Articles | Volume 11, issue 4
https://doi.org/10.5194/gmd-11-1577-2018
https://doi.org/10.5194/gmd-11-1577-2018
Methods for assessment of models
 | 
19 Apr 2018
Methods for assessment of models |  | 19 Apr 2018

On the effect of model parameters on forecast objects

Caren Marzban, Corinne Jones, Ning Li, and Scott Sandgathe

Related subject area

Atmospheric sciences
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024,https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024,https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024,https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024,https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Impact of ITCZ width on global climate: ITCZ-MIP
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024,https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary

Cited articles

Ahijevych, D., Gilleland, D. E., Brown, B. G., and Ebert, E. E.: Application of spatial verification methods to idealized and NWP-gridded precipitation forecasts, Weather Forecast., 24, 1485–1497, 2009.
Backman, J., Wood, C. R., Auvinen, M., Kangas, L., Hannuniemi, H., Karppinen, A., and Kukkonen, J.: Sensitivity analysis of the meteorological preprocessor MPP-FMI 3.0 using algorithmic differentiation, Geosci. Model Dev., 10, 3793–3803, https://doi.org/10.5194/gmd-10-3793-2017, 2017.
Baldwin, M. E., Lakshmivarahan, S., and Kain, J. S.: Verification of mesoscale features in NWP models, in: 9th Conf. on Mesoscale Processes, Amer Meteor. Soc., Ft. Lauderdale, FL, 255–258, 2001.
Baldwin, M. E., Lakshmivarahan, S., and Kain, J. S.: Development of an “events-oriented” approach to forecast verification, in: 15th Conf. Numerical Weather Prediction, San Antonio, TX, 2002.
Banfield, J. D. and Raftery, A. E.: Model-based Gaussian and non-Gaussian clustering, Biometrics, 49, 803–821, 1993.
Download
Short summary
Some numerical models generate "maps", for example temperature or precipitation maps produced by numerical weather prediction models. These maps often contain "objects", for example a storm. Features of these objects are generally affected by the parameters of the numerical model. This paper puts forth a methodology for exposing both the strength and the statistical significance of the effect of the model parameters on object features.