Articles | Volume 11, issue 3
https://doi.org/10.5194/gmd-11-1093-2018
https://doi.org/10.5194/gmd-11-1093-2018
Development and technical paper
 | 
27 Mar 2018
Development and technical paper |  | 27 Mar 2018

Optimizing UV Index determination from broadband irradiances

Keith A. Tereszchuk, Yves J. Rochon, Chris A. McLinden, and Paul A. Vaillancourt

Related authors

Retrieval and validation of carbon dioxide, methane and water vapor for the Canary Islands IR-laser occultation experiment
V. Proschek, G. Kirchengast, S. Schweitzer, J. S. A. Brooke, P. F. Bernath, C. B. Thomas, J.-G. Wang, K. A. Tereszchuk, G. González Abad, R. J. Hargreaves, C. A. Beale, J. J. Harrison, P. A. Martin, V. L. Kasyutich, C. Gerbig, O. Kolle, and A. Loescher
Atmos. Meas. Tech., 8, 3315–3336, https://doi.org/10.5194/amt-8-3315-2015,https://doi.org/10.5194/amt-8-3315-2015, 2015
Investigation of CO, C2H6 and aerosols in a boreal fire plume over eastern Canada during BORTAS 2011 using ground- and satellite-based observations and model simulations
D. Griffin, K. A. Walker, J. E. Franklin, M. Parrington, C. Whaley, J. Hopper, J. R. Drummond, P. I. Palmer, K. Strong, T. J. Duck, I. Abboud, P. F. Bernath, C. Clerbaux, P.-F. Coheur, K. R. Curry, L. Dan, E. Hyer, J. Kliever, G. Lesins, M. Maurice, A. Saha, K. Tereszchuk, and D. Weaver
Atmos. Chem. Phys., 13, 10227–10241, https://doi.org/10.5194/acp-13-10227-2013,https://doi.org/10.5194/acp-13-10227-2013, 2013
Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: design, execution and science overview
P. I. Palmer, M. Parrington, J. D. Lee, A. C. Lewis, A. R. Rickard, P. F. Bernath, T. J. Duck, D. L. Waugh, D. W. Tarasick, S. Andrews, E. Aruffo, L. J. Bailey, E. Barrett, S. J.-B. Bauguitte, K. R. Curry, P. Di Carlo, L. Chisholm, L. Dan, G. Forster, J. E. Franklin, M. D. Gibson, D. Griffin, D. Helmig, J. R. Hopkins, J. T. Hopper, M. E. Jenkin, D. Kindred, J. Kliever, M. Le Breton, S. Matthiesen, M. Maurice, S. Moller, D. P. Moore, D. E. Oram, S. J. O'Shea, R. C. Owen, C. M. L. S. Pagniello, S. Pawson, C. J. Percival, J. R. Pierce, S. Punjabi, R. M. Purvis, J. J. Remedios, K. M. Rotermund, K. M. Sakamoto, A. M. da Silva, K. B. Strawbridge, K. Strong, J. Taylor, R. Trigwell, K. A. Tereszchuk, K. A. Walker, D. Weaver, C. Whaley, and J. C. Young
Atmos. Chem. Phys., 13, 6239–6261, https://doi.org/10.5194/acp-13-6239-2013,https://doi.org/10.5194/acp-13-6239-2013, 2013
Observations of peroxyacetyl nitrate (PAN) in the upper troposphere by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS)
K. A. Tereszchuk, D. P. Moore, J. J. Harrison, C. D. Boone, M. Park, J. J. Remedios, W. J. Randel, and P. F. Bernath
Atmos. Chem. Phys., 13, 5601–5613, https://doi.org/10.5194/acp-13-5601-2013,https://doi.org/10.5194/acp-13-5601-2013, 2013
ACE-FTS observations of pyrogenic trace species in boreal biomass burning plumes during BORTAS
K. A. Tereszchuk, G. González Abad, C. Clerbaux, J. Hadji-Lazaro, D. Hurtmans, P.-F. Coheur, and P. F. Bernath
Atmos. Chem. Phys., 13, 4529–4541, https://doi.org/10.5194/acp-13-4529-2013,https://doi.org/10.5194/acp-13-4529-2013, 2013

Related subject area

Atmospheric sciences
Knowledge-inspired fusion strategies for the inference of PM2.5 values with a neural network
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
Geosci. Model Dev., 18, 3707–3733, https://doi.org/10.5194/gmd-18-3707-2025,https://doi.org/10.5194/gmd-18-3707-2025, 2025
Short summary
Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching
Pauline Bonnet, Lorenzo Pastori, Mierk Schwabe, Marco Giorgetta, Fernando Iglesias-Suarez, and Veronika Eyring
Geosci. Model Dev., 18, 3681–3706, https://doi.org/10.5194/gmd-18-3681-2025,https://doi.org/10.5194/gmd-18-3681-2025, 2025
Short summary
A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025,https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025,https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary
Diagnosis of winter precipitation types using the spectral bin model (version 1DSBM-19M): comparison of five methods using ICE-POP 2018 field experiment data
Wonbae Bang, Jacob T. Carlin, Kwonil Kim, Alexander V. Ryzhkov, Guosheng Liu, and GyuWon Lee
Geosci. Model Dev., 18, 3559–3581, https://doi.org/10.5194/gmd-18-3559-2025,https://doi.org/10.5194/gmd-18-3559-2025, 2025
Short summary

Cited articles

Allaart, M., van Weele, M., Fortuin, P., and Kelder, H.: An empirical model to predict the UV-index based on solar zenith angles and total ozone, Meteorol. Appl., 11, 59–64, https://doi.org/10.1017/S1350482703001130, 2004. a
Bian, H. and Prather, M. J.: Fast-J2: Accurate Simulation of Stratospheric Photolysis in Global Chemical Models, J. Atmos. Chem., 41, 281–296, https://doi.org/10.1023/A:1014980619462, 2002. a
Burrows, W. R., Vallée, M., Wardle, D. I., Kerr, J. B., Wilson, L. J., and Tarasick, D. W.: The Canadian operational procedure for forecasting total ozone and UV radiation, Meteorol. Appl., 1, 247–265, https://doi.org/10.1002/met.5060010307, 1994. a
Burrows, J. P., Richter, A., Dehn, A., Deters, B., Himmelmann, S., Voigt, S., and Orphal J.: Atmospheric remote-sensing reference data from GOME 2. Temperature-dependent absorption cross-sections of O3 in the 231–794 nm range, J. Quant. Spectrosc. Ra., 61, 509–517, https://doi.org/10.1016/S0022-4073(98)00037-5, 1999. a
Download
Short summary
To reduce computational costs, ECCC's new method to calculate the UV Index involves scaling and weighting the irradiance contribution of four low-res UV broadbands currently produced by the GEM forecast model. A high-res irradiance spectrum was produced using Cloud-J to create simulated GEM broadbands to calibrate the original GEM broadbands. The scaled GEM broadbands are then weighted accordingly so that the resultant UV Index field emulates the high-res UV Index field calculated from Cloud-J.
Share