Atmos. Meas. Tech., 12, 471–490, https://doi.org/10.5194/amt-12-471-2019, https://doi.org/10.5194/amt-12-471-2019, 2019
Short summary
Short summary
Many ceilometers are influenced by water vapor absorption in the spectral range around 910 nm. Thus, a correction is required to retrieve aerosol optical properties. Validation of this correction scheme was performed in the framework of CeiLinEx2015 for several ceilometers with good agreement for Vaisala's CL51 ceilometer. For future applications we recommend monitoring the emitted wavelength and providing
darkmeasurements on a regular basis to be able to correct for signal artifacts.
Nikolaos Papagiannopoulos, Lucia Mona, Aldo Amodeo, Giuseppe D'Amico, Pilar Gumà Claramunt, Gelsomina Pappalardo, Lucas Alados-Arboledas, Juan Luís Guerrero-Rascado, Vassilis Amiridis, Panagiotis Kokkalis, Arnoud Apituley, Holger Baars, Anja Schwarz, Ulla Wandinger, Ioannis Binietoglou, Doina Nicolae, Daniele Bortoli, Adolfo Comerón, Alejandro Rodríguez-Gómez, Michaël Sicard, Alex Papayannis, and Matthias Wiegner
Atmos. Chem. Phys., 18, 15879–15901, https://doi.org/10.5194/acp-18-15879-2018, https://doi.org/10.5194/acp-18-15879-2018, 2018
Short summary
Short summary
A stand-alone automatic method for typing observations of the European Aerosol Research Lidar Network (EARLINET) is presented. The method compares the observations to model distributions that were constructed using EARLINET pre-classified data. The algorithm’s versatility and adaptability makes it suitable for network-wide typing studies.
Ka Lok Chan, Matthias Wiegner, Harald Flentje, Ina Mattis, Frank Wagner, Josef Gasteiger, and Alexander Geiß
Geosci. Model Dev., 11, 3807–3831, https://doi.org/10.5194/gmd-11-3807-2018, https://doi.org/10.5194/gmd-11-3807-2018, 2018
Short summary
Short summary
The paper presents the comparison of ECMWF-IFS model simulation of aerosol backscatter profiles to long-term measurements of an extended ceilometer network. A significant influence of the numerical description of the hygroscopic growth of sea salt aerosols on the agreement between model and observations was found. Consideration of the nonsphericity of dust particles in the model reduced the attenuated backscatter of dust by ~&thinp;30 % and improved the agreement between model and observations.
Erika von Schneidemesser, Boris Bonn, Tim M. Butler, Christian Ehlers, Holger Gerwig, Hannele Hakola, Heidi Hellén, Andreas Kerschbaumer, Dieter Klemp, Claudia Kofahl, Jürgen Kura, Anja Lüdecke, Rainer Nothard, Axel Pietsch, Jörn Quedenau, Klaus Schäfer, James J. Schauer, Ashish Singh, Ana-Maria Villalobos, Matthias Wiegner, and Mark G. Lawrence
Atmos. Chem. Phys., 18, 8621–8645, https://doi.org/10.5194/acp-18-8621-2018, https://doi.org/10.5194/acp-18-8621-2018, 2018
Short summary
Short summary
This paper provides an overview of the measurements done at an urban background site in Berlin from June-August of 2014. Results show that natural source contributions to ozone and particulate matter (PM) air pollutants are substantial. Large contributions of secondary aerosols formed in the atmosphere to PM10 concentrations were quantified. An analysis of the sources also identified contributions to PM from plant-based sources, vehicles, and a small contribution from wood burning.
Moritz Haarig, Albert Ansmann, Josef Gasteiger, Konrad Kandler, Dietrich Althausen, Holger Baars, Martin Radenz, and David A. Farrell
Atmos. Chem. Phys., 17, 14199–14217, https://doi.org/10.5194/acp-17-14199-2017, https://doi.org/10.5194/acp-17-14199-2017, 2017
Short summary
Short summary
The depolarization ratio and the backscatter coefficient of marine particles are correlated with the relative humidity. The measurements were performed under atmospheric conditions with a multi-wavelength lidar system in pure marine conditions over Barbados in February 2014. For RH < 50 % the sea salt particles have a cubic-like shape resulting in an enhanced depolarization ratio of up to 0.15. This agrees with model results of cubic sea salt. The extinction enhancement f(RH) factor was derived.
Adrian Walser, Daniel Sauer, Antonio Spanu, Josef Gasteiger, and Bernadett Weinzierl
Atmos. Meas. Tech., 10, 4341–4361, https://doi.org/10.5194/amt-10-4341-2017, https://doi.org/10.5194/amt-10-4341-2017, 2017
Short summary
Short summary
We present a new approach to model the response of optical particle counters (OPCs) including a simple parametrization for artificial broadening of size spectra induced by the non-ideal behavior of real OPCs. We show a self-consistent way to evaluate calibration measurements and outline how particle number size distributions with realistic uncertainty estimates can be derived. The innovations will improve the accuracy of OPC-derived size distributions and allow to assess their precision.
Moritz Haarig, Albert Ansmann, Dietrich Althausen, André Klepel, Silke Groß, Volker Freudenthaler, Carlos Toledano, Rodanthi-Elisavet Mamouri, David A. Farrell, Damien A. Prescod, Eleni Marinou, Sharon P. Burton, Josef Gasteiger, Ronny Engelmann, and Holger Baars
Atmos. Chem. Phys., 17, 10767–10794, https://doi.org/10.5194/acp-17-10767-2017, https://doi.org/10.5194/acp-17-10767-2017, 2017
Short summary
Short summary
Our measurements performed with a lidar on Barbados give a vertical profile of Saharan dust, which was transported over 5000 km across the Atlantic. The new triple-wavelength depolarization technique reveals more information about the shape and size of dust, which will improve our understanding of the aging process of dust in the atmosphere and its representation in dust models. Changing properties of dust particles influence the solar radiation and the cloud properties and thus our climate.
Alexander Geiß, Matthias Wiegner, Boris Bonn, Klaus Schäfer, Renate Forkel, Erika von Schneidemesser, Christoph Münkel, Ka Lok Chan, and Rainer Nothard
Atmos. Meas. Tech., 10, 2969–2988, https://doi.org/10.5194/amt-10-2969-2017, https://doi.org/10.5194/amt-10-2969-2017, 2017
Short summary
Short summary
Based on measurements with a ceilometer and from an air quality network, the relationship between the mixing layer height (MLH) and near surface concentrations of pollutants was investigated for summer 2014 in Berlin. It was found that the heterogeneity of the concentrations exceeds the differences due to different MLH retrievals. In particular for PM10 it seems to be unrealistic to find correlations between MLH and concentrations representative for an entire metropolitan area in flat terrain.
Linda Forster, Meinhard Seefeldner, Matthias Wiegner, and Bernhard Mayer
Atmos. Meas. Tech., 10, 2499–2516, https://doi.org/10.5194/amt-10-2499-2017, https://doi.org/10.5194/amt-10-2499-2017, 2017
Short summary
Short summary
Halo displays are produced by scattering of sunlight by smooth, hexagonal ice crystals. Consequently, the presence of a halo should contain information on particle shape. This study presents HaloCam, a novel sun-tracking camera system, and an automated detection algorithm to collect and evaluate long-term halo observations. Two-year HaloCam observations revealed that about 25 % of the detected cirrus clouds occurred together with a 22° halo indicating the presence of smooth, hexagonal crystals.
Josef Gasteiger, Silke Groß, Daniel Sauer, Moritz Haarig, Albert Ansmann, and Bernadett Weinzierl
Atmos. Chem. Phys., 17, 297–311, https://doi.org/10.5194/acp-17-297-2017, https://doi.org/10.5194/acp-17-297-2017, 2017
Short summary
Short summary
To study aerosol transport in the Saharan Air Layer (SAL) from Africa to the Caribbean, we combine advanced optical models of Saharan aerosols with Stokes settling and two hypotheses about the occurrence of vertical mixing. By testing our hypotheses with lidar and in situ profiles measured near the top of the transported SAL, we find strong evidence that vertical mixing occurs in the SAL over the Atlantic with significant consequences for size distribution of the transported Saharan aerosols.
Silke Groß, Josef Gasteiger, Volker Freudenthaler, Thomas Müller, Daniel Sauer, Carlos Toledano, and Albert Ansmann
Atmos. Chem. Phys., 16, 11535–11546, https://doi.org/10.5194/acp-16-11535-2016, https://doi.org/10.5194/acp-16-11535-2016, 2016
Short summary
Short summary
Dual-wavelength depolarization sensitive Raman lidar measurements were used to characterize the optical properties of the dust loaded convective boundary layer over the Caribbean. Furthermore we derived the dust volume fraction and dust mass concentration within the convective boundary layer.
Claudia Emde, Robert Buras-Schnell, Arve Kylling, Bernhard Mayer, Josef Gasteiger, Ulrich Hamann, Jonas Kylling, Bettina Richter, Christian Pause, Timothy Dowling, and Luca Bugliaro
Geosci. Model Dev., 9, 1647–1672, https://doi.org/10.5194/gmd-9-1647-2016, https://doi.org/10.5194/gmd-9-1647-2016, 2016
Short summary
Short summary
libradtran is a widely used software package for radiative transfer calculations. It allows one to compute (polarized) radiances, irradiance, and actinic fluxes in the solar and thermal spectral regions. This paper gives an overview of libradtran version 2.0 with focus on new features (e.g. polarization, Raman scattering, absorption parameterization, cloud and aerosol optical properties). libRadtran is freely available at http://www.libradtran.org.
M. Wiegner and J. Gasteiger
Atmos. Meas. Tech., 8, 3971–3984, https://doi.org/10.5194/amt-8-3971-2015, https://doi.org/10.5194/amt-8-3971-2015, 2015
Short summary
Short summary
For the past few years a large number of autonomous continuously operating single-wavelength backscatter lidars, so called ceilometers, have been installed. Currently the assessment of their potential for aerosol remote sensing is a major research topic. This paper focusses on the need to consider water vapor
absorption if ceilometers emitting at wavelengths in the 905 to 910 nm range are used and proposes a correction scheme to improve the retrieval of the aerosol backscatter coefficient.
