Articles | Volume 11, issue 3
https://doi.org/10.5194/gmd-11-1093-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-11-1093-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Optimizing UV Index determination from broadband irradiances
Keith A. Tereszchuk
CORRESPONDING AUTHOR
Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
Yves J. Rochon
CORRESPONDING AUTHOR
Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
Chris A. McLinden
Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
Paul A. Vaillancourt
Meteorological Research Division, Environment and Climate Change Canada, Dorval, Quebec, Canada
Related authors
V. Proschek, G. Kirchengast, S. Schweitzer, J. S. A. Brooke, P. F. Bernath, C. B. Thomas, J.-G. Wang, K. A. Tereszchuk, G. González Abad, R. J. Hargreaves, C. A. Beale, J. J. Harrison, P. A. Martin, V. L. Kasyutich, C. Gerbig, O. Kolle, and A. Loescher
Atmos. Meas. Tech., 8, 3315–3336, https://doi.org/10.5194/amt-8-3315-2015, https://doi.org/10.5194/amt-8-3315-2015, 2015
D. Griffin, K. A. Walker, J. E. Franklin, M. Parrington, C. Whaley, J. Hopper, J. R. Drummond, P. I. Palmer, K. Strong, T. J. Duck, I. Abboud, P. F. Bernath, C. Clerbaux, P.-F. Coheur, K. R. Curry, L. Dan, E. Hyer, J. Kliever, G. Lesins, M. Maurice, A. Saha, K. Tereszchuk, and D. Weaver
Atmos. Chem. Phys., 13, 10227–10241, https://doi.org/10.5194/acp-13-10227-2013, https://doi.org/10.5194/acp-13-10227-2013, 2013
P. I. Palmer, M. Parrington, J. D. Lee, A. C. Lewis, A. R. Rickard, P. F. Bernath, T. J. Duck, D. L. Waugh, D. W. Tarasick, S. Andrews, E. Aruffo, L. J. Bailey, E. Barrett, S. J.-B. Bauguitte, K. R. Curry, P. Di Carlo, L. Chisholm, L. Dan, G. Forster, J. E. Franklin, M. D. Gibson, D. Griffin, D. Helmig, J. R. Hopkins, J. T. Hopper, M. E. Jenkin, D. Kindred, J. Kliever, M. Le Breton, S. Matthiesen, M. Maurice, S. Moller, D. P. Moore, D. E. Oram, S. J. O'Shea, R. C. Owen, C. M. L. S. Pagniello, S. Pawson, C. J. Percival, J. R. Pierce, S. Punjabi, R. M. Purvis, J. J. Remedios, K. M. Rotermund, K. M. Sakamoto, A. M. da Silva, K. B. Strawbridge, K. Strong, J. Taylor, R. Trigwell, K. A. Tereszchuk, K. A. Walker, D. Weaver, C. Whaley, and J. C. Young
Atmos. Chem. Phys., 13, 6239–6261, https://doi.org/10.5194/acp-13-6239-2013, https://doi.org/10.5194/acp-13-6239-2013, 2013
K. A. Tereszchuk, D. P. Moore, J. J. Harrison, C. D. Boone, M. Park, J. J. Remedios, W. J. Randel, and P. F. Bernath
Atmos. Chem. Phys., 13, 5601–5613, https://doi.org/10.5194/acp-13-5601-2013, https://doi.org/10.5194/acp-13-5601-2013, 2013
K. A. Tereszchuk, G. González Abad, C. Clerbaux, J. Hadji-Lazaro, D. Hurtmans, P.-F. Coheur, and P. F. Bernath
Atmos. Chem. Phys., 13, 4529–4541, https://doi.org/10.5194/acp-13-4529-2013, https://doi.org/10.5194/acp-13-4529-2013, 2013
Debora Griffin, Colin Hempel, Chris McLinden, Shailesh Kumar Kharol, Colin Lee, Andre Fogal, Christopher Sioris, Mark Shephard, and Yuan You
EGUsphere, https://doi.org/10.5194/egusphere-2025-1681, https://doi.org/10.5194/egusphere-2025-1681, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Surface NO2 concentrations are obtained across North America using satellite data and machine learning, and compared to traditional approaches to determine surface NO2 from satellite observations.
Vitali Fioletov, Chris A. McLinden, Debora Griffin, Xiaoyi Zhao, and Henk Eskes
Atmos. Chem. Phys., 25, 575–596, https://doi.org/10.5194/acp-25-575-2025, https://doi.org/10.5194/acp-25-575-2025, 2025
Short summary
Short summary
Satellite data were used to estimate urban per capita emissions for 261 major cities worldwide. Three components in tropospheric NO2 data (background NO2, NO2 from urban sources, and NO2 from industrial point sources) were isolated, and then each of these components was analyzed separately. The largest per capita emissions were found in the Middle East and the smallest in India and southern Africa. Urban weekend emissions are 20 %–50 % less than workday emissions for all regions except China.
Xiaoyi Zhao, Vitali Fioletov, Debora Griffin, Chris McLinden, Ralf Staebler, Cristian Mihele, Kevin Strawbridge, Jonathan Davies, Ihab Abboud, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, and Robert Swap
Atmos. Meas. Tech., 17, 6889–6912, https://doi.org/10.5194/amt-17-6889-2024, https://doi.org/10.5194/amt-17-6889-2024, 2024
Short summary
Short summary
This study explores differences between remote sensing and in situ instruments in terms of their vertical, horizontal, and temporal sampling differences. Understanding and resolving these differences are critical for future analyses linking satellite, ground-based remote sensing, and in situ observations in air quality monitoring. It shows that the meteorological conditions (wind directions, speed, and boundary layer conditions) will strongly affect the agreement between the two measurements.
Chris McLinden, Debora Griffin, Vitali Fioletov, Junhua Zhang, Enrico Dammers, Cristen Adams, Mallory Loria, Nicolay Krotkov, and Lok Lamsal
EGUsphere, https://doi.org/10.5194/egusphere-2024-2856, https://doi.org/10.5194/egusphere-2024-2856, 2024
Short summary
Short summary
The Ozone Monitoring Instrument (OMI) was used to understand the evolution of NOx emissions from the Canadian oil sands. OMI NO2 combined with winds and reported stack emissions, found emissions from the heavy-hauler mine fleet increased by about 20 % since 2005, whereas the total oil sands mined nearly doubled. This difference is a result of emissions standards limiting NOx emissions becoming more stringent over this period confirming the efficacy of the policy enacting these standards.
Can Li, Nickolay A. Krotkov, Joanna Joiner, Vitali Fioletov, Chris McLinden, Debora Griffin, Peter J. T. Leonard, Simon Carn, Colin Seftor, and Alexander Vasilkov
Earth Syst. Sci. Data, 16, 4291–4309, https://doi.org/10.5194/essd-16-4291-2024, https://doi.org/10.5194/essd-16-4291-2024, 2024
Short summary
Short summary
Sulfur dioxide (SO2), a poisonous gas from human activities and volcanoes, causes air pollution, acid rain, and changes to climate and the ozone layer. Satellites have been used to monitor SO2 globally, including remote areas. Here we describe a new satellite SO2 dataset from the OMPS instrument that flies on the N20 satellite. Results show that the new dataset agrees well with the existing ones from other satellites and can help to continue the global monitoring of SO2 from space.
Debora Griffin, Jack Chen, Kerry Anderson, Paul Makar, Chris A. McLinden, Enrico Dammers, and Andre Fogal
Atmos. Chem. Phys., 24, 10159–10186, https://doi.org/10.5194/acp-24-10159-2024, https://doi.org/10.5194/acp-24-10159-2024, 2024
Short summary
Short summary
Satellite-derived CO emissions provide new insights into the understanding of global CO emission rates from wildfires. We use TROPOMI satellite data to create a global inventory database of wildfire CO emissions. These satellite-derived wildfire emissions are used for the evaluation and improvement of existing fire emission inventories and to examine how the wildfire CO emissions have changed over the past 2 decades.
Enrico Dammers, Janot Tokaya, Christian Mielke, Kevin Hausmann, Debora Griffin, Chris McLinden, Henk Eskes, and Renske Timmermans
Geosci. Model Dev., 17, 4983–5007, https://doi.org/10.5194/gmd-17-4983-2024, https://doi.org/10.5194/gmd-17-4983-2024, 2024
Short summary
Short summary
Nitrogen dioxide (NOx) is produced by sources such as industry and traffic and is directly linked to negative impacts on health and the environment. The current construction of emission inventories to keep track of NOx emissions is slow and time-consuming. Satellite measurements provide a way to quickly and independently estimate emissions. In this study, we apply a consistent methodology to derive NOx emissions over Germany and illustrate the value of having such a method for fast projections.
Lukas Fehr, Chris McLinden, Debora Griffin, Daniel Zawada, Doug Degenstein, and Adam Bourassa
Geosci. Model Dev., 16, 7491–7507, https://doi.org/10.5194/gmd-16-7491-2023, https://doi.org/10.5194/gmd-16-7491-2023, 2023
Short summary
Short summary
This work highlights upgrades to SASKTRAN, a model that simulates sunlight interacting with the atmosphere to help measure trace gases. The upgrades were verified by detailed comparisons between different numerical methods. A case study was performed using SASKTRAN’s multidimensional capabilities, which found that ignoring horizontal variation in the atmosphere (a common practice in the field) can introduce non-negligible errors where there is snow or high pollution.
Vitali E. Fioletov, Chris A. McLinden, Debora Griffin, Nickolay A. Krotkov, Can Li, Joanna Joiner, Nicolas Theys, and Simon Carn
Atmos. Meas. Tech., 16, 5575–5592, https://doi.org/10.5194/amt-16-5575-2023, https://doi.org/10.5194/amt-16-5575-2023, 2023
Short summary
Short summary
Snow-covered terrain, with its high reflectance in the UV, typically enhances satellite sensitivity to boundary layer pollution. However, a significant fraction of high-quality cloud-free measurements over snow is currently excluded from analyses. In this study, we investigated how satellite SO2 measurements over snow-covered surfaces can be used to improve estimations of annual SO2 emissions.
Vitali E. Fioletov, Chris A. McLinden, Debora Griffin, Ihab Abboud, Nickolay Krotkov, Peter J. T. Leonard, Can Li, Joanna Joiner, Nicolas Theys, and Simon Carn
Earth Syst. Sci. Data, 15, 75–93, https://doi.org/10.5194/essd-15-75-2023, https://doi.org/10.5194/essd-15-75-2023, 2023
Short summary
Short summary
Sulfur dioxide (SO2) measurements from three satellite instruments were used to update and extend the previously developed global catalogue of large SO2 emission sources. This version 2 of the global catalogue covers the period of 2005–2021 and includes a total of 759 continuously emitting point sources. The catalogue data show an approximate 50 % decline in global SO2 emissions between 2005 and 2021, although emissions were relatively stable during the last 3 years.
Can Li, Joanna Joiner, Fei Liu, Nickolay A. Krotkov, Vitali Fioletov, and Chris McLinden
Atmos. Meas. Tech., 15, 5497–5514, https://doi.org/10.5194/amt-15-5497-2022, https://doi.org/10.5194/amt-15-5497-2022, 2022
Short summary
Short summary
Satellite observations provide information on the sources of SO2, an important pollutant that affects both air quality and climate. However, these observations suffer from relatively poor data quality due to weak signals of SO2. Here, we use a machine learning technique to analyze satellite SO2 observations in order to reduce the noise and artifacts over relatively clean areas while keeping the signals near pollution sources. This leads to significant improvement in satellite SO2 data.
