Articles | Volume 11, issue 7
Geosci. Model Dev., 11, 2739–2762, 2018
https://doi.org/10.5194/gmd-11-2739-2018
Geosci. Model Dev., 11, 2739–2762, 2018
https://doi.org/10.5194/gmd-11-2739-2018
Model description paper
11 Jul 2018
Model description paper | 11 Jul 2018

MOPSMAP v1.0: a versatile tool for the modeling of aerosol optical properties

Josef Gasteiger and Matthias Wiegner

Related authors

Impact of particle size, refractive index, and shape on the determination of the particle scattering coefficient – an optical closure study evaluating different nephelometer angular truncation and illumination corrections
Marilena Teri, Thomas Müller, Josef Gasteiger, Sara Valentini, Helmuth Horvath, Roberta Vecchi, Paulus Bauer, Adrian Walser, and Bernadett Weinzierl
Atmos. Meas. Tech., 15, 3161–3187, https://doi.org/10.5194/amt-15-3161-2022,https://doi.org/10.5194/amt-15-3161-2022, 2022
Short summary
VADUGS: a neural network for the remote sensing of volcanic ash with MSG/SEVIRI trained with synthetic thermal satellite observations simulated with a radiative transfer model
Luca Bugliaro, Dennis Piontek, Stephan Kox, Marius Schmidl, Bernhard Mayer, Richard Müller, Margarita Vázquez-Navarro, Daniel M. Peters, Roy G. Grainger, Josef Gasteiger, and Jayanta Kar
Nat. Hazards Earth Syst. Sci., 22, 1029–1054, https://doi.org/10.5194/nhess-22-1029-2022,https://doi.org/10.5194/nhess-22-1029-2022, 2022
Short summary
Polarization lidar for detecting dust orientation: system design and calibration
Alexandra Tsekeri, Vassilis Amiridis, Alexandros Louridas, George Georgoussis, Volker Freudenthaler, Spiros Metallinos, George Doxastakis, Josef Gasteiger, Nikolaos Siomos, Peristera Paschou, Thanasis Georgiou, George Tsaknakis, Christos Evangelatos, and Ioannis Binietoglou
Atmos. Meas. Tech., 14, 7453–7474, https://doi.org/10.5194/amt-14-7453-2021,https://doi.org/10.5194/amt-14-7453-2021, 2021
Short summary
Flow-induced errors in airborne in situ measurements of aerosols and clouds
Antonio Spanu, Maximilian Dollner, Josef Gasteiger, T. Paul Bui, and Bernadett Weinzierl
Atmos. Meas. Tech., 13, 1963–1987, https://doi.org/10.5194/amt-13-1963-2020,https://doi.org/10.5194/amt-13-1963-2020, 2020
Short summary
Sun photometer retrievals of Saharan dust properties over Barbados during SALTRACE
Carlos Toledano, Benjamín Torres, Cristian Velasco-Merino, Dietrich Althausen, Silke Groß, Matthias Wiegner, Bernadett Weinzierl, Josef Gasteiger, Albert Ansmann, Ramiro González, David Mateos, David Farrel, Thomas Müller, Moritz Haarig, and Victoria E. Cachorro
Atmos. Chem. Phys., 19, 14571–14583, https://doi.org/10.5194/acp-19-14571-2019,https://doi.org/10.5194/acp-19-14571-2019, 2019
Short summary