N. Hanrieder, S. Wilbert, R. Pitz-Paal, C. Emde, J. Gasteiger, B. Mayer, and J. Polo
Atmos. Meas. Tech., 8, 3467–3480, https://doi.org/10.5194/amt-8-3467-2015, https://doi.org/10.5194/amt-8-3467-2015, 2015
P. Koepke, J. Gasteiger, and M. Hess
Atmos. Chem. Phys., 15, 5947–5956, https://doi.org/10.5194/acp-15-5947-2015, https://doi.org/10.5194/acp-15-5947-2015, 2015
Short summary
Short summary
Desert dust particles in general are not spherical, which changes their scattering functions against that for spheres that often are used for remote-sensing and radiation budget investigations. In the new version of the data base OPAC (Optical Properties of Aerosols and Clouds), which easily allows one to model a large range of microphysical and optical aerosol properties for individually decided component mixtures, now typical non-spherical mineral particles are taken into account.
A. Kylling, N. Kristiansen, A. Stohl, R. Buras-Schnell, C. Emde, and J. Gasteiger
Atmos. Meas. Tech., 8, 1935–1949, https://doi.org/10.5194/amt-8-1935-2015, https://doi.org/10.5194/amt-8-1935-2015, 2015
Short summary
Short summary
Water and ice clouds affect detection and retrieval of volcanic ash clouds by satellite instruments. Synthetic infrared satellite images were generated for the Eyjafjallajokull 2010 and Grimsvotn 2011 eruptions by combining weather forecast, ash transport and radiative transfer modelling. Clouds decreased the number of pixels identified as ash and generally increased the retrieved ash-mass loading compared to the cloudless case; however, large differences were seen between scenes.
J. Gasteiger and V. Freudenthaler
Atmos. Meas. Tech., 7, 3773–3781, https://doi.org/10.5194/amt-7-3773-2014, https://doi.org/10.5194/amt-7-3773-2014, 2014
G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D'Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner
Atmos. Meas. Tech., 7, 2389–2409, https://doi.org/10.5194/amt-7-2389-2014, https://doi.org/10.5194/amt-7-2389-2014, 2014
M. Wiegner, F. Madonna, I. Binietoglou, R. Forkel, J. Gasteiger, A. Geiß, G. Pappalardo, K. Schäfer, and W. Thomas
Atmos. Meas. Tech., 7, 1979–1997, https://doi.org/10.5194/amt-7-1979-2014, https://doi.org/10.5194/amt-7-1979-2014, 2014
G. Pappalardo, L. Mona, G. D'Amico, U. Wandinger, M. Adam, A. Amodeo, A. Ansmann, A. Apituley, L. Alados Arboledas, D. Balis, A. Boselli, J. A. Bravo-Aranda, A. Chaikovsky, A. Comeron, J. Cuesta, F. De Tomasi, V. Freudenthaler, M. Gausa, E. Giannakaki, H. Giehl, A. Giunta, I. Grigorov, S. Groß, M. Haeffelin, A. Hiebsch, M. Iarlori, D. Lange, H. Linné, F. Madonna, I. Mattis, R.-E. Mamouri, M. A. P. McAuliffe, V. Mitev, F. Molero, F. Navas-Guzman, D. Nicolae, A. Papayannis, M. R. Perrone, C. Pietras, A. Pietruczuk, G. Pisani, J. Preißler, M. Pujadas, V. Rizi, A. A. Ruth, J. Schmidt, F. Schnell, P. Seifert, I. Serikov, M. Sicard, V. Simeonov, N. Spinelli, K. Stebel, M. Tesche, T. Trickl, X. Wang, F. Wagner, M. Wiegner, and K. M. Wilson
Atmos. Chem. Phys., 13, 4429–4450, https://doi.org/10.5194/acp-13-4429-2013, https://doi.org/10.5194/acp-13-4429-2013, 2013
Related subject area
Atmospheric sciences
Development of an atmospheric chemistry model coupled to the PALM model system 6.0: implementation and first applications
The Vertical City Weather Generator (VCWG v1.3.2)
A zero-dimensional view of atmospheric degradation of levoglucosan (LEVCHEM_v1) using numerical chamber simulations
The Nonhydrostatic ICosahedral Atmospheric Model for CMIP6 HighResMIP simulations (NICAM16-S): experimental design, model description, and impacts of model updates
Using radar observations to evaluate 3-D radar echo structure simulated by the Energy Exascale Earth System Model (E3SM) version 1
Development of WRF/CUACE v1.0 model and its preliminary application in simulating air quality in China
PyCHAM (v2.1.1): a Python box model for simulating aerosol chambers
A revised dry deposition scheme for land–atmosphere exchange of trace gases in ECHAM/MESSy v2.54
Improving dust simulations in WRF-Chem v4.1.3 coupled with the GOCART aerosol module
FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 2: Model validation
Implementation of a synthetic inflow turbulence generator in idealised WRF v3.6.1 large eddy simulations under neutral atmospheric conditions
Numerical study of the effects of initial conditions and emissions on PM2.5 concentration simulations with CAMx v6.1: a Xi'an case study
A multi-year short-range hindcast experiment with CESM1 for evaluating climate model moist processes from diurnal to interannual timescales
Ground-based lidar processing and simulator framework for comparing models and observations (ALCF 1.0)
Development of an Ozone Monitoring Instrument (OMI) aerosol index (AI) data assimilation scheme for aerosol modeling over bright surfaces – a step toward direct radiance assimilation in the UV spectrum
IntelliO3-ts v1.0: a neural network approach to predict near-surface ozone concentrations in Germany
ISBA-MEB (SURFEX v8.1): model snow evaluation for local-scale forest sites
Evaluating and improving the treatment of gases in radiation schemes: the Correlated K-Distribution Model Intercomparison Project (CKDMIP)
GenChem v1.0 – a chemical pre-processing and testing system for atmospheric modelling
Incoming data quality control in high-resolution urban climate simulations: a Hong Kong–Shenzhen area urban climate simulation as a case study using the WRF/Noah LSM/SLUCM model (Version 3.7.1)
Configuration and evaluation of a global unstructured mesh atmospheric model (GRIST-A20.9) based on the variable-resolution approach
Description of the uEMEP_v5 downscaling approach for the EMEP MSC-W chemistry transport model
Development of a three-dimensional variational assimilation system for lidar profile data based on a size-resolved aerosol model in WRF–Chem model v3.9.1 and its application in PM2.5 forecasts across China
Using wavelet transform and dynamic time warping to identify the limitations of the CNN model as an air quality forecasting system
In-cloud scavenging scheme for sectional aerosol modules – implementation in the framework of the Sectional Aerosol module for Large Scale Applications version 2.0 (SALSA2.0) global aerosol module
Detection of atmospheric rivers with inline uncertainty quantification: TECA-BARD v1.0.1
TITAM (v1.0): the Time-Independent Tracking Algorithm for Medicanes
Effects of horizontal resolution and air–sea coupling on simulated moisture source for East Asian precipitation in MetUM GA6/GC2
On the tuning of atmospheric inverse methods: comparisons with the European Tracer Experiment (ETEX) and Chernobyl datasets using the atmospheric transport model FLEXPART
Sensitivity of aerosol optical properties to the aerosol size distribution over central Europe and the Mediterranean Basin using the WRF-Chem v.3.9.1.1 coupled model
PMIF v1.0: assessing the potential of satellite observations to constrain CO2 emissions from large cities and point sources over the globe using synthetic data
Multilayer cloud conditions in trade wind shallow cumulus – confronting two ICON model derivatives with airborne observations
A new parameterization of ice heterogeneous nucleation coupled to aerosol chemistry in WRF-Chem model version 3.5.1: evaluation through ISDAC measurements
Prioritising the sources of pollution in European cities: do air quality modelling applications provide consistent responses?
New strategies for vertical transport in chemistry transport models: application to the case of the Mount Etna eruption on 18 March 2012 with CHIMERE v2017r4
Sensitivity of spatial aerosol particle distributions to the boundary conditions in the PALM model system 6.0
Multi-layer coupling between SURFEX-TEB-v9.0 and Meso-NH-v5.3 for modelling the urban climate of high-rise cities
Description and evaluation of a detailed gas-phase chemistry scheme in the TM5-MP global chemistry transport model (r112)
Modeling lightning observations from space-based platforms (CloudScat.jl 1.0)
Applying a new integrated mass-flux adjustment filter in rapid update cycling of convective-scale data assimilation for the COSMO-model (v5.07)
snowScatt 1.0: Consistent model of microphysical and scattering properties of rimed and unrimed snowflakes based on the self-similar Rayleigh-Gans Approximation
Flex_extract v7.1.2 – a software package to retrieve and prepare ECMWF data for use in FLEXPART
Land surface model influence on the simulated climatologies of temperature and precipitation extremes in the WRF v3.9 model over North America
Effects of black carbon morphology on the brown carbon absorption estimation: from numerical aspects
Silicone v1.0.0: an open-source Python package for inferring missing emissions data for climate change research
An urban large-eddy-based dispersion model for marginal grid resolutions: CAIRDIO v1.0
Collisional growth in a particle-based cloud microphysical model: insights from column model simulations using LCM1D (v1.0)
The making of the New European Wind Atlas – Part 1: Model sensitivity
The Making of the New European Wind Atlas – Part 2: Production and evaluation
Simulation of the evolution of biomass burning organic aerosol with different volatility basis set schemes in PMCAMx-SRv1.0
Basit Khan, Sabine Banzhaf, Edward C. Chan, Renate Forkel, Farah Kanani-Sühring, Klaus Ketelsen, Mona Kurppa, Björn Maronga, Matthias Mauder, Siegfried Raasch, Emmanuele Russo, Martijn Schaap, and Matthias Sühring
Geosci. Model Dev., 14, 1171–1193, https://doi.org/10.5194/gmd-14-1171-2021, https://doi.org/10.5194/gmd-14-1171-2021, 2021
Short summary
Short summary
An atmospheric chemistry model has been implemented in the microscale PALM model system 6.0. This article provides a detailed description of the model, its structure, input requirements, various features and limitations. Several pre-compiled ready-to-use chemical mechanisms are included in the chemistry model code; however, users can also easily implement other mechanisms. A case study is presented to demonstrate the application of the new chemistry model in the urban environment.