Vitali Fioletov, Chris A. McLinden, Debora Griffin, Nickolay Krotkov, Fei Liu, and Henk Eskes
Atmos. Chem. Phys., 22, 4201–4236, https://doi.org/10.5194/acp-22-4201-2022, https://doi.org/10.5194/acp-22-4201-2022, 2022
Short summary
Short summary
The COVID-19 lockdown had a large impact on anthropogenic emissions and particularly on nitrogen dioxide (NO2). A new method of isolation of background, urban, and industrial components in NO2 is applied to estimate the lockdown impact on each of them. From 16 March to 15 June 2020, urban NO2 declined by −18 % to −28 % in most regions of the world, while background NO2 typically declined by less than −10 %.
Mahtab Majdzadeh, Craig A. Stroud, Christopher Sioris, Paul A. Makar, Ayodeji Akingunola, Chris McLinden, Xiaoyi Zhao, Michael D. Moran, Ihab Abboud, and Jack Chen
Geosci. Model Dev., 15, 219–249, https://doi.org/10.5194/gmd-15-219-2022, https://doi.org/10.5194/gmd-15-219-2022, 2022
Short summary
Short summary
A new lookup table for aerosol optical properties based on a Mie scattering code was calculated and adopted within an improved version of the photolysis module in the GEM-MACH in-line chemical transport model. The modified version of the photolysis module makes use of online interactive aerosol feedback and applies core-shell parameterizations to the black carbon absorption efficiency based on Bond et al. (2006) to the size bins with black carbon mass fraction of less than 40 %.
Debora Griffin, Chris A. McLinden, Enrico Dammers, Cristen Adams, Chelsea E. Stockwell, Carsten Warneke, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Kyle J. Zarzana, Jake P. Rowe, Rainer Volkamer, Christoph Knote, Natalie Kille, Theodore K. Koenig, Christopher F. Lee, Drew Rollins, Pamela S. Rickly, Jack Chen, Lukas Fehr, Adam Bourassa, Doug Degenstein, Katherine Hayden, Cristian Mihele, Sumi N. Wren, John Liggio, Ayodeji Akingunola, and Paul Makar
Atmos. Meas. Tech., 14, 7929–7957, https://doi.org/10.5194/amt-14-7929-2021, https://doi.org/10.5194/amt-14-7929-2021, 2021
Short summary
Short summary
Satellite-derived NOx emissions from biomass burning are estimated with TROPOMI observations. Two common emission estimation methods are applied, and sensitivity tests with model output were performed to determine the accuracy of these methods. The effect of smoke aerosols on TROPOMI NO2 columns is estimated and compared to aircraft observations from four different aircraft campaigns measuring biomass burning plumes in 2018 and 2019 in North America.
Nicolas Theys, Vitali Fioletov, Can Li, Isabelle De Smedt, Christophe Lerot, Chris McLinden, Nickolay Krotkov, Debora Griffin, Lieven Clarisse, Pascal Hedelt, Diego Loyola, Thomas Wagner, Vinod Kumar, Antje Innes, Roberto Ribas, François Hendrick, Jonas Vlietinck, Hugues Brenot, and Michel Van Roozendael
Atmos. Chem. Phys., 21, 16727–16744, https://doi.org/10.5194/acp-21-16727-2021, https://doi.org/10.5194/acp-21-16727-2021, 2021
Short summary
Short summary
We present a new algorithm to retrieve sulfur dioxide from space UV measurements. We apply the technique to high-resolution TROPOMI measurements and demonstrate the high sensitivity of the approach to weak SO2 emissions worldwide with an unprecedented limit of detection of 8 kt yr−1. This result has broad implications for atmospheric science studies dealing with improving emission inventories and identifying and quantifying missing sources, in the context of air quality and climate.
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki T. Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis E. Remsberg, Alexei Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan A. Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, https://doi.org/10.5194/essd-13-1855-2021, 2021
Short summary
Short summary
An overview of the SPARC Data Initiative is presented, to date the most comprehensive assessment of stratospheric composition measurements spanning 1979–2018. Measurements of 26 chemical constituents obtained from an international suite of space-based limb sounders were compiled into vertically resolved, zonal monthly mean time series. The quality and consistency of these gridded datasets are then evaluated using a climatological validation approach and a range of diagnostics.
Xiaoyi Zhao, Vitali Fioletov, Michael Brohart, Volodya Savastiouk, Ihab Abboud, Akira Ogyu, Jonathan Davies, Reno Sit, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, Moritz Müller, Debora Griffin, and Chris McLinden
Atmos. Meas. Tech., 14, 2261–2283, https://doi.org/10.5194/amt-14-2261-2021, https://doi.org/10.5194/amt-14-2261-2021, 2021
Short summary
Short summary
The Brewer spectrophotometer is one of the main instruments for measurements of atmospheric total column ozone. The global Brewer network largely relies on the world reference instruments (the Brewer triad) operated by Environment and Climate Change Canada since the early 1980s. This study provides an updated assessment (1999–2019) of the reference instrument performance, in terms of random uncertainties and long-term stability.
Vitali Fioletov, Chris A. McLinden, Debora Griffin, Nicolas Theys, Diego G. Loyola, Pascal Hedelt, Nickolay A. Krotkov, and Can Li
Atmos. Chem. Phys., 20, 5591–5607, https://doi.org/10.5194/acp-20-5591-2020, https://doi.org/10.5194/acp-20-5591-2020, 2020
Xiaoyi Zhao, Debora Griffin, Vitali Fioletov, Chris McLinden, Alexander Cede, Martin Tiefengraber, Moritz Müller, Kristof Bognar, Kimberly Strong, Folkert Boersma, Henk Eskes, Jonathan Davies, Akira Ogyu, and Sum Chi Lee
Atmos. Meas. Tech., 13, 2131–2159, https://doi.org/10.5194/amt-13-2131-2020, https://doi.org/10.5194/amt-13-2131-2020, 2020
Short summary
Short summary
Pandora NO2 measurements made at three sites located in the Toronto area are used to evaluate the TROPOspheric Monitoring Instrument (TROPOMI) NO2 data products, including standard NO2 and research data developed using a high-resolution regional air quality forecast model. TROPOMI pixels located upwind and downwind from the Pandora sites were analyzed by a new wind-based validation method, which revealed the spatial patterns of local and transported emissions and regional air quality changes.
Debora Griffin, Christopher Sioris, Jack Chen, Nolan Dickson, Andrew Kovachik, Martin de Graaf, Swadhin Nanda, Pepijn Veefkind, Enrico Dammers, Chris A. McLinden, Paul Makar, and Ayodeji Akingunola
Atmos. Meas. Tech., 13, 1427–1445, https://doi.org/10.5194/amt-13-1427-2020, https://doi.org/10.5194/amt-13-1427-2020, 2020
Short summary
Short summary
This study looks into validating the aerosol layer height product from the recently launched TROPOspheric Monitoring Instrument (TROPOMI) for forest fire plume through comparisons with two other satellite products, and interpreting differences due to the individual measurement techniques. These satellite observations are compared to predicted plume heights from Environment and Climate Change's air quality forecast model.
Zoë Y. W. Davis, Udo Frieß, Kevin B. Strawbridge, Monika Aggarwaal, Sabour Baray, Elijah G. Schnitzler, Akshay Lobo, Vitali E. Fioletov, Ihab Abboud, Chris A. McLinden, Jim Whiteway, Megan D. Willis, Alex K. Y. Lee, Jeff Brook, Jason Olfert, Jason O'Brien, Ralf Staebler, Hans D. Osthoff, Cristian Mihele, and Robert McLaren
Atmos. Meas. Tech., 13, 1129–1155, https://doi.org/10.5194/amt-13-1129-2020, https://doi.org/10.5194/amt-13-1129-2020, 2020
Short summary
Short summary
Here, we evaluate a ground-based remote sensing method (MAX-DOAS) for measuring total pollutant loading and vertical profiles of pollution in the lower atmosphere by comparing our method to a variety of other measurement methods (lidar, sunphotometer, active DOAS, and aircraft measurements). Measurements were made in the Athabasca Oil Sands Region in Alberta, Canada. The complex dataset provided a rare opportunity to evaluate the performance of MAX-DOAS under varying atmospheric conditions.
Mark W. Shephard, Enrico Dammers, Karen E. Cady-Pereira, Shailesh K. Kharol, Jesse Thompson, Yonatan Gainariu-Matz, Junhua Zhang, Chris A. McLinden, Andrew Kovachik, Michael Moran, Shabtai Bittman, Christopher E. Sioris, Debora Griffin, Matthew J. Alvarado, Chantelle Lonsdale, Verica Savic-Jovcic, and Qiong Zheng
Atmos. Chem. Phys., 20, 2277–2302, https://doi.org/10.5194/acp-20-2277-2020, https://doi.org/10.5194/acp-20-2277-2020, 2020
Short summary
Short summary
Presented is a description and survey demonstrating the capabilities of the CrIS ammonia product for monitoring, air quality forecast model evaluation, dry deposition estimates, and emission estimates of an agricultural hotspot.
Fei Liu, Bryan N. Duncan, Nickolay A. Krotkov, Lok N. Lamsal, Steffen Beirle, Debora Griffin, Chris A. McLinden, Daniel L. Goldberg, and Zifeng Lu
Atmos. Chem. Phys., 20, 99–116, https://doi.org/10.5194/acp-20-99-2020, https://doi.org/10.5194/acp-20-99-2020, 2020
Short summary
Short summary
We present a novel method to infer CO2 emissions from individual power plants, based on satellite observations of co-emitted NO2. We find that the CO2 emissions estimated by our satellite-based method during 2005–2017 are in reasonable agreement with the CEMS measurements for US power plants. The broader implication of our methodology is that it has the potential to provide an additional constraint on CO2 emissions from power plants in regions of the world without reliable emissions accounting.
Zoe Y. W. Davis, Sabour Baray, Chris A. McLinden, Aida Khanbabakhani, William Fujs, Csilla Csukat, Jerzy Debosz, and Robert McLaren
Atmos. Chem. Phys., 19, 13871–13889, https://doi.org/10.5194/acp-19-13871-2019, https://doi.org/10.5194/acp-19-13871-2019, 2019
Short summary
Short summary
In this paper, we describe the use of mobile vehicle-mounted instrumentation to measure pollutants both at the surface and overhead (via a telescope) that are coming from a source. This allows us to calculate the total emissions from the source, in this case the city of Sarnia, ON, including both industrial emissions and emissions from the city populace. In this paper, we talk about improvements to the technique in the form of extra instrumentation in the vehicle.
Katerina Garane, Maria-Elissavet Koukouli, Tijl Verhoelst, Christophe Lerot, Klaus-Peter Heue, Vitali Fioletov, Dimitrios Balis, Alkiviadis Bais, Ariane Bazureau, Angelika Dehn, Florence Goutail, Jose Granville, Debora Griffin, Daan Hubert, Arno Keppens, Jean-Christopher Lambert, Diego Loyola, Chris McLinden, Andrea Pazmino, Jean-Pierre Pommereau, Alberto Redondas, Fabian Romahn, Pieter Valks, Michel Van Roozendael, Jian Xu, Claus Zehner, Christos Zerefos, and Walter Zimmer
Atmos. Meas. Tech., 12, 5263–5287, https://doi.org/10.5194/amt-12-5263-2019, https://doi.org/10.5194/amt-12-5263-2019, 2019
Short summary
Short summary
The Sentinel-5 Precursor TROPOMI near real time (NRTI) and offline (OFFL) total ozone column (TOC) products are validated against direct-sun and twilight zenith-sky ground-based TOC measurements and other already known spaceborne sensors. The results show that the TROPOMI TOC measurements are in very good agreement with the ground-based measurements and satellite sensor measurements and that they are well within the product requirements.
