Articles | Volume 11, issue 6
https://doi.org/10.5194/gmd-11-2353-2018
https://doi.org/10.5194/gmd-11-2353-2018
Model description paper
 | 
19 Jun 2018
Model description paper |  | 19 Jun 2018

TAMSAT-ALERT v1: a new framework for agricultural decision support

Dagmawi Asfaw, Emily Black, Matthew Brown, Kathryn Jane Nicklin, Frederick Otu-Larbi, Ewan Pinnington, Andrew Challinor, Ross Maidment, and Tristan Quaife

Related authors

A comprehensive land-surface vegetation model for multi-stream data assimilation, D&B v1.0
Wolfgang Knorr, Matthew Williams, Tea Thum, Thomas Kaminski, Michael Voßbeck, Marko Scholze, Tristan Quaife, T. Luke Smallman, Susan C. Steele-Dunne, Mariette Vreugdenhil, Tim Green, Sönke Zaehle, Mika Aurela, Alexandre Bouvet, Emanuel Bueechi, Wouter Dorigo, Tarek S. El-Madany, Mirco Migliavacca, Marika Honkanen, Yann H. Kerr, Anna Kontu, Juha Lemmetyinen, Hannakaisa Lindqvist, Arnaud Mialon, Tuuli Miinalainen, Gaétan Pique, Amanda Ojasalo, Shaun Quegan, Peter J. Rayner, Pablo Reyes-Muñoz, Nemesio Rodríguez-Fernández, Mike Schwank, Jochem Verrelst, Songyan Zhu, Dirk Schüttemeyer, and Matthias Drusch
Geosci. Model Dev., 18, 2137–2159, https://doi.org/10.5194/gmd-18-2137-2025,https://doi.org/10.5194/gmd-18-2137-2025, 2025
Short summary
Strong relation between atmospheric CO2 growth rate and terrestrial water storage in tropical forests on interannual timescales
Samantha Petch, Liang Feng, Paul Palmer, Robert P. King, Tristan Quaife, and Keith Haines
EGUsphere, https://doi.org/10.22541/essoar.173343481.12875858/v1,https://doi.org/10.22541/essoar.173343481.12875858/v1, 2025
Short summary
Towards the Assimilation of Atmospheric CO2 Concentration Data in a Land Surface Model using Adjoint-free Variational Methods
Simon Beylat, Nina Raoult, Cédric Bacour, Natalie Douglas, Tristan Quaife, Vladislav Bastrikov, Peter Julien Rayner, and Philippe Peylin
EGUsphere, https://doi.org/10.5194/egusphere-2025-109,https://doi.org/10.5194/egusphere-2025-109, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
A computationally lightweight model for ensemble forecasting of environmental hazards: General TAMSAT-ALERT v1.2.1
Emily Black, John Ellis, and Ross I. Maidment
Geosci. Model Dev., 17, 8353–8372, https://doi.org/10.5194/gmd-17-8353-2024,https://doi.org/10.5194/gmd-17-8353-2024, 2024
Short summary
A Flexible Snow Model (FSM 2.1.0) including a forest canopy
Richard Essery, Giulia Mazzotti, Sarah Barr, Tobias Jonas, Tristan Quaife, and Nick Rutter
EGUsphere, https://doi.org/10.5194/egusphere-2024-2546,https://doi.org/10.5194/egusphere-2024-2546, 2024
Short summary

Related subject area

Climate and Earth system modeling
Development and evaluation of a new 4DEnVar-based weakly coupled ocean data assimilation system in E3SMv2
Pengfei Shi, L. Ruby Leung, and Bin Wang
Geosci. Model Dev., 18, 2443–2460, https://doi.org/10.5194/gmd-18-2443-2025,https://doi.org/10.5194/gmd-18-2443-2025, 2025
Short summary
TemDeep: a self-supervised framework for temporal downscaling of atmospheric fields at arbitrary time resolutions
Liwen Wang, Qian Li, Qi Lv, Xuan Peng, and Wei You
Geosci. Model Dev., 18, 2427–2442, https://doi.org/10.5194/gmd-18-2427-2025,https://doi.org/10.5194/gmd-18-2427-2025, 2025
Short summary
The ensemble consistency test: from CESM to MPAS and beyond
Teo Price-Broncucia, Allison Baker, Dorit Hammerling, Michael Duda, and Rebecca Morrison
Geosci. Model Dev., 18, 2349–2372, https://doi.org/10.5194/gmd-18-2349-2025,https://doi.org/10.5194/gmd-18-2349-2025, 2025
Short summary
Presentation, calibration and testing of the DCESS II Earth system model of intermediate complexity (version 1.0)
Esteban Fernández Villanueva and Gary Shaffer
Geosci. Model Dev., 18, 2161–2192, https://doi.org/10.5194/gmd-18-2161-2025,https://doi.org/10.5194/gmd-18-2161-2025, 2025
Short summary
Synthesizing global carbon–nitrogen coupling effects – the MAGICC coupled carbon–nitrogen cycle model v1.0
Gang Tang, Zebedee Nicholls, Alexander Norton, Sönke Zaehle, and Malte Meinshausen
Geosci. Model Dev., 18, 2193–2230, https://doi.org/10.5194/gmd-18-2193-2025,https://doi.org/10.5194/gmd-18-2193-2025, 2025
Short summary

Cited articles

Asfaw, D., Black, E., Brown, M., Nicklin, K. J., Otu-Larbi, F., Pinnington, E., Challinor, A., Maidment, R., and Quaife, T.: TAMSAT-ALERT v1: A new framework for agricultural decision support, https://doi.org/10.5281/zenodo.1164603, 2018. 
Bannayan, M., Crout, N. M., and Hoogenboom, G.: Application of the CERES-Wheat model for within-season prediction of winter wheat yield in the United Kingdom, Agron. J., 95, 114–125, https://doi.org/10.2134/agronj2003.0114, 2003. 
Barnston, A. G. and Tippett, M. K.: Climate information, outlooks, and understanding-where does the IRI stand?, Earth Perspectives, 1, 20, https://doi.org/10.1186/2194-6434-1-20, 2014. 
Black, E., Greatrex, H., Young, M., and Maidment, R.: Incorporating satellite data into weather index insurance, B. Am. Meteorol. Soc., 97, ES203–ES206, https://doi.org/10.1175/BAMS-D-16-0148.1, 2016. 
Boyd, E., Cornforth, R. J., Lamb, P. J., Tarhule, A., Lélé, M. I., and Brouder, A.: Building resilience to face recurring environmental crisis in African Sahel, Nat. Clim. Change, 3, 631–638, https://doi.org/10.1038/NCLIMATE1856, 2013. 
Download
Short summary
TAMSAT-ALERT is a framework for combining observational and forecast information into continually updated assessments of the likelihood of user-defined adverse events like low cumulative rainfall or lower than average crop yield. It is easy to use and flexible to accommodate any impact model that uses meteorological data. The results show that it can be used to monitor the meteorological impact on yield within a growing season and to test the value of routinely issued seasonal forecasts.
Share