Mohsen Moradi, Benjamin Dyer, Amir Nazem, Manoj K. Nambiar, M. Rafsan Nahian, Bruno Bueno, Chris Mackey, Saeran Vasanthakumar, Negin Nazarian, E. Scott Krayenhoff, Leslie K. Norford, and Amir A. Aliabadi
Geosci. Model Dev., 14, 961–984, https://doi.org/10.5194/gmd-14-961-2021, https://doi.org/10.5194/gmd-14-961-2021, 2021
Short summary
Short summary
The Vertical City Weather Generator (VCWG) is an urban microclimate model developed to predict temporal and vertical variation of potential temperature, wind speed, and specific humidity. VCWG is forced by climate variables at a nearby rural site and coupled to radiation and building energy models. VCWG is evaluated against field observations of the BUBBLE campaign. It is run under exploration mode to assess its performance given urban characteristics, seasonal variations, and climate zones.
Loredana G. Suciu, Robert J. Griffin, and Caroline A. Masiello
Geosci. Model Dev., 14, 907–921, https://doi.org/10.5194/gmd-14-907-2021, https://doi.org/10.5194/gmd-14-907-2021, 2021
Short summary
Short summary
Understanding the atmospheric degradation of biomass burning tracers such as levoglucosan is essential to decreasing uncertainties in the role of biomass burning in air quality, carbon cycling and paleoclimate. Using a 0-D modeling approach and numerical chamber simulations, we found that the multiphase atmospheric degradation of levoglucosan occurs over timescales of hours to days, can form secondary organic aerosols and affects other key tropospheric gases, such as ozone.
Chihiro Kodama, Tomoki Ohno, Tatsuya Seiki, Hisashi Yashiro, Akira T. Noda, Masuo Nakano, Yohei Yamada, Woosub Roh, Masaki Satoh, Tomoko Nitta, Daisuke Goto, Hiroaki Miura, Tomoe Nasuno, Tomoki Miyakawa, Ying-Wen Chen, and Masato Sugi
Geosci. Model Dev., 14, 795–820, https://doi.org/10.5194/gmd-14-795-2021, https://doi.org/10.5194/gmd-14-795-2021, 2021
Short summary
Short summary
This paper describes the latest stable version of NICAM, a global atmospheric model, developed for high-resolution climate simulations toward the IPCC Assessment Report. Our model explicitly treats convection, clouds, and precipitation and could reduce the uncertainty of climate change projection. A series of test simulations demonstrated improvements (e.g., high cloud) and issues (e.g., low cloud, precipitation pattern), suggesting further necessity for model improvement and higher resolutions.
Jingyu Wang, Jiwen Fan, Robert A. Houze Jr., Stella R. Brodzik, Kai Zhang, Guang J. Zhang, and Po-Lun Ma
Geosci. Model Dev., 14, 719–734, https://doi.org/10.5194/gmd-14-719-2021, https://doi.org/10.5194/gmd-14-719-2021, 2021
Short summary
Short summary
This paper presents an evaluation of the E3SM model against NEXRAD radar observations for the warm seasons during 2014–2016. The COSP forward simulator package is implemented in the model to generate radar reflectivity, and the NEXRAD observations are coarsened to the model resolution for comparison. The model severely underestimates the reflectivity above 4 km. Sensitivity tests on the parameters from cumulus parameterization and cloud microphysics do not improve this model bias.
Lei Zhang, Sunling Gong, Tianliang Zhao, Chunhong Zhou, Yuesi Wang, Jiawei Li, Dongsheng Ji, Jianjun He, Hongli Liu, Ke Gui, Xiaomei Guo, Jinhui Gao, Yunpeng Shan, Hong Wang, Yaqiang Wang, Huizheng Che, and Xiaoye Zhang
Geosci. Model Dev., 14, 703–718, https://doi.org/10.5194/gmd-14-703-2021, https://doi.org/10.5194/gmd-14-703-2021, 2021
Short summary
Short summary
Development of chemical transport models with advanced physics and chemical schemes is important for improving air-quality forecasts. This study develops the chemical module CUACE by updating with a new particle dry deposition scheme and adding heterogenous chemical reactions and couples it with the WRF model. The coupled model (WRF/CUACE) was able to capture well the variations of PM2.5, O3, NO2, and secondary inorganic aerosols in eastern China.
Simon Patrick O'Meara, Shuxuan Xu, David Topping, M. Rami Alfarra, Gerard Capes, Douglas Lowe, Yunqi Shao, and Gordon McFiggans
Geosci. Model Dev., 14, 675–702, https://doi.org/10.5194/gmd-14-675-2021, https://doi.org/10.5194/gmd-14-675-2021, 2021
Short summary
Short summary
User-friendly and open-source software for simulating aerosol chambers is a valuable tool for research scientists in designing and analysing their experiments. This paper describes a new version of such software and will therefore provide a useful reference for those applying it. Central to the paper is an assessment of the software's accuracy through comparison against previously published simulations.
Tamara Emmerichs, Astrid Kerkweg, Huug Ouwersloot, Silvano Fares, Ivan Mammarella, and Domenico Taraborrelli
Geosci. Model Dev., 14, 495–519, https://doi.org/10.5194/gmd-14-495-2021, https://doi.org/10.5194/gmd-14-495-2021, 2021
Short summary
Short summary
Dry deposition to vegetation is a major sink of ground-level ozone. Its parameterization in atmospheric chemistry models represents a significant source of uncertainty for global tropospheric ozone. We extended the current model parameterization with a relevant pathway and important meteorological adjustment factors. The comparison with measurements shows that this enables a more realistic model representation of ozone dry deposition velocity. Globally, annual dry deposition loss increases.
Alexander Ukhov, Ravan Ahmadov, Georg Grell, and Georgiy Stenchikov
Geosci. Model Dev., 14, 473–493, https://doi.org/10.5194/gmd-14-473-2021, https://doi.org/10.5194/gmd-14-473-2021, 2021
Short summary
Short summary
We discuss and evaluate the effects of inconsistencies found in the WRF-Chem code when using the GOCART module. First, PM surface concentrations were miscalculated. Second, dust optical depth was underestimated by 25 %–30 %. Third, an inconsistency in the process of gravitational settling led to the overestimation of dust column loadings by 4 %–6 %, PM10 by 2 %–4 %, and the rate of gravitational dust settling by 5 %–10 %. We also presented diagnostics that can be used to estimate these effects.
Andrew T. Prata, Leonardo Mingari, Arnau Folch, Giovanni Macedonio, and Antonio Costa
Geosci. Model Dev., 14, 409–436, https://doi.org/10.5194/gmd-14-409-2021, https://doi.org/10.5194/gmd-14-409-2021, 2021
Short summary
Short summary
This paper presents FALL3D-8.0, the latest version release of an open-source code with a track record of 15+ years and a growing number of users in the volcanological and atmospheric communities. The code, originally conceived for atmospheric dispersal and deposition of tephra particles, has been extended to model other types of particles, aerosols and radionuclides. This paper details new model applications and validation of FALL3D-8.0 using satellite, ground-deposit load and radionuclide data.
Jian Zhong, Xiaoming Cai, and Zheng-Tong Xie
Geosci. Model Dev., 14, 323–336, https://doi.org/10.5194/gmd-14-323-2021, https://doi.org/10.5194/gmd-14-323-2021, 2021
Short summary
Short summary
A synthetic inflow turbulence generator was implemented in the idealised Weather Research and Forecasting large eddy simulation. The inflow case yielded a mean velocity profile and second-moment profiles that agreed well with those generated using periodic boundary conditions, after a short adjustment distance. This implementation can be extended to a multi-scale seamless nesting simulation from a meso-scale domain with a kilometre-scale resolution to LES domains with metre-scale resolutions.
Han Xiao, Qizhong Wu, Xiaochun Yang, Lanning Wang, and Huaqiong Cheng
Geosci. Model Dev., 14, 223–238, https://doi.org/10.5194/gmd-14-223-2021, https://doi.org/10.5194/gmd-14-223-2021, 2021
Short summary
Short summary
Few studies have investigated the effects of initial conditions on the simulation or prediction of PM2.5 concentrations. Here, sensitivity experiments are used to explore the effects of three initial mechanisms (clean, restart, and continuous) and emissions in Xi’an in December 2016. According to this work, if the restart mechanism cannot be used due to computing resource and storage space limitations when forecasting PM2.5 concentrations, a spin-up time of at least 27 h is needed.
Hsi-Yen Ma, Chen Zhou, Yunyan Zhang, Stephen A. Klein, Mark D. Zelinka, Xue Zheng, Shaocheng Xie, Wei-Ting Chen, and Chien-Ming Wu
Geosci. Model Dev., 14, 73–90, https://doi.org/10.5194/gmd-14-73-2021, https://doi.org/10.5194/gmd-14-73-2021, 2021
Short summary
Short summary
We propose an experimental design of a suite of multi-year, short-term hindcasts and compare them with corresponding observations or measurements for periods based on different weather and climate phenomena. This atypical way of evaluating model performance is particularly useful and beneficial, as these hindcasts can give scientists a robust picture of modeled precipitation, and cloud and radiation processes from their diurnal variation to year-to-year variability.