Enrico Dammers, Chris A. McLinden, Debora Griffin, Mark W. Shephard, Shelley Van Der Graaf, Erik Lutsch, Martijn Schaap, Yonatan Gainairu-Matz, Vitali Fioletov, Martin Van Damme, Simon Whitburn, Lieven Clarisse, Karen Cady-Pereira, Cathy Clerbaux, Pierre Francois Coheur, and Jan Willem Erisman
Atmos. Chem. Phys., 19, 12261–12293, https://doi.org/10.5194/acp-19-12261-2019, https://doi.org/10.5194/acp-19-12261-2019, 2019
Short summary
Short summary
Ammonia is an essential molecule in the environment, but at its current levels it is unsustainable. However, the emissions are highly uncertain. We explore the use of satellites to estimate the ammonia lifetime and emissions around point sources to help improve the budget. The same method applied to different satellite instruments shows consistent results. Comparison to the emission inventories shows that those are underestimating emissions of point sources by on average a factor of 2.5.
Xiaoyi Zhao, Debora Griffin, Vitali Fioletov, Chris McLinden, Jonathan Davies, Akira Ogyu, Sum Chi Lee, Alexandru Lupu, Michael D. Moran, Alexander Cede, Martin Tiefengraber, and Moritz Müller
Atmos. Chem. Phys., 19, 10619–10642, https://doi.org/10.5194/acp-19-10619-2019, https://doi.org/10.5194/acp-19-10619-2019, 2019
Short summary
Short summary
New nitrogen dioxide (NO2) retrieval algorithms are developed for Pandora zenith-sky measurements. A column-to-surface conversion look-up table was produced for the Pandora instruments; therefore, quick and practical Pandora-based surface NO2 concentration data can be obtained for air quality monitoring purposes. It is demonstrated that the surface NO2 concentration is controlled not only by the planetary boundary layer height but also by both boundary layer dynamics and photochemistry.
Yves J. Rochon, Michael Sitwell, and Young-Min Cho
Atmos. Chem. Phys., 19, 9431–9451, https://doi.org/10.5194/acp-19-9431-2019, https://doi.org/10.5194/acp-19-9431-2019, 2019
Short summary
Short summary
This paper describes adaptable methodologies and results of bias correction applied for the assimilation of total column ozone data from different satellite instruments. The results demonstrate the capability of ensuring short-term forecast biases of total column ozone to be typically within 1 % of a reference for latitudinal ranges where measurements are available. The bias estimation and correction software can be utilized for measurements of other constituents.
Cristen Adams, Chris A. McLinden, Mark W. Shephard, Nolan Dickson, Enrico Dammers, Jack Chen, Paul Makar, Karen E. Cady-Pereira, Naomi Tam, Shailesh K. Kharol, Lok N. Lamsal, and Nickolay A. Krotkov
Atmos. Chem. Phys., 19, 2577–2599, https://doi.org/10.5194/acp-19-2577-2019, https://doi.org/10.5194/acp-19-2577-2019, 2019
Short summary
Short summary
We estimated how much carbon monoxide, ammonia, and nitrogen oxides were emitted in the smoke from the Fort McMurray Horse River wildfire using satellite data and air quality models. The fire emitted amounts of carbon monoxide that were similar to anthropogenic (human-caused) emissions for all of Alberta over a full year. We also estimated large amounts of ammonia and nitrogen oxides emitted from the fire. These results can be used to evaluate the performance of air quality forecasting models.
Fei Liu, Sungyeon Choi, Can Li, Vitali E. Fioletov, Chris A. McLinden, Joanna Joiner, Nickolay A. Krotkov, Huisheng Bian, Greet Janssens-Maenhout, Anton S. Darmenov, and Arlindo M. da Silva
Atmos. Chem. Phys., 18, 16571–16586, https://doi.org/10.5194/acp-18-16571-2018, https://doi.org/10.5194/acp-18-16571-2018, 2018
Short summary
Short summary
Sulfur dioxide measurements from space have been used to detect emissions from large sources. We developed a new emission inventory by combining the satellite-based emission estimates and the conventional bottom-up inventory for smaller sources. The new inventory improves the model agreement with in situ observations and offers the possibility of rapid updates to emissions.
Jeffrey A. Geddes, Randall V. Martin, Eric J. Bucsela, Chris A. McLinden, and Daniel J. M. Cunningham
Atmos. Meas. Tech., 11, 6271–6287, https://doi.org/10.5194/amt-11-6271-2018, https://doi.org/10.5194/amt-11-6271-2018, 2018
Short summary
Short summary
This paper describes an approach for separating the stratospheric and tropospheric contributions in geostationary observations of nitrogen dioxide from the upcoming TEMPO instrument. We find minimal impact of the limited field of observation compared to previous low-Earth-observing systems with global coverage. We find that continued development of low-Earth-orbit retrievals will benefit geostationary data by providing important context outside the field of regard.
Matthew J. Cooper, Randall V. Martin, Alexei I. Lyapustin, and Chris A. McLinden
Atmos. Meas. Tech., 11, 2983–2994, https://doi.org/10.5194/amt-11-2983-2018, https://doi.org/10.5194/amt-11-2983-2018, 2018
Short summary
Short summary
To accurately infer air pollutant concentrations from satellite observations, we must first know the reflectivity of the Earth’s surface. Using a model, we show that satellite observations are better able to observe NO2 near the surface if snow is present. However, knowing when snow is present is difficult due to its variability. We test seven existing snow cover data sets to assess their ability to inform future satellite observations and find that the IMS data set is best suited for this task.
Pieternel F. Levelt, Joanna Joiner, Johanna Tamminen, J. Pepijn Veefkind, Pawan K. Bhartia, Deborah C. Stein Zweers, Bryan N. Duncan, David G. Streets, Henk Eskes, Ronald van der A, Chris McLinden, Vitali Fioletov, Simon Carn, Jos de Laat, Matthew DeLand, Sergey Marchenko, Richard McPeters, Jerald Ziemke, Dejian Fu, Xiong Liu, Kenneth Pickering, Arnoud Apituley, Gonzalo González Abad, Antti Arola, Folkert Boersma, Christopher Chan Miller, Kelly Chance, Martin de Graaf, Janne Hakkarainen, Seppo Hassinen, Iolanda Ialongo, Quintus Kleipool, Nickolay Krotkov, Can Li, Lok Lamsal, Paul Newman, Caroline Nowlan, Raid Suleiman, Lieuwe Gijsbert Tilstra, Omar Torres, Huiqun Wang, and Krzysztof Wargan
Atmos. Chem. Phys., 18, 5699–5745, https://doi.org/10.5194/acp-18-5699-2018, https://doi.org/10.5194/acp-18-5699-2018, 2018
Short summary
Short summary
The aim of this paper is to highlight the many successes of the Ozone Monitoring Instrument (OMI) spanning more than 13 years. Data from OMI have been used in a wide range of applications. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. OMI data continue to be used for new research and applications.
Adam E. Bourassa, Chris Z. Roth, Daniel J. Zawada, Landon A. Rieger, Chris A. McLinden, and Douglas A. Degenstein
Atmos. Meas. Tech., 11, 489–498, https://doi.org/10.5194/amt-11-489-2018, https://doi.org/10.5194/amt-11-489-2018, 2018
Short summary
Short summary
OSIRIS satellite measurements of ozone in the stratosphere are corrected for slowly varying errors. These changes make the OSIRIS data compare better with other satellite measurements over the long term and make an impact on our understanding of the recovery of the ozone layer.
Cristen Adams, Adam E. Bourassa, Chris A. McLinden, Chris E. Sioris, Thomas von Clarmann, Bernd Funke, Landon A. Rieger, and Douglas A. Degenstein
Atmos. Chem. Phys., 17, 8063–8080, https://doi.org/10.5194/acp-17-8063-2017, https://doi.org/10.5194/acp-17-8063-2017, 2017
Short summary
Short summary
We measured the relationship between volcanic aerosol and trace gases in the stratosphere using the OSIRIS and MIPAS satellite instruments between 2002 and 2014. We found that levels of stratospheric NO2 and N2O5 both decreased significantly in the presence of volcanic aerosol. These decreases were consistent with the modeling results.
Shailesh K. Kharol, Chris A. McLinden, Christopher E. Sioris, Mark W. Shephard, Vitali Fioletov, Aaron van Donkelaar, Sajeev Philip, and Randall V. Martin
Atmos. Chem. Phys., 17, 5921–5929, https://doi.org/10.5194/acp-17-5921-2017, https://doi.org/10.5194/acp-17-5921-2017, 2017
Yan Zhang, Can Li, Nickolay A. Krotkov, Joanna Joiner, Vitali Fioletov, and Chris McLinden
Atmos. Meas. Tech., 10, 1495–1509, https://doi.org/10.5194/amt-10-1495-2017, https://doi.org/10.5194/amt-10-1495-2017, 2017
Short summary
Short summary
In this study, we demonstrate a very good consistency of the SO2 retrievals from OMI and OMPS using our state-of-the-art principal component analysis technique. Four full years of OMI and OMPS SO2 retrievals, during 2012–2015 have been analyzed over some of the world’s most polluted regions: eastern China, Mexico, and South Africa. The consistency of retrievals between OMI and OMPS make it possible to continue the long-term global SO2 pollution monitoring.
Christopher E. Sioris, Landon A. Rieger, Nicholas D. Lloyd, Adam E. Bourassa, Chris Z. Roth, Douglas A. Degenstein, Claude Camy-Peyret, Klaus Pfeilsticker, Gwenaël Berthet, Valéry Catoire, Florence Goutail, Jean-Pierre Pommereau, and Chris A. McLinden
Atmos. Meas. Tech., 10, 1155–1168, https://doi.org/10.5194/amt-10-1155-2017, https://doi.org/10.5194/amt-10-1155-2017, 2017
Short summary
Short summary
A new OSIRIS NO2 retrieval algorithm is described and validated using > 40 balloon-based profile measurements. The validation results indicate a slight improvement relative to the existing operational algorithm in terms of the bias versus the balloon data, particularly in the lower stratosphere. The implication is that this new algorithm should replace the operational one. The motivation was to combine spectral fitting and the SaskTRAN radiative transfer model to achieve an improved product.
Christopher E. Sioris, Chris A. McLinden, Mark W. Shephard, Vitali E. Fioletov, and Ihab Abboud
Atmos. Chem. Phys., 17, 1931–1943, https://doi.org/10.5194/acp-17-1931-2017, https://doi.org/10.5194/acp-17-1931-2017, 2017
Short summary
Short summary
The contribution of the oil sands region to the local aerosol optical depth (AOD) is sought. Satellite data are used since they provide spatial coverage over many years. Satellites measure AOD with high correlation and small biases relative to coincident AERONET AODs. Trends are determined using annual mean AODs, and an increasing trend is found near the Shell mines. Spatially variable and high surface albedo is challenging for some sensors. Measuring polarization appears to be an asset.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Chris A. McLinden, Peter F. Bernath, Adam E. Bourassa, John P. Burrows, Doug A. Degenstein, Bernd Funke, Didier Fussen, Gloria L. Manney, C. Thomas McElroy, Donal Murtagh, Cora E. Randall, Piera Raspollini, Alexei Rozanov, James M. Russell III, Makoto Suzuki, Masato Shiotani, Joachim Urban, Thomas von Clarmann, and Joseph M. Zawodny
Atmos. Meas. Tech., 9, 5781–5810, https://doi.org/10.5194/amt-9-5781-2016, https://doi.org/10.5194/amt-9-5781-2016, 2016
Short summary
Short summary
This study validates version 3.5 of the ACE-FTS NOy species data sets by comparing diurnally scaled ACE-FTS data to correlative data from 11 other satellite limb sounders. For all five species examined (NO, NO2, HNO3, N2O5, and ClONO2), there is good agreement between ACE-FTS and the other data sets in various regions of the atmosphere. In these validated regions, these NOy data products can be used for further investigation into the composition, dynamics, and climate of the stratosphere.
