Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
GMD | Articles | Volume 11, issue 3
Geosci. Model Dev., 11, 1115–1131, 2018
https://doi.org/10.5194/gmd-11-1115-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: The Modular Earth Submodel System (MESSy) (ACP/GMD inter-journal...

Geosci. Model Dev., 11, 1115–1131, 2018
https://doi.org/10.5194/gmd-11-1115-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 28 Mar 2018

Development and technical paper | 28 Mar 2018

Polar boundary layer bromine explosion and ozone depletion events in the chemistry–climate model EMAC v2.52: implementation and evaluation of AirSnow algorithm

Stefanie Falk and Björn-Martin Sinnhuber

Related authors

Update and evaluation of the ozone dry deposition in Oslo CTM3 v1.0
Stefanie Falk and Amund Søvde Haslerud
Geosci. Model Dev., 12, 4705–4728, https://doi.org/10.5194/gmd-12-4705-2019,https://doi.org/10.5194/gmd-12-4705-2019, 2019
Short summary
Brominated VSLS and their influence on ozone under a changing climate
Stefanie Falk, Björn-Martin Sinnhuber, Gisèle Krysztofiak, Patrick Jöckel, Phoebe Graf, and Sinikka T. Lennartz
Atmos. Chem. Phys., 17, 11313–11329, https://doi.org/10.5194/acp-17-11313-2017,https://doi.org/10.5194/acp-17-11313-2017, 2017
Short summary

Related subject area

Atmospheric Sciences
Concentration Trajectory Route of Air pollution with an Integrated Lagrangian model (C-TRAIL Model v1.0) derived from the Community Multiscale Air Quality Model (CMAQ Model v5.2)
Arman Pouyaei, Yunsoo Choi, Jia Jung, Bavand Sadeghi, and Chul Han Song
Geosci. Model Dev., 13, 3489–3505, https://doi.org/10.5194/gmd-13-3489-2020,https://doi.org/10.5194/gmd-13-3489-2020, 2020
Short summary
Evaluation of three new surface irrigation parameterizations in the WRF-ARW v3.8.1 model: the Po Valley (Italy) case study
Arianna Valmassoi, Jimy Dudhia, Silvana Di Sabatino, and Francesco Pilla
Geosci. Model Dev., 13, 3179–3201, https://doi.org/10.5194/gmd-13-3179-2020,https://doi.org/10.5194/gmd-13-3179-2020, 2020
Short summary
An ensemble Kalman filter data assimilation system for the whole neutral atmosphere
Dai Koshin, Kaoru Sato, Kazuyuki Miyazaki, and Shingo Watanabe
Geosci. Model Dev., 13, 3145–3177, https://doi.org/10.5194/gmd-13-3145-2020,https://doi.org/10.5194/gmd-13-3145-2020, 2020
Short summary
Calculating human thermal comfort and thermal stress in the PALM model system 6.0
Dominik Fröhlich and Andreas Matzarakis
Geosci. Model Dev., 13, 3055–3065, https://doi.org/10.5194/gmd-13-3055-2020,https://doi.org/10.5194/gmd-13-3055-2020, 2020
Short summary
APIFLAME v2.0 biomass burning emissions model: impact of refined input parameters on atmospheric concentration in Portugal in summer 2016
Solène Turquety, Laurent Menut, Guillaume Siour, Sylvain Mailler, Juliette Hadji-Lazaro, Maya George, Cathy Clerbaux, Daniel Hurtmans, and Pierre-François Coheur
Geosci. Model Dev., 13, 2981–3009, https://doi.org/10.5194/gmd-13-2981-2020,https://doi.org/10.5194/gmd-13-2981-2020, 2020
Short summary

Cited articles

Abbatt, J. P. D., Thomas, J. L., Abrahamsson, K., Boxe, C., Granfors, A., Jones, A. E., King, M. D., Saiz-Lopez, A., Shepson, P. B., Sodeau, J., Toohey, D. W., Toubin, C., von Glasow, R., Wren, S. N., and Yang, X.: Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions, Atmos. Chem. Phys., 12, 6237–6271, https://doi.org/10.5194/acp-12-6237-2012, 2012. a, b, c
Adams, J. W., Holmes, N. S., and Crowley, J. N.: Uptake and reaction of HOBr on frozen and dry NaCl/NaBr surfaces between 253 and 233 K, Atmos. Chem. Phys., 2, 79–91, https://doi.org/10.5194/acp-2-79-2002, 2002. a
Barrie, L. A., Bottenheim, J. W., Schnell, R. C., Crutzen, P. J., and Rasmussen, R. A.: Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere, Nature, 334, 138–141, https://doi.org/10.1038/334138a0, 1988. a
Bottenheim, J. W., Gallant, A. G., and Brice, K. A.: Measutements of NOy Species and O-3 at 82-Degrees-N Latitude, Geophys. Res. Lett., 13, 113–116, https://doi.org/10.1029/GL013i002p00113, 1986. a
Bottenheim, J. W., Fuentes, J. D., Tarasick, D. W., and Anlauf, K. G.: Ozone in the Arctic lower troposphere during winter and spring 2000 (ALERT2000), Atmos. Environ., 36, 2535–2544, https://doi.org/10.1016/S1352-2310(02)00121-8, 2002. a
Publications Copernicus
Download
Short summary
Ozone depletion events (ODEs) in the polar boundary layer are observed frequently in spring. ODEs serve as a source of tropospheric BrO at high latitudes. A treatment of bromine release and recycling on sea-ice- and snow-covered surfaces is implemented in global chemistry–climate model EMAC based on a scheme of Toyota et al. (2011). Many aspects of bromine enhancement and associated ODEs are reproduced in both polar regions. Further bromine release mechanisms can now be tested in a global model.
Ozone depletion events (ODEs) in the polar boundary layer are observed frequently in spring....
Citation