Peter Kuma, Adrian J. McDonald, Olaf Morgenstern, Richard Querel, Israel Silber, and Connor J. Flynn
Geosci. Model Dev., 14, 43–72, https://doi.org/10.5194/gmd-14-43-2021, https://doi.org/10.5194/gmd-14-43-2021, 2021
Jianglong Zhang, Robert J. D. Spurr, Jeffrey S. Reid, Peng Xian, Peter R. Colarco, James R. Campbell, Edward J. Hyer, and Nancy L. Baker
Geosci. Model Dev., 14, 27–42, https://doi.org/10.5194/gmd-14-27-2021, https://doi.org/10.5194/gmd-14-27-2021, 2021
Short summary
Short summary
A first-of-its-kind scheme has been developed for assimilating Ozone Monitoring Instrument (OMI) aerosol index (AI) measurements into the Naval Aerosol Analysis and Predictive System. Improvements in model simulations demonstrate the utility of OMI AI data assimilation for improving the accuracy of aerosol model analysis over cloudy regions and bright surfaces. This study can be considered one of the first attempts at direct radiance assimilation in the UV spectrum for aerosol analyses.
Felix Kleinert, Lukas H. Leufen, and Martin G. Schultz
Geosci. Model Dev., 14, 1–25, https://doi.org/10.5194/gmd-14-1-2021, https://doi.org/10.5194/gmd-14-1-2021, 2021
Short summary
Short summary
With IntelliO3-ts v1.0, we present an artificial neural network as a new forecasting model for daily aggregated near-surface ozone concentrations with a lead time of up to 4 d. We used measurement and reanalysis data from more than 300 German monitoring stations to train, fine tune, and test the model. We show that the model outperforms standard reference models like persistence models and demonstrate that IntelliO3-ts outperforms climatological reference models for the first 2 d.
Adrien Napoly, Aaron Boone, and Théo Welfringer
Geosci. Model Dev., 13, 6523–6545, https://doi.org/10.5194/gmd-13-6523-2020, https://doi.org/10.5194/gmd-13-6523-2020, 2020
Short summary
Short summary
Accurate modeling of snow impact on surface energy and mass fluxes is required from land surface models. This new version of the SURFEX model improves the representation of the snowpack. In particular, it prevents its ablation from occurring too early in the season, which also leads to better soil temperatures and energy fluxes toward the atmosphere. This was made possible with a more explicit and distinct representation of each layer that constitutes the surface (soil, snow, and vegetation).
Robin J. Hogan and Marco Matricardi
Geosci. Model Dev., 13, 6501–6521, https://doi.org/10.5194/gmd-13-6501-2020, https://doi.org/10.5194/gmd-13-6501-2020, 2020
Short summary
Short summary
A key component of computer models used to predict weather and climate is the radiation scheme, which calculates how solar and infrared radiation heats and cools the atmosphere and surface, including the important role of greenhouse gases. This paper describes the experimental protocol and large datasets for a new project, CKDMIP, to evaluate and improve the accuracy of the treatment of atmospheric gases in the radiation schemes used worldwide, as well as their computational speed.
David Simpson, Robert Bergström, Alan Briolat, Hannah Imhof, John Johansson, Michael Priestley, and Alvaro Valdebenito
Geosci. Model Dev., 13, 6447–6465, https://doi.org/10.5194/gmd-13-6447-2020, https://doi.org/10.5194/gmd-13-6447-2020, 2020
Short summary
Short summary
This paper outlines the structure and usage of the GenChem system, which includes a chemical pre-processor (GenChem.py) and a simple box model (boxChem). GenChem provides scripts and input files for converting chemical equations into differential form for use in atmospheric chemical transport models (CTMs) and/or the boxChem system. Although GenChem is primarily intended for users of the EMEP MSC-W CTM and related systems, boxChem can be run as a stand-alone chemical solver.
Zhiqiang Li, Bingcheng Wan, Yulun Zhou, and Hokit Wong
Geosci. Model Dev., 13, 6349–6360, https://doi.org/10.5194/gmd-13-6349-2020, https://doi.org/10.5194/gmd-13-6349-2020, 2020
Short summary
Short summary
Our results provide evidence of the effects of incoming land surface data quality on the accuracy of high-resolution urban climate simulations and emphasize the importance of the incoming data quality control.
Yihui Zhou, Yi Zhang, Jian Li, Rucong Yu, and Zhuang Liu
Geosci. Model Dev., 13, 6325–6348, https://doi.org/10.5194/gmd-13-6325-2020, https://doi.org/10.5194/gmd-13-6325-2020, 2020
Short summary
Short summary
This paper explores the configuration of a global atmospheric model (global-to-regional integrated forecast system-atmosphere; GRIST-A) with various multiresolution grids. The model performance is evaluated from dry dynamics to simple physics and full physics. The model is able to resolve the fine-scale structures in the grid-refinement region, and the adverse impact due to the mesh transition and the coarse-resolution area can be controlled well.
Bruce Rolstad Denby, Michael Gauss, Peter Wind, Qing Mu, Eivind Grøtting Wærsted, Hilde Fagerli, Alvaro Valdebenito, and Heiko Klein
Geosci. Model Dev., 13, 6303–6323, https://doi.org/10.5194/gmd-13-6303-2020, https://doi.org/10.5194/gmd-13-6303-2020, 2020
Short summary
Short summary
Air pollution is both a local and a global problem. Since measurements cannot be made everywhere, mathematical models are used to calculate air quality over cities or countries. Modelling over countries limits the level of detail of the models. For countries, the level of detail is only a few kilometres, so air quality at kerb sides is not properly represented. The uEMEP model is used together with the regional air quality model EMEP MSC-W to model details down to kerb side for all of Norway.
Yanfei Liang, Zengliang Zang, Dong Liu, Peng Yan, Yiwen Hu, Yan Zhou, and Wei You
Geosci. Model Dev., 13, 6285–6301, https://doi.org/10.5194/gmd-13-6285-2020, https://doi.org/10.5194/gmd-13-6285-2020, 2020
Ebrahim Eslami, Yunsoo Choi, Yannic Lops, Alqamah Sayeed, and Ahmed Khan Salman
Geosci. Model Dev., 13, 6237–6251, https://doi.org/10.5194/gmd-13-6237-2020, https://doi.org/10.5194/gmd-13-6237-2020, 2020
Short summary
Short summary
As using deep learning algorithms has become a popular data analytic technique, atmospheric scientists should have a balanced perception of their strengths and limitations so that they can provide a powerful analysis of complex data with well-established procedures. This study addresses significant limitations of an advanced deep learning algorithm, the convolutional neural network.
Eemeli Holopainen, Harri Kokkola, Anton Laakso, and Thomas Kühn
Geosci. Model Dev., 13, 6215–6235, https://doi.org/10.5194/gmd-13-6215-2020, https://doi.org/10.5194/gmd-13-6215-2020, 2020
Short summary
Short summary
This paper introduces an in-cloud wet deposition scheme for liquid and ice phase clouds for global aerosol–climate models. With the default setup, our wet deposition scheme behaves spuriously and better representation can be achieved with this scheme when black carbon is mixed with soluble compounds at emission time. This work is done as many of the global models fail to reproduce the transport of black carbon to the Arctic, which may be due to the poor representation of wet removal in models.
Travis A. O'Brien, Mark D. Risser, Burlen Loring, Abdelrahman A. Elbashandy, Harinarayan Krishnan, Jeffrey Johnson, Christina M. Patricola, John P. O'Brien, Ankur Mahesh, Prabhat, Sarahí Arriaga Ramirez, Alan M. Rhoades, Alexander Charn, Héctor Inda Díaz, and William D. Collins
Geosci. Model Dev., 13, 6131–6148, https://doi.org/10.5194/gmd-13-6131-2020, https://doi.org/10.5194/gmd-13-6131-2020, 2020
Short summary
Short summary
Researchers utilize various algorithms to identify extreme weather features in climate data, and we seek to answer this question: given a
plausibleweather event detector, how does uncertainty in the detector impact scientific results? We generate a suite of statistical models that emulate expert identification of weather features. We find that the connection between El Niño and atmospheric rivers – a specific extreme weather type – depends systematically on the design of the detector.
Enrique Pravia-Sarabia, Juan José Gómez-Navarro, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Geosci. Model Dev., 13, 6051–6075, https://doi.org/10.5194/gmd-13-6051-2020, https://doi.org/10.5194/gmd-13-6051-2020, 2020
Short summary
Short summary
This work shows TITAM, a time-independent tracking algorithm specifically suited for Mediterranean tropical-like cyclones, often referred to as medicanes. The methodology developed has the capacity to track multiple simultaneous cyclones, the ability to track a medicane in the presence of intense extratropical lows, and the potential to separate the medicane from other similar structures by handling the intermittent loss of structure and managing the tilting of the axis.
Liang Guo, Ruud J. van der Ent, Nicholas P. Klingaman, Marie-Estelle Demory, Pier Luigi Vidale, Andrew G. Turner, Claudia C. Stephan, and Amulya Chevuturi
Geosci. Model Dev., 13, 6011–6028, https://doi.org/10.5194/gmd-13-6011-2020, https://doi.org/10.5194/gmd-13-6011-2020, 2020
Short summary
Short summary
Precipitation over East Asia simulated in the Met Office Unified Model is compared with observations. Moisture sources of EA precipitation are traced using a moisture tracking model. Biases in moisture sources are linked to biases in precipitation. Using the tracking model, changes in moisture sources can be attributed to changes in SST, circulation and associated evaporation. This proves that the method used in this study is useful to identify the causes of biases in regional precipitation.
Ondřej Tichý, Lukáš Ulrych, Václav Šmídl, Nikolaos Evangeliou, and Andreas Stohl
Geosci. Model Dev., 13, 5917–5934, https://doi.org/10.5194/gmd-13-5917-2020, https://doi.org/10.5194/gmd-13-5917-2020, 2020
Short summary
Short summary
We study the estimation of the temporal profile of an atmospheric release using formalization as a linear inverse problem. The problem is typically ill-posed, so all state-of-the-art methods need some form of regularization using additional information. We provide a sensitivity study on the prior source term and regularization parameters for the shape of the source term with a demonstration on the ETEX experimental release and the Cs-134 and Cs-137 dataset from the Chernobyl accident.