Vitali E. Fioletov, Chris A. McLinden, Nickolay Krotkov, Can Li, Joanna Joiner, Nicolas Theys, Simon Carn, and Mike D. Moran
Atmos. Chem. Phys., 16, 11497–11519, https://doi.org/10.5194/acp-16-11497-2016, https://doi.org/10.5194/acp-16-11497-2016, 2016
Short summary
Short summary
We introduce the first space-based catalogue of SO2 emission sources seen by OMI. The inventory contains about 500 sources. They account for about a half of all SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr−1 and not detected by OMI. The sources are grouped by type (volcanoes, power plants, oil- and gas-related sources, and smelters) and country. The catalogue presented herein can be used for verification of available SO2 emission inventories.
Cristen Adams, Elise N. Normand, Chris A. McLinden, Adam E. Bourassa, Nicholas D. Lloyd, Douglas A. Degenstein, Nickolay A. Krotkov, Maria Belmonte Rivas, K. Folkert Boersma, and Henk Eskes
Atmos. Meas. Tech., 9, 4103–4122, https://doi.org/10.5194/amt-9-4103-2016, https://doi.org/10.5194/amt-9-4103-2016, 2016
Short summary
Short summary
A new "OMI-minus-OSIRIS" (OmO) prototype dataset for tropospheric NO2 was created by combining information from the OMI satellite instrument, which is sensitive to NO2 in both the troposphere and stratosphere, with information from the OSIRIS satellite instrument, which measures NO2 in the stratosphere. This paper demonstrates that this approach is feasible and could be applied to future geostationary missions.
Vitali E. Fioletov, Chris A. McLinden, Alexander Cede, Jonathan Davies, Cristian Mihele, Stoyka Netcheva, Shao-Meng Li, and Jason O'Brien
Atmos. Meas. Tech., 9, 2961–2976, https://doi.org/10.5194/amt-9-2961-2016, https://doi.org/10.5194/amt-9-2961-2016, 2016
Nickolay A. Krotkov, Chris A. McLinden, Can Li, Lok N. Lamsal, Edward A. Celarier, Sergey V. Marchenko, William H. Swartz, Eric J. Bucsela, Joanna Joiner, Bryan N. Duncan, K. Folkert Boersma, J. Pepijn Veefkind, Pieternel F. Levelt, Vitali E. Fioletov, Russell R. Dickerson, Hao He, Zifeng Lu, and David G. Streets
Atmos. Chem. Phys., 16, 4605–4629, https://doi.org/10.5194/acp-16-4605-2016, https://doi.org/10.5194/acp-16-4605-2016, 2016
Short summary
Short summary
We examine changes in SO2 and NO2 over the world's most polluted regions during the first decade of Aura OMI observations. Over the eastern US, both NO2 and SO2 levels decreased by 40 % and 80 %, respectively. OMI confirmed large reductions in SO2 over eastern Europe's largest coal power plants. The North China Plain has the world's most severe SO2 pollution, but a decreasing trend been observed since 2011, with a 50 % reduction in 2012–2014. India's SO2 and NO2 levels are growing at a fast pace.
M. W. Shephard, C. A. McLinden, K. E. Cady-Pereira, M. Luo, S. G. Moussa, A. Leithead, J. Liggio, R. M. Staebler, A. Akingunola, P. Makar, P. Lehr, J. Zhang, D. K. Henze, D. B. Millet, J. O. Bash, L. Zhu, K. C. Wells, S. L. Capps, S. Chaliyakunnel, M. Gordon, K. Hayden, J. R. Brook, M. Wolde, and S.-M. Li
Atmos. Meas. Tech., 8, 5189–5211, https://doi.org/10.5194/amt-8-5189-2015, https://doi.org/10.5194/amt-8-5189-2015, 2015
Short summary
Short summary
This study provides direct validations of Tropospheric Emission Spectrometer (TES) satellite retrieved profiles against coincident aircraft profiles of carbon monoxide, ammonia, methanol, and formic acid, all of which are of interest for air quality. The comparisons are performed over the Canadian oil sands region during an intensive field campaign in support of the Joint Canada-Alberta Implementation Plan for the Oil Sands Monitoring (JOSM). Initial model evaluations are also provided.
V. Proschek, G. Kirchengast, S. Schweitzer, J. S. A. Brooke, P. F. Bernath, C. B. Thomas, J.-G. Wang, K. A. Tereszchuk, G. González Abad, R. J. Hargreaves, C. A. Beale, J. J. Harrison, P. A. Martin, V. L. Kasyutich, C. Gerbig, O. Kolle, and A. Loescher
Atmos. Meas. Tech., 8, 3315–3336, https://doi.org/10.5194/amt-8-3315-2015, https://doi.org/10.5194/amt-8-3315-2015, 2015
A. E. Bourassa, D. A. Degenstein, W. J. Randel, J. M. Zawodny, E. Kyrölä, C. A. McLinden, C. E. Sioris, and C. Z. Roth
Atmos. Chem. Phys., 14, 6983–6994, https://doi.org/10.5194/acp-14-6983-2014, https://doi.org/10.5194/acp-14-6983-2014, 2014
C. A. McLinden, V. Fioletov, K. F. Boersma, S. K. Kharol, N. Krotkov, L. Lamsal, P. A. Makar, R. V. Martin, J. P. Veefkind, and K. Yang
Atmos. Chem. Phys., 14, 3637–3656, https://doi.org/10.5194/acp-14-3637-2014, https://doi.org/10.5194/acp-14-3637-2014, 2014
C. E. Sioris, C. A. McLinden, V. E. Fioletov, C. Adams, J. M. Zawodny, A. E. Bourassa, C. Z. Roth, and D. A. Degenstein
Atmos. Chem. Phys., 14, 3479–3496, https://doi.org/10.5194/acp-14-3479-2014, https://doi.org/10.5194/acp-14-3479-2014, 2014
C. Adams, A. E. Bourassa, V. Sofieva, L. Froidevaux, C. A. McLinden, D. Hubert, J.-C. Lambert, C. E. Sioris, and D. A. Degenstein
Atmos. Meas. Tech., 7, 49–64, https://doi.org/10.5194/amt-7-49-2014, https://doi.org/10.5194/amt-7-49-2014, 2014
J. Liu, D. W. Tarasick, V. E. Fioletov, C. McLinden, T. Zhao, S. Gong, C. Sioris, J. J. Jin, G. Liu, and O. Moeini
Atmos. Chem. Phys., 13, 11441–11464, https://doi.org/10.5194/acp-13-11441-2013, https://doi.org/10.5194/acp-13-11441-2013, 2013
D. Griffin, K. A. Walker, J. E. Franklin, M. Parrington, C. Whaley, J. Hopper, J. R. Drummond, P. I. Palmer, K. Strong, T. J. Duck, I. Abboud, P. F. Bernath, C. Clerbaux, P.-F. Coheur, K. R. Curry, L. Dan, E. Hyer, J. Kliever, G. Lesins, M. Maurice, A. Saha, K. Tereszchuk, and D. Weaver
Atmos. Chem. Phys., 13, 10227–10241, https://doi.org/10.5194/acp-13-10227-2013, https://doi.org/10.5194/acp-13-10227-2013, 2013
P. I. Palmer, M. Parrington, J. D. Lee, A. C. Lewis, A. R. Rickard, P. F. Bernath, T. J. Duck, D. L. Waugh, D. W. Tarasick, S. Andrews, E. Aruffo, L. J. Bailey, E. Barrett, S. J.-B. Bauguitte, K. R. Curry, P. Di Carlo, L. Chisholm, L. Dan, G. Forster, J. E. Franklin, M. D. Gibson, D. Griffin, D. Helmig, J. R. Hopkins, J. T. Hopper, M. E. Jenkin, D. Kindred, J. Kliever, M. Le Breton, S. Matthiesen, M. Maurice, S. Moller, D. P. Moore, D. E. Oram, S. J. O'Shea, R. C. Owen, C. M. L. S. Pagniello, S. Pawson, C. J. Percival, J. R. Pierce, S. Punjabi, R. M. Purvis, J. J. Remedios, K. M. Rotermund, K. M. Sakamoto, A. M. da Silva, K. B. Strawbridge, K. Strong, J. Taylor, R. Trigwell, K. A. Tereszchuk, K. A. Walker, D. Weaver, C. Whaley, and J. C. Young
Atmos. Chem. Phys., 13, 6239–6261, https://doi.org/10.5194/acp-13-6239-2013, https://doi.org/10.5194/acp-13-6239-2013, 2013
K. A. Tereszchuk, D. P. Moore, J. J. Harrison, C. D. Boone, M. Park, J. J. Remedios, W. J. Randel, and P. F. Bernath
Atmos. Chem. Phys., 13, 5601–5613, https://doi.org/10.5194/acp-13-5601-2013, https://doi.org/10.5194/acp-13-5601-2013, 2013
C. Adams, A. E. Bourassa, A. F. Bathgate, C. A. McLinden, N. D. Lloyd, C. Z. Roth, E. J. Llewellyn, J. M. Zawodny, D. E. Flittner, G. L. Manney, W. H. Daffer, and D. A. Degenstein
Atmos. Meas. Tech., 6, 1447–1459, https://doi.org/10.5194/amt-6-1447-2013, https://doi.org/10.5194/amt-6-1447-2013, 2013
K. A. Tereszchuk, G. González Abad, C. Clerbaux, J. Hadji-Lazaro, D. Hurtmans, P.-F. Coheur, and P. F. Bernath
Atmos. Chem. Phys., 13, 4529–4541, https://doi.org/10.5194/acp-13-4529-2013, https://doi.org/10.5194/acp-13-4529-2013, 2013
R. A. Stachnik, L. Millán, R. Jarnot, R. Monroe, C. McLinden, S. Kühl, J. Puķīte, M. Shiotani, M. Suzuki, Y. Kasai, F. Goutail, J. P. Pommereau, M. Dorf, and K. Pfeilsticker
Atmos. Chem. Phys., 13, 3307–3319, https://doi.org/10.5194/acp-13-3307-2013, https://doi.org/10.5194/acp-13-3307-2013, 2013
C. Adams, K. Strong, X. Zhao, A. E. Bourassa, W. H. Daffer, D. Degenstein, J. R. Drummond, E. E. Farahani, A. Fraser, N. D. Lloyd, G. L. Manney, C. A. McLinden, M. Rex, C. Roth, S. E. Strahan, K. A. Walker, and I. Wohltmann
Atmos. Chem. Phys., 13, 611–624, https://doi.org/10.5194/acp-13-611-2013, https://doi.org/10.5194/acp-13-611-2013, 2013
Related subject area
Atmospheric sciences
Evaluation of dust emission and land surface schemes in predicting a mega Asian dust storm over South Korea using WRF-Chem
Sensitivity studies of a four-dimensional local ensemble transform Kalman filter coupled with WRF-Chem version 3.9.1 for improving particulate matter simulation accuracy
A Bayesian method for predicting background radiation at environmental monitoring stations in local-scale networks
Inclusion of the ECMWF ecRad radiation scheme (v1.5.0) in the MAR (v3.14), regional evaluation for Belgium, and assessment of surface shortwave spectral fluxes at Uccle
Development of a fast radiative transfer model for ground-based microwave radiometers (ARMS-gb v1.0): validation and comparison to RTTOV-gb
Indian Institute of Tropical Meteorology (IITM) High-Resolution Global Forecast Model version 1: an attempt to resolve monsoon prediction deadlock
Cell-tracking-based framework for assessing nowcasting model skill in reproducing growth and decay of convective rainfall
NeuralMie (v1.0): an aerosol optics emulator
Simulation performance of planetary boundary layer schemes in WRF v4.3.1 for near-surface wind over the western Sichuan Basin: a single-site assessment
FootNet v1.0: development of a machine learning emulator of atmospheric transport
Updates and evaluation of NOAA's online-coupled air quality model version 7 (AQMv7) within the Unified Forecast System
Quantifying the analysis uncertainty for nowcasting application
Improving the ensemble square root filter (EnSRF) in the Community Inversion Framework: a case study with ICON-ART 2024.01
The MESSy DWARF (based on MESSy v2.55.2)
An enhanced emission module for the PALM model system 23.10 with application for PM10 emission from urban domestic heating
Identifying lightning processes in ERA5 soundings with deep learning
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
Explaining neural networks for detection of tropical cyclones and atmospheric rivers in gridded atmospheric simulation data
PALACE v1.0: Paranal Airglow Line And Continuum Emission model
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Forecasting contrail climate forcing for flight planning and air traffic management applications: the CocipGrid model in pycontrails 0.51.0
Simulation of the heat mitigation potential of unsealing measures in cities by parameterizing grass grid pavers for urban microclimate modelling with ENVI-met (V5)
AI-NAOS: an AI-based nonspherical aerosol optical scheme for the chemical weather model GRAPES_Meso5.1/CUACE
Orbital-Radar v1.0.0: a tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
The Modular and Integrated Data Assimilation System at Environment and Climate Change Canada (MIDAS v3.9.1)
A new set of indicators for model evaluation complementing to FAIRMODE’s MQO
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
Observational operator for fair model evaluation with ground NO2 measurements
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
The third Met Office Unified Model-JULES Regional Atmosphere and Land Configuration, RAL3
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
UA-ICON with NWP physics package (version: ua-icon-2.1): mean state and variability of the middle atmosphere
Assessment of object-based indices to identify convective organization
Diagnosis of winter precipitation types using Spectral Bin Model (SBM): Comparison of five methods using ICE-POP 2018 field experiment data
The Global Forest Fire Emissions Prediction System version 1.0
Impact of Multiple Radar Wind Profilers Data Assimilation on Convective Scale Short-Term Rainfall Forecasts: OSSE Studies over the Beijing-Tianjin-Hebei region
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
Ji Won Yoon, Seungyeon Lee, Ebony Lee, and Seon Ki Park
Geosci. Model Dev., 18, 2303–2328, https://doi.org/10.5194/gmd-18-2303-2025, https://doi.org/10.5194/gmd-18-2303-2025, 2025
Short summary
Short summary
This study evaluates the Weather Research and Forecasting Model (WRF) coupled with Chemistry (WRF-Chem) to predict a mega Asian dust storm (ADS) over South Korea on 28–29 March 2021. We assessed combinations of five dust emission and four land surface schemes by analyzing meteorological and air quality variables. The best scheme combination reduced the root mean square error (RMSE) for particulate matter 10 (PM10) by up to 29.6 %, demonstrating the highest performance.
