Articles | Volume 11, issue 3
Geosci. Model Dev., 11, 1093–1113, 2018
https://doi.org/10.5194/gmd-11-1093-2018
Geosci. Model Dev., 11, 1093–1113, 2018
https://doi.org/10.5194/gmd-11-1093-2018

Development and technical paper 27 Mar 2018

Development and technical paper | 27 Mar 2018

Optimizing UV Index determination from broadband irradiances

Keith A. Tereszchuk et al.

Related authors

Retrieval and validation of carbon dioxide, methane and water vapor for the Canary Islands IR-laser occultation experiment
V. Proschek, G. Kirchengast, S. Schweitzer, J. S. A. Brooke, P. F. Bernath, C. B. Thomas, J.-G. Wang, K. A. Tereszchuk, G. González Abad, R. J. Hargreaves, C. A. Beale, J. J. Harrison, P. A. Martin, V. L. Kasyutich, C. Gerbig, O. Kolle, and A. Loescher
Atmos. Meas. Tech., 8, 3315–3336, https://doi.org/10.5194/amt-8-3315-2015,https://doi.org/10.5194/amt-8-3315-2015, 2015
Investigation of CO, C2H6 and aerosols in a boreal fire plume over eastern Canada during BORTAS 2011 using ground- and satellite-based observations and model simulations
D. Griffin, K. A. Walker, J. E. Franklin, M. Parrington, C. Whaley, J. Hopper, J. R. Drummond, P. I. Palmer, K. Strong, T. J. Duck, I. Abboud, P. F. Bernath, C. Clerbaux, P.-F. Coheur, K. R. Curry, L. Dan, E. Hyer, J. Kliever, G. Lesins, M. Maurice, A. Saha, K. Tereszchuk, and D. Weaver
Atmos. Chem. Phys., 13, 10227–10241, https://doi.org/10.5194/acp-13-10227-2013,https://doi.org/10.5194/acp-13-10227-2013, 2013
Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: design, execution and science overview
P. I. Palmer, M. Parrington, J. D. Lee, A. C. Lewis, A. R. Rickard, P. F. Bernath, T. J. Duck, D. L. Waugh, D. W. Tarasick, S. Andrews, E. Aruffo, L. J. Bailey, E. Barrett, S. J.-B. Bauguitte, K. R. Curry, P. Di Carlo, L. Chisholm, L. Dan, G. Forster, J. E. Franklin, M. D. Gibson, D. Griffin, D. Helmig, J. R. Hopkins, J. T. Hopper, M. E. Jenkin, D. Kindred, J. Kliever, M. Le Breton, S. Matthiesen, M. Maurice, S. Moller, D. P. Moore, D. E. Oram, S. J. O'Shea, R. C. Owen, C. M. L. S. Pagniello, S. Pawson, C. J. Percival, J. R. Pierce, S. Punjabi, R. M. Purvis, J. J. Remedios, K. M. Rotermund, K. M. Sakamoto, A. M. da Silva, K. B. Strawbridge, K. Strong, J. Taylor, R. Trigwell, K. A. Tereszchuk, K. A. Walker, D. Weaver, C. Whaley, and J. C. Young
Atmos. Chem. Phys., 13, 6239–6261, https://doi.org/10.5194/acp-13-6239-2013,https://doi.org/10.5194/acp-13-6239-2013, 2013
Observations of peroxyacetyl nitrate (PAN) in the upper troposphere by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS)
K. A. Tereszchuk, D. P. Moore, J. J. Harrison, C. D. Boone, M. Park, J. J. Remedios, W. J. Randel, and P. F. Bernath
Atmos. Chem. Phys., 13, 5601–5613, https://doi.org/10.5194/acp-13-5601-2013,https://doi.org/10.5194/acp-13-5601-2013, 2013
ACE-FTS observations of pyrogenic trace species in boreal biomass burning plumes during BORTAS
K. A. Tereszchuk, G. González Abad, C. Clerbaux, J. Hadji-Lazaro, D. Hurtmans, P.-F. Coheur, and P. F. Bernath
Atmos. Chem. Phys., 13, 4529–4541, https://doi.org/10.5194/acp-13-4529-2013,https://doi.org/10.5194/acp-13-4529-2013, 2013