Related subject area

Atmospheric sciences
An emergency response model for the formation and dispersion of plumes originating from major fires (BUOYANT v4.20)
Jaakko Kukkonen, Juha Nikmo, Kari Riikonen, Ilmo Westerholm, Pekko Ilvessalo, Tuomo Bergman, and Klaus Haikarainen
Geosci. Model Dev., 15, 4027–4054, https://doi.org/10.5194/gmd-15-4027-2022,https://doi.org/10.5194/gmd-15-4027-2022, 2022
Short summary
Description and evaluation of the community aerosol dynamics model MAFOR v2.0
Matthias Karl, Liisa Pirjola, Tiia Grönholm, Mona Kurppa, Srinivasan Anand, Xiaole Zhang, Andreas Held, Rolf Sander, Miikka Dal Maso, David Topping, Shuai Jiang, Leena Kangas, and Jaakko Kukkonen
Geosci. Model Dev., 15, 3969–4026, https://doi.org/10.5194/gmd-15-3969-2022,https://doi.org/10.5194/gmd-15-3969-2022, 2022
Short summary
Modeling the high-mercury wet deposition in the southeastern US with WRF-GC-Hg v1.0
Xiaotian Xu, Xu Feng, Haipeng Lin, Peng Zhang, Shaojian Huang, Zhengcheng Song, Yiming Peng, Tzung-May Fu, and Yanxu Zhang
Geosci. Model Dev., 15, 3845–3859, https://doi.org/10.5194/gmd-15-3845-2022,https://doi.org/10.5194/gmd-15-3845-2022, 2022
Short summary
Development of a deep neural network for predicting 6 h average PM2.5 concentrations up to 2 subsequent days using various training data
Jeong-Beom Lee, Jae-Bum Lee, Youn-Seo Koo, Hee-Yong Kwon, Min-Hyeok Choi, Hyun-Ju Park, and Dae-Gyun Lee
Geosci. Model Dev., 15, 3797–3813, https://doi.org/10.5194/gmd-15-3797-2022,https://doi.org/10.5194/gmd-15-3797-2022, 2022
Short summary
Chemistry Across Multiple Phases (CAMP) version 1.0: an integrated multiphase chemistry model
Matthew L. Dawson, Christian Guzman, Jeffrey H. Curtis, Mario Acosta, Shupeng Zhu, Donald Dabdub, Andrew Conley, Matthew West, Nicole Riemer, and Oriol Jorba
Geosci. Model Dev., 15, 3663–3689, https://doi.org/10.5194/gmd-15-3663-2022,https://doi.org/10.5194/gmd-15-3663-2022, 2022
Short summary

Cited articles

Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, J., Forkel, R., Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre, S., Jorba, O., Kaas, E., Kaasik, M., Kallos, G., Kong, X., Korsholm, U., Kurganskiy, A., Kushta, J., Lohmann, U., Mahura, A., Manders-Groot, A., Maurizi, A., Moussiopoulos, N., Rao, S. T., Savage, N., Seigneur, C., Sokhi, R. S., Solazzo, E., Solomos, S., Sørensen, B., Tsegas, G., Vignati, E., Vogel, B., and Zhang, Y.: Online coupled regional meteorology chemistry models in Europe: current status and prospects, Atmos. Chem. Phys., 14, 317–398, https://doi.org/10.5194/acp-14-317-2014, 2014. a
Balzarini, A., Pirovano, G., Honzak, L., Žabkar, R., Curci, G., Forkel, R., Hirtl, M., José, R. S., Tuccella, P., and Grell, G.: WRF-Chem model sensitivity to chemical mechanisms choice in reconstructing aerosol optical properties, Atmospheric Environ., 115, 604 – 619, https://doi.org/10.1016/j.atmosenv.2014.12.033, 2015. a
Bell, S. W., Hansell, R. A., Chow, J. C., Tsay, S.-C., Hsu, N. C., Lin, N.-H., Wang, S.-H., Ji, Q., Li, C., Watson, J. G., and Khlystov, A.: Constraining aerosol optical models using ground-based, collocated particle size and mass measurements in variable air mass regimes during the 7-SEAS/Dongsha experiment, Atmos. Environ., 78, 163–173, https://doi.org/10.1016/j.atmosenv.2012.06.057, 2013. a
Bi, L., Yang, P., Kattawar, G. W., and Kahn, R.: Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes, Appl. Opt., 48, 114–126, https://doi.org/10.1364/AO.48.000114, 2009. a, b
Binkowski, F. S. and Shankar, U.: The Regional Particulate Matter Model: 1. Model description and preliminary results, J. Geophys. Res.-Atmos., 100, 26191–26209, https://doi.org/10.1029/95JD02093, 1995. a
Download
Short summary
A software package has been developed to model optical properties of atmospheric aerosol ensembles based on a pre-calculated single particle data set. Spherical particles, spheroids, and a small set of irregular shapes are covered. A flexible and intuitive web interface is provided for online calculations of user-defined ensembles. The paper describes the package and outlines several applications, e.g., optical properties for aerosol size bins of an aerosol transport model.