Jianyu Lin, Tie Dai, Lifang Sheng, Weihang Zhang, Shangfei Hai, and Yawen Kong
Geosci. Model Dev., 18, 2231–2248, https://doi.org/10.5194/gmd-18-2231-2025, https://doi.org/10.5194/gmd-18-2231-2025, 2025
Short summary
Short summary
The effectiveness of this assimilation system and its sensitivity to the ensemble member size and length of the assimilation window are investigated. This study advances our understanding of the selection of basic parameters in the four-dimensional local ensemble transform Kalman filter assimilation system and the performance of ensemble simulation in a particulate-matter-polluted environment.
Jens Peter Karolus Wenceslaus Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers
Geosci. Model Dev., 18, 1989–2003, https://doi.org/10.5194/gmd-18-1989-2025, https://doi.org/10.5194/gmd-18-1989-2025, 2025
Short summary
Short summary
To detect anomalous radioactivity in the environment, it is paramount that we understand the natural background level. In this work, we propose a statistical model to describe the most likely background level and the associated uncertainty in a network of dose rate detectors. We train, verify, and validate the model using real environmental data. Using the model, we show that we can correctly predict the background level in a subset of the detector network during a known
anomalous event.
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025, https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Short summary
The MAR (Modèle Régional Atmosphérique) is a regional climate model used for weather forecasting and studying the climate over various regions. This paper presents an update of MAR thanks to which it can precisely decompose solar radiation, in particular in the UV (ultraviolet) and photosynthesis ranges, both being critical to human health and ecosystems. As a first application of this new capability, this paper presents a method for predicting UV indices with MAR.
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
Geosci. Model Dev., 18, 1947–1964, https://doi.org/10.5194/gmd-18-1947-2025, https://doi.org/10.5194/gmd-18-1947-2025, 2025
Short summary
Short summary
Direct assimilation of observations from ground-based microwave radiometers (GMRs) holds significant potential for improving forecast accuracy. Radiative transfer models (RTMs) play a crucial role in direct data assimilation. In this study, we introduce a new RTM, the Advanced Radiative Transfer Modeling System – Ground-Based (ARMS-gb), designed to simulate brightness temperatures observed by GMRs along with their Jacobians. Several enhancements have been incorporated to achieve higher accuracy.
R. Phani Murali Krishna, Siddharth Kumar, A. Gopinathan Prajeesh, Peter Bechtold, Nils Wedi, Kumar Roy, Malay Ganai, B. Revanth Reddy, Snehlata Tirkey, Tanmoy Goswami, Radhika Kanase, Sahadat Sarkar, Medha Deshpande, and Parthasarathi Mukhopadhyay
Geosci. Model Dev., 18, 1879–1894, https://doi.org/10.5194/gmd-18-1879-2025, https://doi.org/10.5194/gmd-18-1879-2025, 2025
Short summary
Short summary
The High-Resolution Global Forecast Model (HGFM) is an advanced iteration of the operational Global Forecast System (GFS) model. HGFM can produce forecasts at a spatial scale of ~6 km in tropics. It demonstrates improved accuracy in short- to medium-range weather prediction over the Indian region, with notable success in predicting extreme events. Further, the model will be entrusted to operational forecasting agencies after validation and testing.
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev., 18, 1851–1878, https://doi.org/10.5194/gmd-18-1851-2025, https://doi.org/10.5194/gmd-18-1851-2025, 2025
Short summary
Short summary
Nowcasting models struggle with the rapid evolution of heavy rain, and common verification methods are unable to describe how accurately the models predict the growth and decay of heavy rain. We propose a framework to assess model performance. In the framework, convective cells are identified and tracked in the forecasts and observations, and the model skill is then evaluated by comparing differences between forecast and observed cells. We demonstrate the framework with four open-source models.
Andrew Geiss and Po-Lun Ma
Geosci. Model Dev., 18, 1809–1827, https://doi.org/10.5194/gmd-18-1809-2025, https://doi.org/10.5194/gmd-18-1809-2025, 2025
Short summary
Short summary
Particles in the Earth's atmosphere strongly impact the planet's energy budget, and atmosphere simulations require accurate representation of their interaction with light. This work introduces two approaches to represent light scattering by small particles. The first is a scattering simulator based on Mie theory implemented in Python. The second is a neural network emulator that is more accurate than existing methods and is fast enough to be used in climate and weather simulations.
Qin Wang, Bo Zeng, Gong Chen, and Yaoting Li
Geosci. Model Dev., 18, 1769–1784, https://doi.org/10.5194/gmd-18-1769-2025, https://doi.org/10.5194/gmd-18-1769-2025, 2025
Short summary
Short summary
This study evaluates the performance of four planetary boundary layer (PBL) schemes in near-surface wind fields over the Sichuan Basin, China. Using 112 sensitivity experiments with the Weather Research and Forecasting (WRF) model and focusing on 28 wind events, it is found that wind direction was less sensitive to the PBL schemes. The quasi-normal scale elimination (QNSE) scheme captured temporal variations best, while the Mellor–Yamada–Janjić (MYJ) scheme had the least error in wind speed.
Tai-Long He, Nikhil Dadheech, Tammy M. Thompson, and Alexander J. Turner
Geosci. Model Dev., 18, 1661–1671, https://doi.org/10.5194/gmd-18-1661-2025, https://doi.org/10.5194/gmd-18-1661-2025, 2025
Short summary
Short summary
It is computationally expensive to infer greenhouse gas (GHG) emissions using atmospheric observations. This is partly due to the detailed model used to represent atmospheric transport. We demonstrate how a machine learning (ML) model can be used to simulate high-resolution atmospheric transport. This type of ML model will help estimate GHG emissions using dense observations, which are becoming increasingly common with the proliferation of urban monitoring networks and geostationary satellites.
Wei Li, Beiming Tang, Patrick C. Campbell, Youhua Tang, Barry Baker, Zachary Moon, Daniel Tong, Jianping Huang, Kai Wang, Ivanka Stajner, and Raffaele Montuoro
Geosci. Model Dev., 18, 1635–1660, https://doi.org/10.5194/gmd-18-1635-2025, https://doi.org/10.5194/gmd-18-1635-2025, 2025
Short summary
Short summary
The study describes the updates of NOAA's current UFS-AQMv7 air quality forecast model by incorporating the latest scientific and structural changes in CMAQv5.4. An evaluation during the summer of 2023 shows that the updated model overall improves the simulation of MDA8 O3 by reducing the bias by 8%–12% in the contiguous US. PM2.5 predictions have mixed results due to wildfire, highlighting the need for future refinements.
Yanwei Zhu, Aitor Atencia, Markus Dabernig, and Yong Wang
Geosci. Model Dev., 18, 1545–1559, https://doi.org/10.5194/gmd-18-1545-2025, https://doi.org/10.5194/gmd-18-1545-2025, 2025
Short summary
Short summary
Most works have delved into convective weather nowcasting, and only a few works have discussed the nowcasting uncertainty for variables at the surface level. Hence, we proposed a method to estimate uncertainty. Generating appropriate noises associated with the characteristic of the error in analysis can simulate the uncertainty of nowcasting. This method can contribute to the estimation of near–surface analysis uncertainty in both nowcasting applications and ensemble nowcasting development.
Joël Thanwerdas, Antoine Berchet, Lionel Constantin, Aki Tsuruta, Michael Steiner, Friedemann Reum, Stephan Henne, and Dominik Brunner
Geosci. Model Dev., 18, 1505–1544, https://doi.org/10.5194/gmd-18-1505-2025, https://doi.org/10.5194/gmd-18-1505-2025, 2025
Short summary
Short summary
The Community Inversion Framework (CIF) brings together methods for estimating greenhouse gas fluxes from atmospheric observations. The initial ensemble method implemented in CIF was found to be incomplete and could hardly be compared to other ensemble methods employed in the inversion community. In this paper, we present and evaluate a new implementation of the ensemble mode, building upon the initial developments.
Astrid Kerkweg, Timo Kirfel, Duong H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev., 18, 1265–1286, https://doi.org/10.5194/gmd-18-1265-2025, https://doi.org/10.5194/gmd-18-1265-2025, 2025
Short summary
Short summary
Normally, the Modular Earth Submodel System (MESSy) is linked to complete dynamic models to create chemical climate models. However, the modular concept of MESSy and the newly developed DWARF component presented here make it possible to create simplified models that contain only one or a few process descriptions. This is very useful for technical optimisation, such as porting to GPUs, and can be used to create less complex models, such as a chemical box model.
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025, https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Short summary
An enhanced emission module has been developed for the PALM model system, improving flexibility and scalability of emission source representation across different sectors. A model for parametrized domestic emissions has also been included, for which an idealized model run is conducted for particulate matter (PM10). The results show that, in addition to individual sources and diurnal variations in energy consumption, vertical transport and urban topology play a role in concentration distribution.
Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell
Geosci. Model Dev., 18, 1141–1153, https://doi.org/10.5194/gmd-18-1141-2025, https://doi.org/10.5194/gmd-18-1141-2025, 2025
Short summary
Short summary
As lightning is a brief and localized event, it is not explicitly resolved in atmospheric models. Instead, expert-based auxiliary descriptions are used to assess it. This study explores how AI can improve our understanding of lightning without relying on traditional expert knowledge. We reveal that AI independently identified the key factors known to experts as essential for lightning in the Alps region. This shows how knowledge discovery could be sped up in areas with limited expert knowledge.
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev., 18, 1103–1118, https://doi.org/10.5194/gmd-18-1103-2025, https://doi.org/10.5194/gmd-18-1103-2025, 2025
Short summary
Short summary
The effect of the assumed atmospheric nucleation mechanism on particle number concentrations and size distribution was investigated. Two quite different mechanisms involving sulfuric acid and ammonia or a biogenic organic vapor gave quite similar results which were consistent with measurements at 26 measurement stations across Europe. The number of larger particles that serve as cloud condensation nuclei showed little sensitivity to the assumed nucleation mechanism.
Tim Radke, Susanne Fuchs, Christian Wilms, Iuliia Polkova, and Marc Rautenhaus
Geosci. Model Dev., 18, 1017–1039, https://doi.org/10.5194/gmd-18-1017-2025, https://doi.org/10.5194/gmd-18-1017-2025, 2025
Short summary
Short summary
In our study, we built upon previous work to investigate the patterns artificial intelligence (AI) learns to detect atmospheric features like tropical cyclones (TCs) and atmospheric rivers (ARs). As primary objective, we adopt a method to explain the AI used and investigate the plausibility of learned patterns. We find that plausible patterns are learned for both TCs and ARs. Hence, the chosen method is very useful for gaining confidence in the AI-based detection of atmospheric features.
Stefan Noll, Carsten Schmidt, Patrick Hannawald, Wolfgang Kausch, and Stefan Kimeswenger
EGUsphere, https://doi.org/10.5194/egusphere-2024-3512, https://doi.org/10.5194/egusphere-2024-3512, 2025
Short summary
Short summary
Non-thermal emission from chemical reactions in the Earth's middle und upper atmosphere strongly contributes to the brightness of the night sky below about 2.3 µm. The new Paranal Airglow Line and Continuum Emission model calculates the emission spectrum and its variability with an unprecedented accuracy. Relying on a large spectroscopic data set from astronomical spectrographs and theoretical molecular/atomic data, it is valuable for airglow research and astronomical observatories.
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025, https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary
Short summary
We tested the capability of the flux divergence approach (FDA) to reproduce known NOx emissions using synthetic NO2 satellite column retrievals from high-resolution model simulations. The FDA accurately reproduced NOx emissions when column observations were limited to the boundary layer and when the variability of the NO2 lifetime, the NOx : NO2 ratio, and NO2 profile shapes were correctly modeled. This introduces strong model dependency, reducing the simplicity of the original FDA formulation.
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025, https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Short summary
We explore a high-level programming model for porting numerical weather prediction (NWP) model codes to graphics processing units (GPUs). We present a Python rewrite with the domain-specific library GT4Py (GridTools for Python) of two renowned cloud microphysics schemes and the associated tangent-linear and adjoint algorithms. We find excellent portability, competitive GPU performance, robust execution on diverse computing architectures, and enhanced code maintainability and user productivity.
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025, https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
Short summary
Clustering high-resolution satellite observations into superobservations improves model validation and data assimilation applications. In our paper, we derive quantitative uncertainties for satellite NO2 column observations based on knowledge of the retrievals, including a detailed analysis of spatial error correlations and representativity errors. The superobservations and uncertainty estimates are tested in a global chemical data assimilation system and are found to improve the forecasts.
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025, https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Short summary
This paper presents the Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool (ML-AMPSIT), a computationally efficient tool that uses machine learning algorithms for sensitivity analysis in atmospheric models. It is tested with the Weather Research and Forecasting (WRF) model coupled with the Noah-Multiparameterization (Noah-MP) land surface model to investigate sea breeze circulation sensitivity to vegetation-related parameters.
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025, https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary
Short summary
Radiation is relevant to the atmospheric impact on people and infrastructure in cities as it can influence the urban heat island, building energy consumption, and human thermal comfort. A new urban radiation model, assuming a more realistic form of urban morphology, is coupled to the urban climate model Town Energy Balance (TEB). The new TEB is evaluated with a reference radiation model for a variety of urban morphologies, and an improvement in the simulated radiative observables is found.
Zebediah Engberg, Roger Teoh, Tristan Abbott, Thomas Dean, Marc E. J. Stettler, and Marc L. Shapiro
Geosci. Model Dev., 18, 253–286, https://doi.org/10.5194/gmd-18-253-2025, https://doi.org/10.5194/gmd-18-253-2025, 2025
Short summary
Short summary
Contrails forming in some atmospheric conditions may persist and become strongly warming cirrus, while in other conditions may be neutral or cooling. We develop a contrail forecast model to predict contrail climate forcing for any arbitrary point in space and time and explore integration into flight planning and air traffic management. This approach enables contrail interventions to target high-probability high-climate-impact regions and reduce unintended consequences of contrail management.
Nils Eingrüber, Alina Domm, Wolfgang Korres, and Karl Schneider
Geosci. Model Dev., 18, 141–160, https://doi.org/10.5194/gmd-18-141-2025, https://doi.org/10.5194/gmd-18-141-2025, 2025
Short summary
Short summary
Climate change adaptation measures like unsealings can reduce urban heat stress. As grass grid pavers have never been parameterized for microclimate model simulations with ENVI-met, a new parameterization was developed based on field measurements. To analyse the cooling potential, scenario analyses were performed for a densely developed area in Cologne. Statistically significant average cooling effects of up to −11.1 K were found for surface temperature and up to −2.9 K for 1 m air temperature.
Xuan Wang, Lei Bi, Hong Wang, Yaqiang Wang, Wei Han, Xueshun Shen, and Xiaoye Zhang
Geosci. Model Dev., 18, 117–139, https://doi.org/10.5194/gmd-18-117-2025, https://doi.org/10.5194/gmd-18-117-2025, 2025
Short summary
Short summary
The Artificial-Intelligence-based Nonspherical Aerosol Optical Scheme (AI-NAOS) was developed to improve the estimation of the aerosol direct radiation effect and was coupled online with a chemical weather model. The AI-NAOS scheme considers black carbon as fractal aggregates and soil dust as super-spheroids, encapsulated with hygroscopic aerosols. Real-case simulations emphasize the necessity of accurately representing nonspherical and inhomogeneous aerosols in chemical weather models.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev., 18, 101–115, https://doi.org/10.5194/gmd-18-101-2025, https://doi.org/10.5194/gmd-18-101-2025, 2025
Short summary
Short summary
The Python tool Orbital-Radar transfers suborbital radar data (ground-based, airborne, and forward-simulated numerical weather prediction model) into synthetic spaceborne cloud profiling radar data, mimicking platform-specific instrument characteristics, e.g. EarthCARE or CloudSat. The tool's novelty lies in simulating characteristic errors and instrument noise. Thus, existing data sets are transferred into synthetic observations and can be used for satellite calibration–validation studies.
Mark Buehner, Jean-Francois Caron, Ervig Lapalme, Alain Caya, Ping Du, Yves Rochon, Sergey Skachko, Maziar Bani Shahabadi, Sylvain Heilliette, Martin Deshaies-Jacques, Weiguang Chang, and Michael Sitwell
Geosci. Model Dev., 18, 1–18, https://doi.org/10.5194/gmd-18-1-2025, https://doi.org/10.5194/gmd-18-1-2025, 2025
Short summary
Short summary
The Modular and Integrated Data Assimilation System (MIDAS) software is described. The flexible design of MIDAS enables both deterministic and ensemble prediction applications for the atmosphere and several other Earth system components. It is currently used for all main operational weather prediction systems in Canada and also for sea ice and sea surface temperature analysis. The use of MIDAS for multiple Earth system components will facilitate future research on coupled data assimilation.
Alexander de Meij, Cornelis Cuvelier, Philippe Thunis, and Enrico Pisoni
EGUsphere, https://doi.org/10.5194/egusphere-2024-3690, https://doi.org/10.5194/egusphere-2024-3690, 2025
Short summary
Short summary
We assess the relevance and utility indicators developed within FAIRMODE by evaluating 9 CAMS models in calculated air pollutant values. For NO2, the results highlight difficulties at traffic stations. For PM2.5 and PM10 the bias and Winter-Summer gradients reveal issues. O3 evaluation shows that e.g. seasonal gradients are useful. Overall, the indicators provide valuable insights into model limitations, yet there is a need to reconsider the strictness of some indicators for certain pollutants.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024, https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can reproduce PAH distribution well. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change in BaP is lower than that in PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although the Action Plan has been implemented.
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024, https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
Short summary
We have developed a complete two-moment version of the LIMA (Liquid Ice Multiple Aerosols) microphysics scheme. We have focused on collection processes, where the hydrometeor number transfer is often estimated in proportion to the mass transfer. The impact of these parameterizations on a convective system and the prospects for more realistic estimates of secondary parameters (reflectivity, hydrometeor size) are shown in a first test on an idealized case.
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024, https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
Short summary
A new parameterisation for dynamic anthropogenic heat and electricity consumption is described. The model reproduced the temporal variation in and spatial distributions of electricity consumption and temperature well in summer and winter. The partial air conditioning was the most critical factor, significantly affecting the value of anthropogenic heat emission.
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024, https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Short summary
To accurately characterize the spatiotemporal distribution of particulate matter <2.5 µm chemical components, we developed the Nested Air Quality Prediction Model System with the Parallel Data Assimilation Framework (NAQPMS-PDAF) v2.0 for chemical components with non-Gaussian and nonlinear properties. NAQPMS-PDAF v2.0 has better computing efficiency, excels when used with a small ensemble size, and can significantly improve the simulation performance of chemical components.
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024, https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Short summary
Chemical transport model simulations are combined with ozone observations to estimate the bias in ozone attributable to US anthropogenic sources and individual sources of US background ozone: natural sources, non-US anthropogenic sources, and stratospheric ozone. Results indicate a positive bias correlated with US anthropogenic emissions during summer in the eastern US and a negative bias correlated with stratospheric ozone during spring.
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024, https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Short summary
Model evaluations against ground observations are usually unfair. The former simulates mean status over coarse grids and the latter the surrounding atmosphere. To solve this, we proposed the new land-use-based representative (LUBR) operator that considers intra-grid variance. The LUBR operator is validated to provide insights that align with satellite measurements. The results highlight the importance of considering fine-scale urban–rural differences when comparing models and observation.
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024, https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
Short summary
The ensemble Kalman filter (EnKF) improves dust storm forecasts but faces challenges with position errors. The valid time shifting EnKF (VTS-EnKF) addresses this by adjusting for position errors, enhancing accuracy in forecasting dust storms, as proven in tests on 2021 events, even with smaller ensembles and time intervals.