Related subject area

Atmospheric sciences
A comparative study of two-way and offline coupled WRF v3.4 and CMAQ v5.0.2 over the contiguous US: performance evaluation and impacts of chemistry–meteorology feedbacks on air quality
Kai Wang, Yang Zhang, Shaocai Yu, David C. Wong, Jonathan Pleim, Rohit Mathur, James T. Kelly, and Michelle Bell
Geosci. Model Dev., 14, 7189–7221, https://doi.org/10.5194/gmd-14-7189-2021,https://doi.org/10.5194/gmd-14-7189-2021, 2021
Short summary
Black carbon modeling in urban areas: investigating the influence of resuspension and non-exhaust emissions in streets using the Street-in-Grid model for inert particles (SinG-inert)
Lya Lugon, Jérémy Vigneron, Christophe Debert, Olivier Chrétien, and Karine Sartelet
Geosci. Model Dev., 14, 7001–7019, https://doi.org/10.5194/gmd-14-7001-2021,https://doi.org/10.5194/gmd-14-7001-2021, 2021
Short summary
Evaluation of global EMEP MSC-W (rv4.34) WRF (v3.9.1.1) model surface concentrations and wet deposition of reactive N and S with measurements
Yao Ge, Mathew R. Heal, David S. Stevenson, Peter Wind, and Massimo Vieno
Geosci. Model Dev., 14, 7021–7046, https://doi.org/10.5194/gmd-14-7021-2021,https://doi.org/10.5194/gmd-14-7021-2021, 2021
Short summary
The CHIMERE v2020r1 online chemistry-transport model
Laurent Menut, Bertrand Bessagnet, Régis Briant, Arineh Cholakian, Florian Couvidat, Sylvain Mailler, Romain Pennel, Guillaume Siour, Paolo Tuccella, Solène Turquety, and Myrto Valari
Geosci. Model Dev., 14, 6781–6811, https://doi.org/10.5194/gmd-14-6781-2021,https://doi.org/10.5194/gmd-14-6781-2021, 2021
Short summary
Verification of boundary layer wind patterns in COSMO-REA2 using clear-air radar echoes
Sebastian Buschow and Petra Friederichs
Geosci. Model Dev., 14, 6765–6780, https://doi.org/10.5194/gmd-14-6765-2021,https://doi.org/10.5194/gmd-14-6765-2021, 2021
Short summary

Cited articles

Allaart, M., van Weele, M., Fortuin, P., and Kelder, H.: An empirical model to predict the UV-index based on solar zenith angles and total ozone, Meteorol. Appl., 11, 59–64, https://doi.org/10.1017/S1350482703001130, 2004. a
Bian, H. and Prather, M. J.: Fast-J2: Accurate Simulation of Stratospheric Photolysis in Global Chemical Models, J. Atmos. Chem., 41, 281–296, https://doi.org/10.1023/A:1014980619462, 2002. a
Burrows, W. R., Vallée, M., Wardle, D. I., Kerr, J. B., Wilson, L. J., and Tarasick, D. W.: The Canadian operational procedure for forecasting total ozone and UV radiation, Meteorol. Appl., 1, 247–265, https://doi.org/10.1002/met.5060010307, 1994. a
Burrows, J. P., Richter, A., Dehn, A., Deters, B., Himmelmann, S., Voigt, S., and Orphal J.: Atmospheric remote-sensing reference data from GOME 2. Temperature-dependent absorption cross-sections of O3 in the 231–794 nm range, J. Quant. Spectrosc. Ra., 61, 509–517, https://doi.org/10.1016/S0022-4073(98)00037-5, 1999. a
Download
Short summary
To reduce computational costs, ECCC's new method to calculate the UV Index involves scaling and weighting the irradiance contribution of four low-res UV broadbands currently produced by the GEM forecast model. A high-res irradiance spectrum was produced using Cloud-J to create simulated GEM broadbands to calibrate the original GEM broadbands. The scaled GEM broadbands are then weighted accordingly so that the resultant UV Index field emulates the high-res UV Index field calculated from Cloud-J.