Articles | Volume 11, issue 3
https://doi.org/10.5194/gmd-11-1093-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-11-1093-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Optimizing UV Index determination from broadband irradiances
Keith A. Tereszchuk
CORRESPONDING AUTHOR
Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
Yves J. Rochon
CORRESPONDING AUTHOR
Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
Chris A. McLinden
Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
Paul A. Vaillancourt
Meteorological Research Division, Environment and Climate Change Canada, Dorval, Quebec, Canada
Related authors
V. Proschek, G. Kirchengast, S. Schweitzer, J. S. A. Brooke, P. F. Bernath, C. B. Thomas, J.-G. Wang, K. A. Tereszchuk, G. González Abad, R. J. Hargreaves, C. A. Beale, J. J. Harrison, P. A. Martin, V. L. Kasyutich, C. Gerbig, O. Kolle, and A. Loescher
Atmos. Meas. Tech., 8, 3315–3336, https://doi.org/10.5194/amt-8-3315-2015, https://doi.org/10.5194/amt-8-3315-2015, 2015
D. Griffin, K. A. Walker, J. E. Franklin, M. Parrington, C. Whaley, J. Hopper, J. R. Drummond, P. I. Palmer, K. Strong, T. J. Duck, I. Abboud, P. F. Bernath, C. Clerbaux, P.-F. Coheur, K. R. Curry, L. Dan, E. Hyer, J. Kliever, G. Lesins, M. Maurice, A. Saha, K. Tereszchuk, and D. Weaver
Atmos. Chem. Phys., 13, 10227–10241, https://doi.org/10.5194/acp-13-10227-2013, https://doi.org/10.5194/acp-13-10227-2013, 2013
P. I. Palmer, M. Parrington, J. D. Lee, A. C. Lewis, A. R. Rickard, P. F. Bernath, T. J. Duck, D. L. Waugh, D. W. Tarasick, S. Andrews, E. Aruffo, L. J. Bailey, E. Barrett, S. J.-B. Bauguitte, K. R. Curry, P. Di Carlo, L. Chisholm, L. Dan, G. Forster, J. E. Franklin, M. D. Gibson, D. Griffin, D. Helmig, J. R. Hopkins, J. T. Hopper, M. E. Jenkin, D. Kindred, J. Kliever, M. Le Breton, S. Matthiesen, M. Maurice, S. Moller, D. P. Moore, D. E. Oram, S. J. O'Shea, R. C. Owen, C. M. L. S. Pagniello, S. Pawson, C. J. Percival, J. R. Pierce, S. Punjabi, R. M. Purvis, J. J. Remedios, K. M. Rotermund, K. M. Sakamoto, A. M. da Silva, K. B. Strawbridge, K. Strong, J. Taylor, R. Trigwell, K. A. Tereszchuk, K. A. Walker, D. Weaver, C. Whaley, and J. C. Young
Atmos. Chem. Phys., 13, 6239–6261, https://doi.org/10.5194/acp-13-6239-2013, https://doi.org/10.5194/acp-13-6239-2013, 2013
K. A. Tereszchuk, D. P. Moore, J. J. Harrison, C. D. Boone, M. Park, J. J. Remedios, W. J. Randel, and P. F. Bernath
Atmos. Chem. Phys., 13, 5601–5613, https://doi.org/10.5194/acp-13-5601-2013, https://doi.org/10.5194/acp-13-5601-2013, 2013
K. A. Tereszchuk, G. González Abad, C. Clerbaux, J. Hadji-Lazaro, D. Hurtmans, P.-F. Coheur, and P. F. Bernath
Atmos. Chem. Phys., 13, 4529–4541, https://doi.org/10.5194/acp-13-4529-2013, https://doi.org/10.5194/acp-13-4529-2013, 2013
Chris McLinden, Debora Griffin, Vitali Fioletov, Junhua Zhang, Enrico Dammers, Cristen Adams, Mallory Loria, Nicolay Krotkov, and Lok Lamsal
EGUsphere, https://doi.org/10.5194/egusphere-2024-2856, https://doi.org/10.5194/egusphere-2024-2856, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The Ozone Monitoring Instrument (OMI) was used to understand the evolution of NOx emissions from the Canadian oil sands. OMI NO2 combined with winds and reported stack emissions, found emissions from the heavy-hauler mine fleet increased by about 20 % since 2005, whereas the total oil sands mined nearly doubled. This difference is a result of emissions standards limiting NOx emissions becoming more stringent over this period confirming the efficacy of the policy enacting these standards.