Laura Palacios-Peña, Jerome D. Fast, Enrique Pravia-Sarabia, and Pedro Jiménez-Guerrero
Geosci. Model Dev., 13, 5897–5915, https://doi.org/10.5194/gmd-13-5897-2020, https://doi.org/10.5194/gmd-13-5897-2020, 2020
Short summary
Short summary
The main objective of this work is to study the impact of the representation of aerosol size distribution on aerosol optical properties over central Europe and the Mediterranean Basin during a summertime aerosol episode using the WRF-Chem online model. Results reveal that the reduction in the standard deviation of the accumulation mode leads to the largest impacts on aerosol optical depth (AOD) representation due to a transfer of particles from the accumulation mode to the coarse mode.
Yilong Wang, Grégoire Broquet, François-Marie Bréon, Franck Lespinas, Michael Buchwitz, Maximilian Reuter, Yasjka Meijer, Armin Loescher, Greet Janssens-Maenhout, Bo Zheng, and Philippe Ciais
Geosci. Model Dev., 13, 5813–5831, https://doi.org/10.5194/gmd-13-5813-2020, https://doi.org/10.5194/gmd-13-5813-2020, 2020
Marek Jacob, Pavlos Kollias, Felix Ament, Vera Schemann, and Susanne Crewell
Geosci. Model Dev., 13, 5757–5777, https://doi.org/10.5194/gmd-13-5757-2020, https://doi.org/10.5194/gmd-13-5757-2020, 2020
Short summary
Short summary
We compare clouds in different cloud-resolving atmosphere simulations with airborne remote sensing observations. The focus is on warm shallow clouds in the Atlantic trade wind region. Those clouds are climatologically important but challenging for climate models. We use forward operators to apply instrument-specific thresholds for cloud detection to model outputs. In this comparison, the higher-resolution model better reproduces the layered cloud structure.
Setigui Aboubacar Keita, Eric Girard, Jean-Christophe Raut, Maud Leriche, Jean-Pierre Blanchet, Jacques Pelon, Tatsuo Onishi, and Ana Cirisan
Geosci. Model Dev., 13, 5737–5755, https://doi.org/10.5194/gmd-13-5737-2020, https://doi.org/10.5194/gmd-13-5737-2020, 2020
Bart Degraeuwe, Enrico Pisoni, and Philippe Thunis
Geosci. Model Dev., 13, 5725–5736, https://doi.org/10.5194/gmd-13-5725-2020, https://doi.org/10.5194/gmd-13-5725-2020, 2020
Short summary
Short summary
To make decisions on how to improve air quality, it is useful to identify the main sources of pollution for an area of interest. Often these sources of pollution are identified with complex models that, even if accurate, are time consuming and complex. In this work we use another approach, simplified models, to accomplish the same task. The results, computed with two different set of simplified models, show the main sources of pollution for selected cities, and the associated uncertainties.
Mathieu Lachatre, Sylvain Mailler, Laurent Menut, Solène Turquety, Pasquale Sellitto, Henda Guermazi, Giuseppe Salerno, Tommaso Caltabiano, and Elisa Carboni
Geosci. Model Dev., 13, 5707–5723, https://doi.org/10.5194/gmd-13-5707-2020, https://doi.org/10.5194/gmd-13-5707-2020, 2020
Short summary
Short summary
Excessive numerical diffusion is a major limitation in the representation of long-range transport in atmospheric models. In the present study, we focus on excessive diffusion in the vertical direction. We explore three possible ways of addressing this problem: increased vertical resolution, an advection scheme with anti-diffusive properties and more accurate representation of vertical wind. This study focused on a particular volcanic eruption event to improve atmospheric transport modeling.
Mona Kurppa, Pontus Roldin, Jani Strömberg, Anna Balling, Sasu Karttunen, Heino Kuuluvainen, Jarkko V. Niemi, Liisa Pirjola, Topi Rönkkö, Hilkka Timonen, Antti Hellsten, and Leena Järvi
Geosci. Model Dev., 13, 5663–5685, https://doi.org/10.5194/gmd-13-5663-2020, https://doi.org/10.5194/gmd-13-5663-2020, 2020
Short summary
Short summary
High-resolution modelling is needed to solve the aerosol concentrations in a complex urban area. Here, the performance of an aerosol module within the PALM model to simulate the detailed horizontal and vertical distribution of aerosol particles is studied. Further, sensitivity to the meteorological and aerosol boundary conditions is assessed using both model and observation data. The horizontal distribution is sensitive to the wind speed and stability, and the vertical to the wind direction.
Robert Schoetter, Yu Ting Kwok, Cécile de Munck, Kevin Ka Lun Lau, Wai Kin Wong, and Valéry Masson
Geosci. Model Dev., 13, 5609–5643, https://doi.org/10.5194/gmd-13-5609-2020, https://doi.org/10.5194/gmd-13-5609-2020, 2020
Short summary
Short summary
Cities change the local meteorological conditions, e.g. by increasing air temperature, which can negatively impact humans and infrastructure. The urban climate model TEB is able to calculate the meteorological conditions in low- and mid-rise cities since it interacts with the lowest level of an atmospheric model. Here, a multi-layer coupling of TEB is introduced to enable modelling the urban climate of cities with many skyscrapers; the new version is tested for the high-rise city of Hong Kong.
Stelios Myriokefalitakis, Nikos Daskalakis, Angelos Gkouvousis, Andreas Hilboll, Twan van Noije, Jason E. Williams, Philippe Le Sager, Vincent Huijnen, Sander Houweling, Tommi Bergman, Johann Rasmus Nüß, Mihalis Vrekoussis, Maria Kanakidou, and Maarten C. Krol
Geosci. Model Dev., 13, 5507–5548, https://doi.org/10.5194/gmd-13-5507-2020, https://doi.org/10.5194/gmd-13-5507-2020, 2020
Short summary
Short summary
This work documents and evaluates the detailed tropospheric gas-phase chemical mechanism MOGUNTIA in the three-dimensional chemistry transport model TM5-MP. The Rosenbrock solver, as generated by the KPP software, is implemented in the chemistry code, which can successfully replace the classical Euler backward integration method. The MOGUNTIA scheme satisfactorily simulates a large suite of oxygenated volatile organic compounds (VOCs) that are observed in the atmosphere at significant levels.
Alejandro Luque, Francisco José Gordillo-Vázquez, Dongshuai Li, Alejandro Malagón-Romero, Francisco Javier Pérez-Invernón, Anthony Schmalzried, Sergio Soler, Olivier Chanrion, Matthias Heumesser, Torsten Neubert, Víctor Reglero, and Nikolai Østgaard
Geosci. Model Dev., 13, 5549–5566, https://doi.org/10.5194/gmd-13-5549-2020, https://doi.org/10.5194/gmd-13-5549-2020, 2020
Short summary
Short summary
Lightning flashes are often recorded from space-based platforms. Besides being valuable inputs for weather forecasting, these observations also enable research into fundamental questions regarding lightning physics. To exploit them, it is essential to understand how light propagates from a lightning flash to a space-based observation instrument. Here, we present an open-source software tool to model this process that extends on previous work and overcomes some of the existing limitations.
Yuefei Zeng, Alberto de Lozar, Tijana Janjic, and Axel Seifert
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-299, https://doi.org/10.5194/gmd-2020-299, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
A new integrated mass-flux adjustment filter is introduced and examined by an idealized setup for convective-scale radar data assimilation. It is found that the new filter slightly reduce the accuracy of background and analysis states, however, it preserves the main structure of cold pools and primary mesocyclone properties of supercells. More importantly, it considerably diminishes successfully imbalance in the analysis and improves the forecasts.
Davide Ori, Leonie von Terzi, Markus Karrer, and Stefan Kneifel
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-359, https://doi.org/10.5194/gmd-2020-359, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
Snowflakes have very complex shapes and modeling their properties requires vast computing power. We produced a large number of realistic snowflakes and modeled their average properties by leveraging on their fractal structure. Our approach allows modeling the properties of big ensembles of snowflakes, taking into account their natural variability, at a much lower cost. This enables the usage of remote sensing instruments, such as radars, to monitor the evolution of clouds and precipitation.
Anne Tipka, Leopold Haimberger, and Petra Seibert
Geosci. Model Dev., 13, 5277–5310, https://doi.org/10.5194/gmd-13-5277-2020, https://doi.org/10.5194/gmd-13-5277-2020, 2020
Short summary
Short summary
Flex_extract v7.1 is an open-source software to retrieve and prepare meteorological fields from the European Centre for Medium-Range Weather Forecasts (ECMWF) MARS archive to serve as input for the FLEXTRA–FLEXPART atmospheric transport modelling system. It can be used by public as well as member-state users and enables the retrieval of a variety of different data sets, including the new reanalysis ERA5. Instructions are given for installation along with typical usage scenarios.
Almudena García-García, Francisco José Cuesta-Valero, Hugo Beltrami, Fidel González-Rouco, Elena García-Bustamante, and Joel Finnis
Geosci. Model Dev., 13, 5345–5366, https://doi.org/10.5194/gmd-13-5345-2020, https://doi.org/10.5194/gmd-13-5345-2020, 2020
Jie Luo, Yongming Zhang, and Qixing Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-348, https://doi.org/10.5194/gmd-2020-348, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
In this work, we developed a numerical method to investigate the effects of black carbon morphology on the estimation of brown carbon (BrC) absorption using the Absorption Ångström exponent (AAE) method. We found that BC morphology has significant impacts on the estimation of the BrC absorption, and the deviation bettwen the estimated BrC absorption and
TrueBrC mass absorption cross-section (MAC) can even reach approximately 9 m2/g, which far more than BrC MAC itself.
Robin D. Lamboll, Zebedee R. J. Nicholls, Jarmo S. Kikstra, Malte Meinshausen, and Joeri Rogelj
Geosci. Model Dev., 13, 5259–5275, https://doi.org/10.5194/gmd-13-5259-2020, https://doi.org/10.5194/gmd-13-5259-2020, 2020
Short summary
Short summary
Many models project how human activity can lead to more or less climate change, but most of these models do not project all climate-relevant emissions, potentially biasing climate projections. This paper outlines a Python package called Silicone, which can add missing emissions in a flexible yet high-throughput manner. It does this
infillingbased on more complete literature projections. It facilitates a more complete understanding of the climate impact of alternative emission pathways.
