Articles | Volume 11, issue 6
Geosci. Model Dev., 11, 2353–2371, 2018
https://doi.org/10.5194/gmd-11-2353-2018
Geosci. Model Dev., 11, 2353–2371, 2018
https://doi.org/10.5194/gmd-11-2353-2018

Model description paper 19 Jun 2018

Model description paper | 19 Jun 2018

TAMSAT-ALERT v1: a new framework for agricultural decision support

Dagmawi Asfaw et al.

Related authors

Improvement of modeling plant responses to low soil moisture in JULESvn4.9 and evaluation against flux tower measurements
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021,https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Improving soil moisture prediction of a high-resolution land surface model by parameterising pedotransfer functions through assimilation of SMAP satellite data
Ewan Pinnington, Javier Amezcua, Elizabeth Cooper, Simon Dadson, Rich Ellis, Jian Peng, Emma Robinson, Ross Morrison, Simon Osborne, and Tristan Quaife
Hydrol. Earth Syst. Sci., 25, 1617–1641, https://doi.org/10.5194/hess-25-1617-2021,https://doi.org/10.5194/hess-25-1617-2021, 2021
Short summary
Implementation of sequential cropping into JULESvn5.2 land-surface model
Camilla Mathison, Andrew J. Challinor, Chetan Deva, Pete Falloon, Sébastien Garrigues, Sophie Moulin, Karina Williams, and Andy Wiltshire
Geosci. Model Dev., 14, 437–471, https://doi.org/10.5194/gmd-14-437-2021,https://doi.org/10.5194/gmd-14-437-2021, 2021
Short summary
The Land Variational Ensemble Data Assimilation Framework: LAVENDAR v1.0.0
Ewan Pinnington, Tristan Quaife, Amos Lawless, Karina Williams, Tim Arkebauer, and Dave Scoby
Geosci. Model Dev., 13, 55–69, https://doi.org/10.5194/gmd-13-55-2020,https://doi.org/10.5194/gmd-13-55-2020, 2020
Short summary
Estimating sowing and harvest dates based on the Asian summer monsoon
Camilla Mathison, Chetan Deva, Pete Falloon, and Andrew J. Challinor
Earth Syst. Dynam., 9, 563–592, https://doi.org/10.5194/esd-9-563-2018,https://doi.org/10.5194/esd-9-563-2018, 2018
Short summary

Related subject area

Climate and Earth system modeling
Fast and accurate learned multiresolution dynamical downscaling for precipitation
Jiali Wang, Zhengchun Liu, Ian Foster, Won Chang, Rajkumar Kettimuthu, and V. Rao Kotamarthi
Geosci. Model Dev., 14, 6355–6372, https://doi.org/10.5194/gmd-14-6355-2021,https://doi.org/10.5194/gmd-14-6355-2021, 2021
Short summary
A parameterization of sub-grid topographical effects on solar radiation in the E3SM Land Model (version 1.0): implementation and evaluation over the Tibetan Plateau
Dalei Hao, Gautam Bisht, Yu Gu, Wei-Liang Lee, Kuo-Nan Liou, and L. Ruby Leung
Geosci. Model Dev., 14, 6273–6289, https://doi.org/10.5194/gmd-14-6273-2021,https://doi.org/10.5194/gmd-14-6273-2021, 2021
Short summary
WETMETH 1.0: a new wetland methane model for implementation in Earth system models
Claude-Michel Nzotungicimpaye, Kirsten Zickfeld, Andrew H. MacDougall, Joe R. Melton, Claire C. Treat, Michael Eby, and Lance F. W. Lesack
Geosci. Model Dev., 14, 6215–6240, https://doi.org/10.5194/gmd-14-6215-2021,https://doi.org/10.5194/gmd-14-6215-2021, 2021
Short summary
Effect of horizontal resolution on the simulation of tropical cyclones in the Chinese Academy of Sciences FGOALS-f3 climate system model
Jinxiao Li, Qing Bao, Yimin Liu, Lei Wang, Jing Yang, Guoxiong Wu, Xiaofei Wu, Bian He, Xiaocong Wang, Xiaoqi Zhang, Yaoxian Yang, and Zili Shen
Geosci. Model Dev., 14, 6113–6133, https://doi.org/10.5194/gmd-14-6113-2021,https://doi.org/10.5194/gmd-14-6113-2021, 2021
Short summary
Grid-stretching capability for the GEOS-Chem 13.0.0 atmospheric chemistry model
Liam Bindle, Randall V. Martin, Matthew J. Cooper, Elizabeth W. Lundgren, Sebastian D. Eastham, Benjamin M. Auer, Thomas L. Clune, Hongjian Weng, Jintai Lin, Lee T. Murray, Jun Meng, Christoph A. Keller, William M. Putman, Steven Pawson, and Daniel J. Jacob
Geosci. Model Dev., 14, 5977–5997, https://doi.org/10.5194/gmd-14-5977-2021,https://doi.org/10.5194/gmd-14-5977-2021, 2021
Short summary

Cited articles

Asfaw, D., Black, E., Brown, M., Nicklin, K. J., Otu-Larbi, F., Pinnington, E., Challinor, A., Maidment, R., and Quaife, T.: TAMSAT-ALERT v1: A new framework for agricultural decision support, https://doi.org/10.5281/zenodo.1164603, 2018. 
Bannayan, M., Crout, N. M., and Hoogenboom, G.: Application of the CERES-Wheat model for within-season prediction of winter wheat yield in the United Kingdom, Agron. J., 95, 114–125, https://doi.org/10.2134/agronj2003.0114, 2003. 
Barnston, A. G. and Tippett, M. K.: Climate information, outlooks, and understanding-where does the IRI stand?, Earth Perspectives, 1, 20, https://doi.org/10.1186/2194-6434-1-20, 2014. 
Black, E., Greatrex, H., Young, M., and Maidment, R.: Incorporating satellite data into weather index insurance, B. Am. Meteorol. Soc., 97, ES203–ES206, https://doi.org/10.1175/BAMS-D-16-0148.1, 2016. 
Boyd, E., Cornforth, R. J., Lamb, P. J., Tarhule, A., Lélé, M. I., and Brouder, A.: Building resilience to face recurring environmental crisis in African Sahel, Nat. Clim. Change, 3, 631–638, https://doi.org/10.1038/NCLIMATE1856, 2013. 
Download
Short summary
TAMSAT-ALERT is a framework for combining observational and forecast information into continually updated assessments of the likelihood of user-defined adverse events like low cumulative rainfall or lower than average crop yield. It is easy to use and flexible to accommodate any impact model that uses meteorological data. The results show that it can be used to monitor the meteorological impact on yield within a growing season and to test the value of routinely issued seasonal forecasts.