Can Li, Nickolay A. Krotkov, Joanna Joiner, Vitali Fioletov, Chris McLinden, Debora Griffin, Peter J. T. Leonard, Simon Carn, Colin Seftor, and Alexander Vasilkov
Earth Syst. Sci. Data, 16, 4291–4309, https://doi.org/10.5194/essd-16-4291-2024, https://doi.org/10.5194/essd-16-4291-2024, 2024
Short summary
Short summary
Sulfur dioxide (SO2), a poisonous gas from human activities and volcanoes, causes air pollution, acid rain, and changes to climate and the ozone layer. Satellites have been used to monitor SO2 globally, including remote areas. Here we describe a new satellite SO2 dataset from the OMPS instrument that flies on the N20 satellite. Results show that the new dataset agrees well with the existing ones from other satellites and can help to continue the global monitoring of SO2 from space.
Debora Griffin, Jack Chen, Kerry Anderson, Paul Makar, Chris A. McLinden, Enrico Dammers, and Andre Fogal
Atmos. Chem. Phys., 24, 10159–10186, https://doi.org/10.5194/acp-24-10159-2024, https://doi.org/10.5194/acp-24-10159-2024, 2024
Short summary
Short summary
Satellite-derived CO emissions provide new insights into the understanding of global CO emission rates from wildfires. We use TROPOMI satellite data to create a global inventory database of wildfire CO emissions. These satellite-derived wildfire emissions are used for the evaluation and improvement of existing fire emission inventories and to examine how the wildfire CO emissions have changed over the past 2 decades.
Vitali Fioletov, Chris A. McLinden, Debora Griffin, Xiaoyi Zhao, and Henk Eskes
EGUsphere, https://doi.org/10.5194/egusphere-2024-1991, https://doi.org/10.5194/egusphere-2024-1991, 2024
Short summary
Short summary
Satellite data were used to estimate urban per capita emissions for 261 major cities worldwide. Three components in tropospheric NO2 data: background NO2, NO2 from urban sources, and from industrial point sources were isolated and then each of these components was analyzed separately. The largest per capita emissions were found at the Middle East and the smallest were in India and South Africa. Urban weekend emissions are 20 %–50 % less than workday emissions for all regions except China.
Enrico Dammers, Janot Tokaya, Christian Mielke, Kevin Hausmann, Debora Griffin, Chris McLinden, Henk Eskes, and Renske Timmermans
Geosci. Model Dev., 17, 4983–5007, https://doi.org/10.5194/gmd-17-4983-2024, https://doi.org/10.5194/gmd-17-4983-2024, 2024
Short summary
Short summary
Nitrogen dioxide (NOx) is produced by sources such as industry and traffic and is directly linked to negative impacts on health and the environment. The current construction of emission inventories to keep track of NOx emissions is slow and time-consuming. Satellite measurements provide a way to quickly and independently estimate emissions. In this study, we apply a consistent methodology to derive NOx emissions over Germany and illustrate the value of having such a method for fast projections.
Xiaoyi Zhao, Vitali Fioletov, Debora Griffin, Chris McLinden, Ralf Staebler, Cristian Mihele, Kevin Strawbridge, Jonathan Davies, Ihab Abboud, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, and Robert Swap
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-27, https://doi.org/10.5194/amt-2024-27, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This study explores differences between remote sensing and in situ instruments in terms of their vertical, horizontal, and temporal sampling differences. Understanding and resolving these differences are critical for future analyses linking satellite, ground-based remote sensing, and in situ observations in air quality monitoring. It shows the meteorological conditions (wind directions, speed, and boundary layer conditions) will strongly affect the agreement between the two measurements.
Lukas Fehr, Chris McLinden, Debora Griffin, Daniel Zawada, Doug Degenstein, and Adam Bourassa
Geosci. Model Dev., 16, 7491–7507, https://doi.org/10.5194/gmd-16-7491-2023, https://doi.org/10.5194/gmd-16-7491-2023, 2023
Short summary
Short summary
This work highlights upgrades to SASKTRAN, a model that simulates sunlight interacting with the atmosphere to help measure trace gases. The upgrades were verified by detailed comparisons between different numerical methods. A case study was performed using SASKTRAN’s multidimensional capabilities, which found that ignoring horizontal variation in the atmosphere (a common practice in the field) can introduce non-negligible errors where there is snow or high pollution.