Mike Bush, David L. A. Flack, Huw W. Lewis, Sylvia I. Bohnenstengel, Chris J. Short, Charmaine Franklin, Adrian P. Lock, Martin Best, Paul Field, Anne McCabe, Kwinten Van Weverberg, Segolene Berthou, Ian Boutle, Jennifer K. Brooke, Seb Cole, Shaun Cooper, Gareth Dow, John Edwards, Anke Finnenkoetter, Kalli Furtado, Kate Halladay, Kirsty Hanley, Margaret A. Hendry, Adrian Hill, Aravindakshan Jayakumar, Richard W. Jones, Humphrey Lean, Joshua C. K. Lee, Andy Malcolm, Marion Mittermaier, Saji Mohandas, Stuart Moore, Cyril Morcrette, Rachel North, Aurore Porson, Susan Rennie, Nigel Roberts, Belinda Roux, Claudio Sanchez, Chun-Hsu Su, Simon Tucker, Simon Vosper, David Walters, James Warner, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Michael Whitall, Keith D. Williams, and Hugh Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-201, https://doi.org/10.5194/gmd-2024-201, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
RAL configurations define settings for the Unified Model atmosphere and Joint UK Land Environment Simulator. The third version of the Regional Atmosphere and Land (RAL3) science configuration for kilometre and sub-km scale modelling represents a major advance compared to previous versions (RAL2) by delivering a common science definition for applications in tropical and mid-latitude regions. RAL3 has more realistic precipitation distributions and improved representation of clouds and visibility.
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Markus Kunze, Christoph Zülicke, Tarique Adnan Siddiqui, Claudia Christine Stephan, Yosuke Yamazaki, Claudia Stolle, Sebastian Borchert, and Hauke Schmidt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-191, https://doi.org/10.5194/gmd-2024-191, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We present the Icosahedral Nonhydrostatic (ICON) general circulation model with upper atmosphere extension with the physics package for numerical weather prediction (UA-ICON(NWP)). The parameters for the gravity wave parameterizations were optimized, and realistic modelling of the thermal and dynamic state of the mesopause regions was achieved. UA-ICON(NWP) now shows a realistic frequency of major sudden stratospheric warmings and well-represented solar tides in temperature.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Wonbae Bang, Jacob Carlin, Kwonil Kim, Alexander Ryzhkov, Guosheng Liu, and Gyuwon Lee
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-179, https://doi.org/10.5194/gmd-2024-179, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Microphysics model-based diagnosis such as the spectral bin model (SBM) recently has been attempted to diagnose winter precipitation types. In this study, the accuracy of SBM-based precipitation type diagnosis is compared with other traditional methods. SBM have relatively higher accuracy about snow and wetsnow events whereas lower accuracy about rain event. When microphysics scheme in the SBM was optimized for the corresponding region, accuracy about rain events was improved.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Juan Zhao, Jianping Guo, and Xiaohui Zheng
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-194, https://doi.org/10.5194/gmd-2024-194, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
A series of observing system simulation experiments are conducted to assess the impact of multiple radar wind profiler (RWP) networks on convective scale numerical weather prediction. Results from three southwest-type heavy rainfall cases in the Beijing-Tianjin-Hebei region suggest the added forecast skill of ridge and foothill networks associated with the Taihang Mountains over the existing RWP network. This research provides valuable guidance for designing optimal RWP networks in the region.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Cited articles
Allaart, M., van Weele, M., Fortuin, P., and Kelder, H.: An empirical model
to predict the UV-index based on solar zenith angles and total ozone,
Meteorol. Appl., 11, 59–64, https://doi.org/10.1017/S1350482703001130, 2004. a
Bais, A. F., Gardiner, B. G., Slaper, H., Blumthaler, M., Bernhard. G.,
McKenzie, R., Webb, A. R., Seckmeyer, G., Kjeldstad, B., Koskela, T., Kirsch,
P. J., Grobner, J., Kerr, J. B., Kazadzis, S., Leszczynski, K., Wardle, D.,
Josefsson, W., Brogniez, C., Gillotay, D., Reinen, H., Weihs, P., Svenoe, T.,
Eriksen, P., Kuik, F., and Redondas, A.: SUSPEN intercomparison of
ultraviolet spectroradiometers, J. Geophys. Res., 106, 12509–12525, 2001. a
Bian, H. and Prather, M. J.: Fast-J2: Accurate Simulation of Stratospheric
Photolysis in Global Chemical Models, J. Atmos. Chem., 41, 281–296,
https://doi.org/10.1023/A:1014980619462, 2002. a
Burrows, W. R., Vallée, M., Wardle, D. I., Kerr, J. B., Wilson, L. J.,
and Tarasick, D. W.: The Canadian operational procedure for forecasting total
ozone and UV radiation, Meteorol. Appl., 1, 247–265,
https://doi.org/10.1002/met.5060010307, 1994. a
Burrows, J. P., Richter, A., Dehn, A., Deters, B., Himmelmann, S., Voigt, S.,
and Orphal J.: Atmospheric remote-sensing reference data from GOME 2.
Temperature-dependent absorption cross-sections of O3 in the
231–794 nm range, J. Quant. Spectrosc. Ra., 61, 509–517,
https://doi.org/10.1016/S0022-4073(98)00037-5, 1999. a
Callies, J., Corpaccioli, E., Eisinger, M., Hahne, A., and Lefebvre, A.:
GOME-2 – Metop's second generation sensor for operational ozone monitoring,
ESA Bull.-Eur. Space, 102, 28–36, 2000. a
Caron, L.-P., Jones, C. G., Vaillancourt, P. A., and Winger, K.,: On the
relationship between cloud-radiation interaction, atmospheric stability and
Atlantic tropical cyclones in a variable-resolution climate model, Clim.
Dynam., 40, 1257–1269, https://doi.org/10.1007/s00382-012-1311-6, 2013.
Chadyšien, R. and Girgždys, A.: Ultraviolet Radiation Albedo of
Natural Surfaces, J. Environ. Eng. Landsc., 16, 83–88,
https://doi.org/10.3846/1648-6897.2008.16.83-88, 2008. a, b, c
Chance, K. V. and Spurr, R. J. D.: Ring effect studies: Rayleigh scattering,
including molecular parameters for rotational Raman scattering, and the
Fraunhofer spectrum, Appl. Opt., 36, 5224–5230, https://doi.org/10.1364/AO.36.005224,
1997. a, b, c, d
Chance, K. and Kurucz, R. L.: An improved high-resolution solar reference
spectrum for Earth's atmosphere measurements in the ultraviolet, visible, and
near infrared, J. Quant. Spectrosc. Ra., 111, 1289–1295,
https://doi.org/10.1016/j.jqsrt.2010.01.036, 2010. a, b, c
Charron, M., Polavarapu, S., Buehner, M., Vaillancourt, P. A., Charette, C.,
Roch, M., Morneau, J., Garand, L., Aparicio, J., MacPherson, S., Pellerin,
S., St-James, J., and Heilliette, S.: The stratospheric extension of the
Canadian Global Deterministic Medium-Range Weather Forecasting System and its
impact on tropospheric forecasts, Mon. Weather Rev., 140, 1924–1944,
https://doi.org/10.1175/MWR-D-11-00097.1, 2012. a, b
Colblentz, M. W. and Stair, R.: Data on the spectral erythemic reaction of
the untanned human skin to ultraviolet radiation, Research Paper RP631,
National Bureau of Standards Journal of Research, vol. 12, 13–14, 1934. a
Crutzen, P. J.: Ultraviolet on the increase, Nature, 356, 104–105,
https://doi.org/10.1038/356104a0, 1992. a
de Grandpré, J., Tanguay, M., Qaddouri, A., Zerroukat, M., and McLinden,
C. A.: Semi-Lagrangian Advection of Stratospheric Ozone on a Yin-Yang Grid
System, Mon. Weather Rev., 144, 1035–1050, https://doi.org/10.1175/MWR-D-15-0142.1,
2016. a
Dobber, M., Voors, R., Dirksen, R., Kleipool, Q., and Levelt, P.: The
High-Resolution Solar Reference Spectrum between 250 and 550 nm and its
Application to Measurements with the Ozone Monitoring Instrument, Solar
Phys., 249, 281–291, https://doi.org/10.1007/s11207-008-9187-7, 2008. a, b, c, d, e, f, g
Fisher, M. and Andersson, E.: Developments in 4-D-Var and Kalman filtering,
in: Technical Memorandum Research Department, 347, ECMWF, Reading, UK, 2001. a
Fioletov, V. E., Kerr, J. B., and Wardle, D. I.: The relationship between
total ozone and spectral UV irradiance from Brewer observations and its use
for derivation of total ozone from UV measurements, Geophys. Res. Lett., 24,
2997–3000, https://doi.org/10.1029/97GL53153, 1997. a
Girard, C., Plante, A., Desgagné, M., McTaggart-Cowan, R., Côté,
J., Charron, M., Gravel, S., Lee, V., Patoine, A., Qaddouri, A., Roch, M.,
Spacek, L., Tanguay, M., Vaillancourt, P. A., and Zadra, A.: Staggered
Vertical Discretization of the Canadian Environmental Multiscale (GEM) Model
Using a Coordinate of the Log-Hydrostatic-Pressure Type, Mon. Weather Rev.,
142, 1183–1196, https://doi.org/10.1175/MWR-D-13-00255.1, 2014. a
Gong, W., Makar, P. A., Zhang, J., Milbrandt, J., Gravel, S., Hayden, K. L.,
Macdonald, A. M., and Leaith, W. R.: Modelling aerosol-cloud-meteorology
interaction: a case study with a fully coupled air quality model (GEM-MACH),
Atmos. Environ., 115, 695–715, https://doi.org/10.1016/j.atmosenv.2015.05.062, 2015.
Hall, L. A. and Anderson, G. P.: High resolution solar spectrum between 2000
and 3100 Angstroms, J. Geophys. Res., 96, 12927–12931,
https://doi.org/10.1029/91JD01111, 1991. a, b
He, H., Fioletov, V. E., Tarasick, D. W., Mathews, T. W., and Long, C.:
Validation of Environment Canada and NOAA UV Index Forecasts with Brewer
Measurements from Canada, J. Appl. Meteor. Climatol., 52, 1477–1489,
https://doi.org/10.1175/JAMC-D-12-0286.1, 2013.
Jacquinet-Husson, N., Scott, N. A., Chédin, A., Crépeau, L., Armante,
R., Capelle, V., Orphal, J., Coustenis, A., Boonne, C., Poulet-Crovisier, N.,
Barbe, A., Birk, M., Brown, L. R., Camy-Peyret, C., Claveau, C., Chance, K.,
Christidis, N., Clerbaux, C., Coheur, P. F., Dana, V., Daumont, L., De
Backer-Barilly, M. R., Di Lonardo, G., Flaud, J. M., Goldman, A., Hamdouni,
A., Hess, M., Hurley, M. D., Jacquemart, D., Kleiner, I., Köpke, P.,
Mandin, J. Y., Massie, S., Mikhailenko, S., Nemtchinov, V., Nikitin, A.,
Newnham, D., Perrin, A., Perevalov, V. I., Pinnock, S., Régalia-Jarlot,
L., Rinsland, C. P., Rublev, A., Schreier, F., Schult, L., Smith, K. M.,
Tashkun, S. A., Teffo, J. L., Toth, R. A., Tyuterev, Vl. G., Auwera, J. V.,
Varanasi, P., and Wagner, G.: The GEISA spectroscopic database: Current and
future archive for Earth and planetary atmosphere studies, J. Quant.
Spectrosc. Ra., 109, 1043–1059, https://doi.org/10.1016/j.jqsrt.2007.12.015, 2008. a
Kleipool, Q. L., Dobber, M. R., de Haan, J. F., and Levelt, P. F.: Earth
surface reflectance climatology from 3 years of OMI data, J. Geophys. Res.,
113, D18308, https://doi.org/10.1029/2008JD010290, 2008. a
Long, C. S.: UV index forecasting practices around the world,
WCRP/Stratospheric Processes And their Role in Climate (SPARC), Newsletter
no. 21, available at:
http://www.atmosp.physics.utoronto.ca/SPARC/News21/21_Long.html, 2003. a
Marchenko, S. V., DeLand, M. T., and Lean, J. L.: Solar spectral irradiance
variability in cycle 24: observations and models, J. Space Weather Spac., 6,
1–12, https://doi.org/10.1051/swsc/2016036, 2016. a
Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau,
P., Clilverd, M. A., Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman,
C. H., Kretzschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D. R.,
Maycock, A. C., Misios, S., Rodger, C. J., Scaife, A. A., Seppälä,
A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M.,
Verronen, P. T., and Versick, S.: Solar forcing for CMIP6 (v3.2), Geosci.
Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, 2017.
a
Markovic, M., Jones, C., Vaillancourt, P. A., Paquin, D., Winger, K., and
Paquin-Ricard, D.: An Evaluation of the Surface Radiation Budget Over North
America for a Suite of Regional Climate Models against Surface Station
Observation, Clim. Dynam., 31, 779–794, https://doi.org/10.1007/s00382-008-0378-6,
2008. a
Matsumi, Y., Comes, F. J., Hancock, G., Hofzumahaus, A., Hynes, A. J.,
Kawasaki, M., and Ravishankara, A. R.: Quantum yields for production of
O(1D) in the ultraviolet photolysis of ozone: Recommendation based on
evaluation of laboratory data, J. Geo. Res., 107, 4024,
https://doi.org/10.1029/2001JD000510, 2002. a
McKinlay, A. F. and Diffey, B. L.: A reference action spectrum for
ultraviolet induced erythema in human skin, CIE Research Note, 6, 17–22,
1987. a
McLinden, C. A., Olson, S. C., Hannegan, B., Wild, O., Prather, M. J., and
Sundet, J.: Stratospheric ozone in 3-D models: a simplified chemistry and the
cross-tropopause flux, J. Geophys. Res., 105, 14653–14665,
https://doi.org/10.1029/2000JD900124, 2000. a
Moran, M. D., Menard, S., Talbot, D., Huang, P., Makar, P. A., Gong, W.,
Landry, H., Gravel, S., Gong, S., Crevier, L.-P., Kallaur, A., and Sassi, M.:
Particulate-matter forecasting with GEM-MACH15, a new Canadian operational
air quality forecast model, in: Air Pollution Modelling and its Application
XX, edited by: Steyn, D. G. and Rao, S. T., Springer, Dordrecht, 289–293,
2010.
Moshammer, P., Simic, S., and Haluza, D.: UV “Indices” – What Do They
Indicate?, Int. J. Environ. Res. Public Health, 13, 1041,
https://doi.org/10.3390/ijerph13101041, 2016. a
Munro, R., Eisinger, M., Anderson, C., Callies, J., Corpaccioli, E., Lang,
R., Lefebvre, A., Livschitz, Y., and Albinana, A. P.: GOME-2 on MetOp, Proc.
of The 2006 EUMETSAT Meteorological Satellite Conference, ESRIN, Helsinki,
Finland, 8–12 May 2006. a
Paquin-Ricard, D., Jones, C., and Vaillancourt, P. A.: Using ARM Observations
to Evaluate Cloud and Clear-Sky Radiation Processes as Simulated by the
Canadian Regional Climate Model GEM, Mon. Weather Rev., 138, 818–838,
https://doi.org/10.1175/2009MWR2745.1, 2010. a
Prather, M. J.: Photolysis rates in correlated overlapping cloud fields:
Cloud-J 7.3c, Geosci. Model Dev., 8, 2587–2595,
https://doi.org/10.5194/gmd-8-2587-2015, 2015. a, b
Ravanat, J.-L., Douki, T., and Cadet, J.: Direct and indirect effects of UV
radiation on DNA and its components, J. Photochem. Photobiol. B, 63, 88–102,
https://doi.org/10.1016/S1011-1344(01)00206-8, 2001. a
Rowland, F. S.: Stratospheric Ozone Depletion by Chlorofluorocarbons (Nobel
Lecture)*, Angew. Chem. Int. Edit., 35, 1786–1798,
https://doi.org/10.1002/anie.199617861, 1996. a
Schmalwieser, A. W., Gröbner, J., Blumthaler, M., Klotz, B., De Backer,
H., Bolsée, D., Werner, R., Tomsic, D., Metelka, L., Eriksen, P., Jepsen,
N., Aun, M., Heikkilä, A., Duprat, T., Sandmann, H., Weiss, T., Bais, A.,
Toth, Z., Siani, A., Vaccaro, L., Diémoz, H., Grifoni, D., Zipoli, G.,
Lorenzetto, G., Petkov, B. H., di Sarra, A. G., Massen, F., Yousif, C.,
Aculinin, A. A., den Outer, P., Svendby, T., Dahlback, A., Johnsen, B.,
Biszczuk-Jakubowska, J., Krzyscin, J., Henriques, D., Chubarova, N.,
Kolarž, P., Mijatovic, Z., Groselj, D., Pribullova, A., Gonzales, J. R.
M., Bilbao, J., Guerrero, J. M. V., Serrano, A., Andersson, S., Vuilleumier,
L., Webb, A., and O'Hagan, J.: UV Index monitoring in Europe, Photochem.
Photobiol. Sci., 16, 1349–1370, https://doi.org/10.1039/C7PP00178A, 2017. a
Scinocca, J. F., McFarlane, N. A., Lazare, M., Li, J., and Plummer, D.:
Technical Note: The CCCma third generation AGCM and its extension into the
middle atmosphere, Atmos. Chem. Phys., 8, 7055–7074,
https://doi.org/10.5194/acp-8-7055-2008, 2008. a
Smith, G. C., Roy, F., Mann, P., Dupont, F., Brasnett, B., Lemieux, J.-F.,
Laroche, S., and Bélair, S.: A new atmospheric dataset for forcing
ice-ocean models: Evaluation of reforecasts using the Canadian global
deterministic prediction system, Q. J. Roy. Meteor. Soc., 140, 881–894,
https://doi.org/10.1002/qj.2194, 2014.
Sundqvist, H., Berge, E., and Kristjansson, J. E.: Condensation and cloud
parameterisation studies with a mesoscale numerical weather prediction model,
Mon. Weather Rev., 117, 1641–1657,
https://doi.org/10.1175/1520-0493(1989)117<1641:CACPSW>2.0.CO;2, 1989. a
Thompson, A., Early, E. A., DeLuisi, J., Disterhoft, P., Wardle, D., Kerr,
J., Rives, J., Sun, Y., Lucas, T., Mestechkina, T., and Neale, P.: The 1994
North American interagency intercomparison of ultraviolet monitoring
spectroradiometers, J. Res. Natl. Inst. Stand. Technol. 102, 279–322, 1997. a, b
Thuillier, G., Hersé, M., Simon, P., Labs, D., Mandel, H., Gillotay, D.,
and Foujols, T.: The Visible Solar Spectral Irradiance from 350 to 850 nm As
Measured by the SOLSPEC Spectrometer During the ATLAS I Mission, Solar Phys.,
177, 41–61, https://doi.org/10.1023/A:1004953215589, 1998. a
Thuillier, G., Hersé, M., Labs, D., Foujols, T., Peetermans, W.,
Gillotay, D., Simon, P., and Mandel, H.: The Solar Spectral Irradiance from
200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the Atlas and
Eureca Missions, Solar Phys., 214, 1–22, https://doi.org/10.1023/A:1024048429145, 2003. a, b, c
Toon, O. B. and Pollack, J. B.: A global average model of atmospheric
aerosols for radiative transfer calculations, J. Appl. Meteor., 15, 225–246,
https://doi.org/10.1175/1520-0450(1976)015<0225:AGAMOA>2.0.CO;2, 1976. a
van der A, R. J., Allaart, M. A. F., and Eskes, H. J.: Extended and refined
multi sensor reanalysis of total ozone for the period 1970–2012, Atmos.
Meas. Tech., 8, 3021–3035, https://doi.org/10.5194/amt-8-3021-2015, 2015. a
Voigt, S., Orphal, J., Bogumil, K., and Burrows, J. P.: The temperature
dependence (203–293 K) of the absorption cross-sections of O3 in the
230–850 nm region measured by Fourier-transform spectroscopy, J. Photochem.
Photobiol., 143, 1–9, https://doi.org/10.1016/S1010-6030(01)00480-4, 2001. a, b
von Salzen, K., Scinocca, J. F., McFarlane, N. A., Li, J., Cole, J. N. S.,
Plummer, D., Verseghy, D., Reader, M. C., Ma, X., Lazare, M., and Solheim,
L.: The Canadian Fourth Generation Atmospheric Global Climate Model (CanAM4),
Part I: Representation of Physical Processes, Atmos. Ocean, 51, 104–125,
https://doi.org/10.1080/07055900.2012.755610, 2013. a
Webb, A. R., Slaper, H., Koepke, P., and Schmalwieser, A. W.: Know Your
Standard: Clarifying the CIE Erythema Action Spectrum, Photochem. Photobiol.,
87, 483–486, https://doi.org/10.1111/j.1751-1097.2010.00871.x, 2011. a
WHO: Global Solar UV Index: A Practical Guide, A joint recommendation of the
World Health Organization, World Meteorological Organization, United Nations
Environment Programme, and the International Commission on Non-Ionizing
Radiation Protection, ISBN: 92-4-159007-6, 2002. a
Wild, O., Zhu, X., and Prather, M. J.: Fast-J: Accurate simulation of in- and
below-cloud photolysis in tropospheric chemical models, J. Atmos. Chem., 37,
245–282, https://doi.org/10.1023/A:1006415919030, 2000. a
Yeo, K. L., Ball, W. T., Krivova, N. A., Solanki, S. K., Unruh, Y. C., and
Morrill, J.: UV solar irradiance in observations and the NRLSSI and SATIRE-S
models, J. Geophys. Res., 120, 6055–6070, https://doi.org/10.1002/2015JA021277, 2015. a
Zadra, A., McTaggart-Cowan, R., Vaillancourt, P. A., Roch, M., Bélair,
S., and Leduc, A.-M.: Evaluation of tropical cyclones in the Canadian Global
Modeling System: Sensitivity to moist process parameterization, Mon. Weather
Rev., 142, 1197–1220, https://doi.org/10.1175/MWR-D-13-00124.1, 2014a. a
Zadra, A., Antonopoulos, S., Archambault, B., Beaulne, A., Bois, N., Buehner,
M., Giguère, A., Marcoux, J., Petrucci, F., Poulin, L., Reszka, M.,
Robinson, T., St-James, J., and Rahill, A.: Improvements to the Global
Deterministic Prediction system (GDPS) (from version 2.2.2 to 3.0.0), and
related changes to the Regional Deterministic Prediction System (RDPS) (from
version 3.0.0 to 3.1.0), Canadian Meteorological Centre, Tech. Note, 88 pp.,
available at:
http://collaboration.cmc.ec.gc.ca/cmc/CMOI/product_guide/docs/lib/op_systems/doc_opchanges/technote_gdps300_20130213_e.pdf,
2014b. a
Zepp, R, G., Callaghan, T. V., and Erickson, D. J.: Effects of enhanced solar
ultraviolet radiation on biogeochemical cycles, J. Photochem. Photobiol., 46,
69–82, https://doi.org/10.1016/S1011-1344(98)00186-9, 1998. a
Short summary
To reduce computational costs, ECCC's new method to calculate the UV Index involves scaling and weighting the irradiance contribution of four low-res UV broadbands currently produced by the GEM forecast model. A high-res irradiance spectrum was produced using Cloud-J to create simulated GEM broadbands to calibrate the original GEM broadbands. The scaled GEM broadbands are then weighted accordingly so that the resultant UV Index field emulates the high-res UV Index field calculated from Cloud-J.
To reduce computational costs, ECCC's new method to calculate the UV Index involves scaling and...