Michael Weger, Oswald Knoth, and Bernd Heinold
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-313, https://doi.org/10.5194/gmd-2020-313, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
A new numerical air-quality transport model for cities is presented, in which buildings are described diffusively. The used diffusive-obstacles approach, helps to reduce the computational costs for high-resolution simulations as the grid spacing can be more coarse than in traditional approaches. The research which led to this model development was primarily motivated by the need of a computationally feasible downscaling tool for urban wind and pollution fields from meteorological model output.
Simon Unterstrasser, Fabian Hoffmann, and Marion Lerch
Geosci. Model Dev., 13, 5119–5145, https://doi.org/10.5194/gmd-13-5119-2020, https://doi.org/10.5194/gmd-13-5119-2020, 2020
Short summary
Short summary
Particle-based cloud models use simulation particles for the representation of cloud particles like droplets or ice crystals. The collision and merging of cloud particles (i.e. collisional growth a.k.a. collection in the case of cloud droplets and aggregation in the case of ice crystals) was found to be a numerically challenging process in such models. The study presents verification exercises in a 1D column model, where sedimentation and collisional growth are the only active processes.
Andrea N. Hahmann, Tija Sīle, Björn Witha, Neil N. Davis, Martin Dörenkämper, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Bjarke T. Olsen, and Stefan Söderberg
Geosci. Model Dev., 13, 5053–5078, https://doi.org/10.5194/gmd-13-5053-2020, https://doi.org/10.5194/gmd-13-5053-2020, 2020
Short summary
Short summary
Wind energy resource assessment routinely uses numerical weather prediction model output. We describe the evaluation procedures used for picking the suitable blend of model setup and parameterizations for simulating European wind climatology with the WRF model. We assess the simulated winds against tall mast measurements using a suite of metrics, including the Earth Mover's Distance, which diagnoses the performance of each ensemble member using the full wind speed and direction distribution.
Martin Dörenkämper, Bjarke T. Olsen, Björn Witha, Andrea N. Hahmann, Neil N. Davis, Jordi Barcons, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Mariano Sastre-Marugán, Tija Sīle, Wilke Trei, Mark Žagar, Jake Badger, Julia Gottschall, Javier Sanz Rodrigo, and Jakob Mann
Geosci. Model Dev., 13, 5079–5102, https://doi.org/10.5194/gmd-13-5079-2020, https://doi.org/10.5194/gmd-13-5079-2020, 2020
Short summary
Short summary
This is the second of two papers that document the creation of the New European Wind Atlas (NEWA). The paper includes a detailed description of the technical and practical aspects that went into running the mesoscale simulations and the microscale downscaling for generating the climatology. A comprehensive evaluation of each component of the NEWA model chain is presented using observations from a large set of tall masts located all over Europe.
Georgia N. Theodoritsi, Giancarlo Ciarelli, and Spyros N. Pandis
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-295, https://doi.org/10.5194/gmd-2020-295, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
Two schemes based on the volatility basis set were used for the simulation of biomass burning organic aerosol in the continental US. The first is the default scheme of PMCAMx-SR and the second is a recently developed scheme based on laboratory experiments. The alternative bbOA scheme predicts much higher concentrations. The default scheme performed better during summer and fall while the alternative scheme was a little better during spring.
Cited articles
Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D.,
Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, J., Forkel, R.,
Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre, S., Jorba, O., Kaas,
E., Kaasik, M., Kallos, G., Kong, X., Korsholm, U., Kurganskiy, A., Kushta,
J., Lohmann, U., Mahura, A., Manders-Groot, A., Maurizi, A., Moussiopoulos,
N., Rao, S. T., Savage, N., Seigneur, C., Sokhi, R. S., Solazzo, E., Solomos,
S., Sørensen, B., Tsegas, G., Vignati, E., Vogel, B., and Zhang, Y.:
Online coupled regional meteorology chemistry models in Europe: current
status and prospects, Atmos. Chem. Phys., 14, 317–398,
https://doi.org/10.5194/acp-14-317-2014, 2014. a
Balzarini, A., Pirovano, G., Honzak, L., Žabkar, R., Curci, G., Forkel, R.,
Hirtl, M., José, R. S., Tuccella, P., and Grell, G.: WRF-Chem model
sensitivity to chemical mechanisms choice in reconstructing aerosol optical
properties, Atmospheric Environ., 115, 604 – 619,
https://doi.org/10.1016/j.atmosenv.2014.12.033, 2015. a
Bell, S. W., Hansell, R. A., Chow, J. C., Tsay, S.-C., Hsu, N. C., Lin,
N.-H.,
Wang, S.-H., Ji, Q., Li, C., Watson, J. G., and Khlystov, A.: Constraining
aerosol optical models using ground-based, collocated particle size and mass
measurements in variable air mass regimes during the 7-SEAS/Dongsha
experiment, Atmos. Environ., 78, 163–173,
https://doi.org/10.1016/j.atmosenv.2012.06.057, 2013. a
Bi, L., Yang, P., Kattawar, G. W., and Kahn, R.: Single-scattering properties
of triaxial ellipsoidal particles for a size parameter range from the
Rayleigh to geometric-optics regimes, Appl. Opt., 48, 114–126,
https://doi.org/10.1364/AO.48.000114, 2009. a, b
Binkowski, F. S. and Shankar, U.: The Regional Particulate Matter Model: 1.
Model description and preliminary results, J. Geophys. Res.-Atmos., 100,
26191–26209, https://doi.org/10.1029/95JD02093, 1995. a
Chan, K. L., Wiegner, M., Flentje, H., Mattis, I., Wagner, F., Gasteiger, J.,
and Geiß, A.: Evaluation of operational model forecasts of aerosol
transport using ceilometer network measurements, Geosci. Model Dev. Discuss.,
https://doi.org/10.5194/gmd-2018-74, in review, 2018. a
Che, H., Qi, B., Zhao, H., Xia, X., Eck, T. F., Goloub, P., Dubovik, O.,
Estelles, V., Cuevas-Agulló, E., Blarel, L., Wu, Y., Zhu, J., Du, R.,
Wang, Y., Wang, H., Gui, K., Yu, J., Zheng, Y., Sun, T., Chen, Q., Shi, G.,
and Zhang, X.: Aerosol optical properties and direct radiative forcing based
on measurements from the China Aerosol Remote Sensing Network (CARSNET) in
eastern China, Atmos. Chem. Phys., 18, 405–425,
https://doi.org/10.5194/acp-18-405-2018, 2018. a
Chýlek, P.: Resonance structure of Mie scattering: distance between
resonances, J. Opt. Soc. Am. A, 7, 1609–1613, https://doi.org/10.1364/JOSAA.7.001609,
1990. a
Curci, G., Hogrefe, C., Bianconi, R., Im, U., Balzarini, A., Baró, R.,
Brunner, D., Forkel, R., Giordano, L., Hirtl, M., Honzak, L.,
Jiménez-Guerrero, P., Knote, C., Langer, M., Makar, P., Pirovano, G.,
Pérez, J., José, R. S., Syrakov, D., Tuccella, P., Werhahn, J., Wolke, R.,
Žabkar, R., Zhang, J., and Galmarini, S.: Uncertainties of simulated aerosol
optical properties induced by assumptions on aerosol physical and chemical
properties: An AQMEII-2 perspective, Atmos. Environ., 115, 541–552,
https://doi.org/10.1016/j.atmosenv.2014.09.009, 2015. a
Deirmendjian, D.: Scattering and Polarization Properties of Water Clouds and
Hazes in the Visible and Infrared, Appl. Opt., 3, 187–196,
https://doi.org/10.1364/AO.3.000187, 1964. a, b
Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B. N., Mishchenko,
M.,
Yang, P., Eck, T. F., Volten, H., Muñoz, O., Veihelmann, B.,
van der Zande, W. J., Leon, J., Sorokin, M., and Slutsker, I.:
Application of spheroid models to account for aerosol particle nonsphericity
in remote sensing of desert dust, J. Geophys. Res., 111, D11208,
https://doi.org/10.1029/2005JD006619, 2006. a, b, c
Düsing, S., Wehner, B., Seifert, P., Ansmann, A., Baars, H., Ditas, F.,
Henning, S., Ma, N., Poulain, L., Siebert, H., Wiedensohler, A., and Macke,
A.: Helicopter-borne observations of the continental background aerosol in
combination with remote sensing and ground-based measurements, Atmos. Chem.
Phys., 18, 1263–1290, https://doi.org/10.5194/acp-18-1263-2018, 2018. a
Emde, C., Buras, R., Mayer, B., and Blumthaler, M.: The impact of aerosols on
polarized sky radiance: model development, validation, and applications,
Atmos. Chem. Phys., 10, 383–396, https://doi.org/10.5194/acp-10-383-2010,
2010. a
Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann,
U., Kylling, J., Richter, B., Pause, C., Dowling, T., and Bugliaro, L.: The
libRadtran software package for radiative transfer calculations (version
2.0.1), Geosci. Model Dev., 9, 1647–1672,
https://doi.org/10.5194/gmd-9-1647-2016, 2016. a, b, c
Enroth, J., Mikkilä, J., Németh, Z., Kulmala, M., and Salma, I.:
Wintertime hygroscopicity and volatility of ambient urban aerosol particles,
Atmos. Chem. Phys., 18, 4533–4548, https://doi.org/10.5194/acp-18-4533-2018,
2018. a
Gardner, G. Y.: Simulation of natural scenes using textured quadric surfaces,
Proceedings of the 11th annual conference on Computer graphics and
interactive techniques, 11–20, 1984. a
Gasteiger, J. and Wiegner, M.: Modeling of aerosol optical properties with
MOPSMAP: Fortran program with data set, https://doi.org/10.5281/zenodo.1284217, 2018. a, b, c, d
Gasteiger, J., Groß, S., Freudenthaler, V., and Wiegner, M.: Volcanic ash
from Iceland over Munich: mass concentration retrieved from ground-based
remote sensing measurements, Atmos. Chem. Phys., 11, 2209–2223,
https://doi.org/10.5194/acp-11-2209-2011, 2011a. a, b
Gasteiger, J., Groß, S., Sauer, D., Haarig, M., Ansmann, A., and
Weinzierl, B.: Particle settling and vertical mixing in the Saharan Air Layer
as seen from an integrated model, lidar, and in situ perspective, Atmos.
Chem. Phys., 17, 297–311, https://doi.org/10.5194/acp-17-297-2017, 2017. a
Hänel, G. and Zankl, B.: Aerosol size and relative humidity: Water uptake
by mixtures of salts, Tellus, 31, 478–486,
https://doi.org/10.3402/tellusa.v31i6.10465, 1979. a
Heinold, B., Helmert, J., Hellmuth, O., Wolke, R., Ansmann, A., Marticorena,
B., Laurent, B., and Tegen, I.: Regional modeling of Saharan dust events
using LM-MUSCAT: Model description and case studies, J. Geophys. Res.-Atmos.,
112, D11204, https://doi.org/10.1029/2006JD007443, 2007. a, b
Hill, S. C., Hill, A. C., and Barber, P. W.: Light scattering by size/shape
distributions of soil particles and spheroids, Appl. Opt., 23, 1025–1031,
https://doi.org/10.1364/AO.23.001025, 1984. a
Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer,
A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F.,
Jankowiak, I., and Smirnov, A.: AERONET – A Federated Instrument Network and
Data Archive for Aerosol Characterization, Remote Sens. Environ., 66, 1–16,
https://doi.org/10.1016/S0034-4257(98)00031-5, 1998. a
Horvath, H.: Gustav Mie and the scattering and absorption of light by
particles: Historic developments and basics, J. Quant. Spectrosc.
Ra., 110, 787–799, https://doi.org/10.1016/j.jqsrt.2009.02.022, 2009. a
Horvath, H., Kasahara, M., Tohno, S., and Kocifaj, M.: Angular scattering of
the Gobi Desert aerosol and its influence on radiative forcing, J. Aerosol
Sci., 37, 1287–1302, https://doi.org/10.1016/j.jaerosci.2006.01.004, 2006. a
JCGM: Evaluation of measurement data – Supplement 1 to the “Guide to the
expression of uncertainty in measurement” – Propagation of distributions
using a Monte Carlo method, Tech. rep., Joint Committee for Guides in
Metrology, https://www.bipm.org/en/publications/guides/gum.html (last access: 8 July 2018), 2008. a
Kahn, R., West, R., McDonald, D., Rheingans, B., and Mishchenko,
M. I.: Sensitivity of multiangle remote sensing observations to aerosol
sphericity, J. Geophys. Res., 102, 16861–16870,
https://doi.org/10.1029/96JD01934, 1997. a
Kandler, K., Benker, N., Bundke, U., Cuevas, E., Ebert, M., Knippertz, P.,
Rodríguez, S., Schütz, L., and Weinbruch, S.: Chemical composition
and complex refractive index of Saharan Mineral Dust at Izaña, Tenerife
(Spain) derived by electron microscopy, Atmos. Environ., 41, 8058–8074,
https://doi.org/10.1016/j.atmosenv.2007.06.047, 2007. a
Kandler, K., Schütz, L., Deutscher, C., Ebert, M., Hofmann, H.,
Jäckel, S., Jaenicke, R., Knippertz, P., Lieke, K., Massling,
A., Petzold, A., Schladitz, A., Weinzierl, B., Wiedensohler, A.,
Zorn, S., and Weinbruch, S.: Size distribution, mass concentration,
chemical and mineralogical composition and derived optical parameters of the
boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006, Tellus B, 61,
32–50, https://doi.org/10.1111/j.1600-0889.2008.00385.x, 2009. a, b, c, d
Kandler, K., Lieke, K., Benker, N., Emmel, C., Küpper, M.,
Müller-Ebert, D., Scheuvens, D., Schladitz, A., Schütz, L., and
Weinbruch, S.: Electron microscopy of particles collected at Praia, Cape
Verde, during the Saharan Mineral dust experiment: particle chemistry, shape,
mixing state and complex refractive index, Tellus B, 63, 475–496,
https://doi.org/10.1111/j.1600-0889.2011.00550.x, 2011. a, b
Kassianov, E., Barnard, J., Pekour, M., Berg, L. K., Shilling, J., Flynn, C.,
Mei, F., and Jefferson, A.: Simultaneous retrieval of effective refractive
index and density from size distribution and light-scattering data: weakly
absorbing aerosol, Atmos. Meas. Tech., 7, 3247–3261,
https://doi.org/10.5194/amt-7-3247-2014, 2014. a
Koepke, P., Gasteiger, J., and Hess, M.: Technical Note: Optical properties
of desert aerosol with non-spherical mineral particles: data incorporated to
OPAC, Atmos. Chem. Phys., 15, 5947–5956,
https://doi.org/10.5194/acp-15-5947-2015, 2015. a, b
Kosmopoulos, P. G., Kazadzis, S., Taylor, M., Athanasopoulou, E., Speyer, O.,
Raptis, P. I., Marinou, E., Proestakis, E., Solomos, S., Gerasopoulos, E.,
Amiridis, V., Bais, A., and Kontoes, C.: Dust impact on surface solar
irradiance assessed with model simulations, satellite observations and
ground-based measurements, Atmos. Meas. Tech., 10, 2435–2453,
https://doi.org/10.5194/amt-10-2435-2017, 2017. a
Laven, P.: MiePlot, http://www.philiplaven.com/mieplot.htm,
last access: 22 January 2018. a
Ma, N., Birmili, W., Müller, T., Tuch, T., Cheng, Y. F., Xu, W. Y., Zhao,
C. S., and Wiedensohler, A.: Tropospheric aerosol scattering and absorption
over central Europe: a closure study for the dry particle state, Atmos. Chem.
Phys., 14, 6241–6259, https://doi.org/10.5194/acp-14-6241-2014, 2014. a
Markelj, J., Madronich, S., and Pompe, M.: Modeling of hygroscopicity
parameter
kappa of organic aerosols using quantitative structure-property
relationships, J. Atmos. Chem., 74, 357–376,
https://doi.org/10.1007/s10874-016-9347-3, 2017. a
Mayer, B. and Kylling, A.: Technical note: The libRadtran software package
for radiative transfer calculations – description and examples of use,
Atmos. Chem. Phys., 5, 1855–1877, https://doi.org/10.5194/acp-5-1855-2005,
2005. a
Mehri, T., Kemppinen, O., David, G., Lindqvist, H., Tyynelä, J.,
Nousiainen,
T., Rairoux, P., and Miffre, A.: Investigating the size, shape and surface
roughness dependence of polarization lidars with light-scattering
computations on real mineral dust particles: Application to dust particles'
external mixtures and dust mass concentration retrievals, Atmos. Res., 203,
44–61, https://doi.org/10.1016/j.atmosres.2017.11.027, 2018. a
Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler
Metallösung, Annalen der Physik, 25, 377–445,
https://doi.org/10.1002/andp.19083300302, 1908. a
Mishchenko, M. I. and Yurkin, M. A.: On the concept of random orientation in
far-field electromagnetic scattering by nonspherical particles, Opt. Lett.,
42, 494–497, https://doi.org/10.1364/OL.42.000494, 2017. a
Mishchenko, M. I., Travis, L. D., Kahn, R. A., and West, R. A.: Modeling
phase
functions for dustlike tropospheric aerosols using a shape mixture of
randomly oriented polydisperse spheroids, J. Geophys. Res., 102,
16831–16847, https://doi.org/10.1029/96JD02110, 1997. a
Mishchenko, M. I., Travis, L. D., and Lacis, A. A.: Scattering, Absorption,
and
Emission of Light by Small Particles, Cambridge University Press, 2002. a
Mishchenko, M. I., Geogdzhayev, I. V., and Yang, P.: Expansion of
tabulated scattering matrices in generalized spherical functions, J. Quant.
Spectrosc. Ra., 183, 78–84, https://doi.org/10.1016/j.jqsrt.2016.05.015,
2016. a, b
Müller, D., Lee, K.-H., Gasteiger, J., Tesche, M., Weinzierl,
B.,
Kandler, K., Müller, T., Toledano, C., Otto, S., Althausen, D.,
and Ansmann, A.: Comparison of optical and microphysical properties of
pure Saharan mineral dust observed with AERONET Sun photometer, Raman lidar,
and in situ instruments during SAMUM 2006, J. Geophys. Res.-Atmos., 117,
D07211, https://doi.org/10.1029/2011JD016825, 2012. a
Müller, D., Böckmann, C., Kolgotin, A., Schneidenbach, L., Chemyakin,
E., Rosemann, J., Znak, P., and Romanov, A.: Microphysical particle
properties derived from inversion algorithms developed in the framework of
EARLINET, Atmos. Meas. Tech., 9, 5007–5035,
https://doi.org/10.5194/amt-9-5007-2016, 2016. a
Müller, T., Laborde, M., Kassell, G., and Wiedensohler, A.: Design and
performance of a three-wavelength LED-based total scatter and backscatter
integrating nephelometer, Atmos. Meas. Tech., 4, 1291–1303,
https://doi.org/10.5194/amt-4-1291-2011, 2011. a, b
Otto, S., Bierwirth, E., Weinzierl, B., Kandler, K., Esselborn, M., Tesche,
M.,
Schladitz, A., Wendisch, M., and Trautmann, T.: Solar radiative effects of a
Saharan dust plume observed during SAMUM assuming spheroidal model
particles, Tellus B, 61, 270–296, https://doi.org/10.1111/j.1600-0889.2008.00389.x,
2009. a
Otto, S., Trautmann, T., and Wendisch, M.: On realistic size equivalence and
shape of spheroidal Saharan mineral dust particles applied in solar and
thermal radiative transfer calculations, Atmos. Chem. Phys., 11, 4469–4490,
https://doi.org/10.5194/acp-11-4469-2011, 2011. a
Pappalardo, G., Amodeo, A., Apituley, A., Comeron, A., Freudenthaler, V.,
Linné, H., Ansmann, A., Bösenberg, J., D'Amico, G., Mattis, I., Mona,
L., Wandinger, U., Amiridis, V., Alados-Arboledas, L., Nicolae, D., and
Wiegner, M.: EARLINET: towards an advanced sustainable European aerosol lidar
network, Atmos. Meas. Tech., 7, 2389–2409,
https://doi.org/10.5194/amt-7-2389-2014, 2014. a
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of
hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem.
Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007. a, b
Petty, G. W. and Huang, W.: The Modified Gamma Size Distribution Applied to
Inhomogeneous and Nonspherical Particles: Key Relationships and Conversions,
J. Atmospheric Sci., 68, 1460–1473, https://doi.org/10.1175/2011JAS3645.1, 2011. a
Piller, N. B. and Martin, O. J. F.: Increasing the performance of the
coupled-dipole approximation: a spectral approach, IEEE T. Antenn. Propag.,
46, 1126–1137, https://doi.org/10.1109/8.718567, 1998. a
Polo, J., Ballestrín, J., and Carra, E.: Sensitivity study for modelling
atmospheric attenuation of solar radiation with radiative transfer models and
the impact in solar tower plant production, Sol. Energ., 134, 219–227,
https://doi.org/10.1016/j.solener.2016.04.050, 2016. a
Prahl, S.: Mie Scattering Calculator,
http://omlc.org/calc/mie_calc.html, last access: 22 January 2018. a
Psichoudaki, M., Nenes, A., Florou, K., Kaltsonoudis, C., and Pandis, S. N.:
Hygroscopic properties of atmospheric particles emitted during wintertime
biomass burning episodes in Athens, Atmospheric Environ., 178, 66–72,
https://doi.org/10.1016/j.atmosenv.2018.01.004, 2018. a
Querol, X., Alastuey, A., Ruiz, C., Artiñano, B., Hansson, H., Harrison,
R.,
Buringh, E., ten Brink, H., Lutz, M., Bruckmann, P., Straehl, P., and
Schneider, J.: Speciation and origin of PM10 and PM2.5 in selected European
cities, Atmos. Environ., 38, 6547–6555,
https://doi.org/10.1016/j.atmosenv.2004.08.037, 2004. a
Schumann, U., Mayer, B., Gierens, K., Unterstrasser, S., Jessberger, P.,
Petzold, A., Voigt, C., and Gayet, J.-F.: Effective Radius of Ice Particles
in Cirrus and Contrails, J. Atmos. Sci., 68, 300–321,
https://doi.org/10.1175/2010JAS3562.1, 2011a. a
Schumann, U., Weinzierl, B., Reitebuch, O., Schlager, H., Minikin, A.,
Forster, C., Baumann, R., Sailer, T., Graf, K., Mannstein, H., Voigt, C.,
Rahm, S., Simmet, R., Scheibe, M., Lichtenstern, M., Stock, P., Rüba, H.,
Schäuble, D., Tafferner, A., Rautenhaus, M., Gerz, T., Ziereis, H.,
Krautstrunk, M., Mallaun, C., Gayet, J.-F., Lieke, K., Kandler, K., Ebert,
M., Weinbruch, S., Stohl, A., Gasteiger, J., Groß, S., Freudenthaler, V.,
Wiegner, M., Ansmann, A., Tesche, M., Olafsson, H., and Sturm, K.: Airborne
observations of the Eyjafjalla volcano ash cloud over Europe during air space
closure in April and May 2010, Atmos. Chem. Phys., 11, 2245–2279,
https://doi.org/10.5194/acp-11-2245-2011, 2011b. a
Szymanski, W. W., Nagy, A., and Czitrovszky, A.: Optical particle
spectrometry – Problems and prospects, J. Quant. Spectrosc. Ra.,
110, 918–929, https://doi.org/10.1016/j.jqsrt.2009.02.024, 2009. a
Twomey, S.: Introduction to the Mathematics of Inversion in Remote Sensing
and
Indirect Measurements, Dover Publications, Mineola, New York, 1977. a
Valery, A., Cartwright, R., Fausett, E., Ossipov, A., Pasko, E., and
Savchenko,
V.: HyperFun project: a framework for collaborative multidimensional F-rep
modeling, Eurographics/ACM SIGGRAPH Workshop Implicit Surfaces '99,
Bordeaux, France, 1999. a
Vogel, A., Diplas, S., Durant, A. J., Azar, A. S., Sunding, M. F., Rose,
W. I.,
Sytchkova, A., Bonadonna, C., Krüger, K., and Stohl, A.: Reference data
set of volcanic ash physicochemical and optical properties, J. Geophys. Res.-Atmos.,
122, 9485–9514, https://doi.org/10.1002/2016JD026328, 2017. a, b, c, d, e, f
Weinzierl, B., Petzold, A., Esselborn, M., Wirth, M., Rasp, K.,
Kandler, K., Schütz, L., Koepke, P., and Fiebig, M.: Airborne
measurements of dust layer properties, particle size distribution and mixing
state of Saharan dust during SAMUM 2006, Tellus B, 61, 96–117,
https://doi.org/10.1111/j.1600-0889.2008.00392.x, 2009. a
Weinzierl, B., Sauer, D., Minikin, A., Reitebuch, O.,
Dahlkötter,
F., Mayer, B., Emde, C., Tegen, I., Gasteiger, J., Petzold, A.,
Veira, A., Kueppers, U., and Schumann, U.: On the visibility of
airborne volcanic ash and mineral dust from the pilot's perspective in
flight, Phys. Chem. Earth, 45, 87–102, https://doi.org/10.1016/j.pce.2012.04.003,
2012. a
Wiegner, M., Gasteiger, J., Kandler, K., Weinzierl, B., Rasp, K.,
Esselborn, M., Freudenthaler, V., Heese, B., Toledano, C., Tesche,
M., and Althausen, D.: Numerical simulations of optical properties of
Saharan dust aerosols with emphasis on lidar applications, Tellus B, 61,
180–194, https://doi.org/10.1111/j.1600-0889.2008.00381.x, 2009. a, b
Wiegner, M., Gasteiger, J., Groß, S., Schnell, F., Freudenthaler, V., and
Forkel, R.: Characterization of the Eyjafjallajökull ash-plume: Potential of
lidar remote sensing, Phys. Chem. Earth, 45–46, 79–86,
https://doi.org/10.1016/j.pce.2011.01.006, 2012. a
Wiegner, M., Madonna, F., Binietoglou, I., Forkel, R., Gasteiger, J.,
Geiß, A., Pappalardo, G., Schäfer, K., and Thomas, W.: What is the
benefit of ceilometers for aerosol remote sensing? An answer from EARLINET,
Atmos. Meas. Tech., 7, 1979–1997, https://doi.org/10.5194/amt-7-1979-2014,
2014. a
Yang, P., Feng, Q., Hong, G., Kattawar, G. W., Wiscombe, W. J., Mishchenko,
M. I., Dubovik, O., Laszlo, I., and Sokolik, I. N.: Modeling of the
scattering and radiative properties of nonspherical dust-like aerosols, J.
Aerosol Sci., 38, 995–1014, https://doi.org/10.1016/j.jaerosci.2007.07.001, 2007.
a
Yurkin, M. A. and Hoekstra, A. G.: The discrete-dipole-approximation code
ADDA:
Capabilities and known limitations, J. Quant. Spectrosc. Ra.,
112, 2234–2247, https://doi.org/10.1016/j.jqsrt.2011.01.031, 2011. a, b, c
Yurkin, M. A., Min, M., and Hoekstra, A. G.: Application of the discrete
dipole
approximation to very large refractive indices: Filtered coupled dipoles
revived, Phys. Rev. E, 82, 036703, https://doi.org/10.1103/PhysRevE.82.036703, 2010. a
Zhang, Y., Easter, R. C., Ghan, S. J., and Abdul-Razzak, H.: Impact of
aerosol
size representation on modeling aerosol-cloud interactions, J. Geophys. Res.-Atmos.,
107, AAC 4-1–AAC 4-17, https://doi.org/10.1029/2001JD001549, 2002. a
Zhuang, B., Wang, T., Liu, J., Che, H., Han, Y., Fu, Y., Li, S., Xie, M., Li,
M., Chen, P., Chen, H., Yang, X.-Q., and Sun, J.: The optical properties,
physical properties and direct radiative forcing of urban columnar aerosols
in the Yangtze River Delta, China, Atmos. Chem. Phys., 18, 1419–1436,
https://doi.org/10.5194/acp-18-1419-2018, 2018. a
Zieger, P., Fierz-Schmidhauser, R., Weingartner, E., and Baltensperger, U.:
Effects of relative humidity on aerosol light scattering: results from
different European sites, Atmos. Chem. Phys., 13, 10609–10631,
https://doi.org/10.5194/acp-13-10609-2013, 2013. a, b, c, d
Zieger, P., Fierz-Schmidhauser, R., Poulain, L., Müller, T., Birmili, W.,
Spindler, G., Wiedensohler, A., Baltensperger, U., and Weingartner, E.:
Influence of water uptake on the aerosol particle light scattering
coefficients of the Central European aerosol, Tellus B, 66, 22716,
https://doi.org/10.3402/tellusb.v66.22716, 2014. a
Short summary
A software package has been developed to model optical properties of atmospheric aerosol ensembles based on a pre-calculated single particle data set. Spherical particles, spheroids, and a small set of irregular shapes are covered. A flexible and intuitive web interface is provided for online calculations of user-defined ensembles. The paper describes the package and outlines several applications, e.g., optical properties for aerosol size bins of an aerosol transport model.
A software package has been developed to model optical properties of atmospheric aerosol...