Vitali E. Fioletov, Chris A. McLinden, Debora Griffin, Nickolay A. Krotkov, Can Li, Joanna Joiner, Nicolas Theys, and Simon Carn
Atmos. Meas. Tech., 16, 5575–5592, https://doi.org/10.5194/amt-16-5575-2023, https://doi.org/10.5194/amt-16-5575-2023, 2023
Short summary
Short summary
Snow-covered terrain, with its high reflectance in the UV, typically enhances satellite sensitivity to boundary layer pollution. However, a significant fraction of high-quality cloud-free measurements over snow is currently excluded from analyses. In this study, we investigated how satellite SO2 measurements over snow-covered surfaces can be used to improve estimations of annual SO2 emissions.
Vitali E. Fioletov, Chris A. McLinden, Debora Griffin, Ihab Abboud, Nickolay Krotkov, Peter J. T. Leonard, Can Li, Joanna Joiner, Nicolas Theys, and Simon Carn
Earth Syst. Sci. Data, 15, 75–93, https://doi.org/10.5194/essd-15-75-2023, https://doi.org/10.5194/essd-15-75-2023, 2023
Short summary
Short summary
Sulfur dioxide (SO2) measurements from three satellite instruments were used to update and extend the previously developed global catalogue of large SO2 emission sources. This version 2 of the global catalogue covers the period of 2005–2021 and includes a total of 759 continuously emitting point sources. The catalogue data show an approximate 50 % decline in global SO2 emissions between 2005 and 2021, although emissions were relatively stable during the last 3 years.
Can Li, Joanna Joiner, Fei Liu, Nickolay A. Krotkov, Vitali Fioletov, and Chris McLinden
Atmos. Meas. Tech., 15, 5497–5514, https://doi.org/10.5194/amt-15-5497-2022, https://doi.org/10.5194/amt-15-5497-2022, 2022
Short summary
Short summary
Satellite observations provide information on the sources of SO2, an important pollutant that affects both air quality and climate. However, these observations suffer from relatively poor data quality due to weak signals of SO2. Here, we use a machine learning technique to analyze satellite SO2 observations in order to reduce the noise and artifacts over relatively clean areas while keeping the signals near pollution sources. This leads to significant improvement in satellite SO2 data.
Vitali Fioletov, Chris A. McLinden, Debora Griffin, Nickolay Krotkov, Fei Liu, and Henk Eskes
Atmos. Chem. Phys., 22, 4201–4236, https://doi.org/10.5194/acp-22-4201-2022, https://doi.org/10.5194/acp-22-4201-2022, 2022
Short summary
Short summary
The COVID-19 lockdown had a large impact on anthropogenic emissions and particularly on nitrogen dioxide (NO2). A new method of isolation of background, urban, and industrial components in NO2 is applied to estimate the lockdown impact on each of them. From 16 March to 15 June 2020, urban NO2 declined by −18 % to −28 % in most regions of the world, while background NO2 typically declined by less than −10 %.
Mahtab Majdzadeh, Craig A. Stroud, Christopher Sioris, Paul A. Makar, Ayodeji Akingunola, Chris McLinden, Xiaoyi Zhao, Michael D. Moran, Ihab Abboud, and Jack Chen
Geosci. Model Dev., 15, 219–249, https://doi.org/10.5194/gmd-15-219-2022, https://doi.org/10.5194/gmd-15-219-2022, 2022
Short summary
Short summary
A new lookup table for aerosol optical properties based on a Mie scattering code was calculated and adopted within an improved version of the photolysis module in the GEM-MACH in-line chemical transport model. The modified version of the photolysis module makes use of online interactive aerosol feedback and applies core-shell parameterizations to the black carbon absorption efficiency based on Bond et al. (2006) to the size bins with black carbon mass fraction of less than 40 %.
Debora Griffin, Chris A. McLinden, Enrico Dammers, Cristen Adams, Chelsea E. Stockwell, Carsten Warneke, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Kyle J. Zarzana, Jake P. Rowe, Rainer Volkamer, Christoph Knote, Natalie Kille, Theodore K. Koenig, Christopher F. Lee, Drew Rollins, Pamela S. Rickly, Jack Chen, Lukas Fehr, Adam Bourassa, Doug Degenstein, Katherine Hayden, Cristian Mihele, Sumi N. Wren, John Liggio, Ayodeji Akingunola, and Paul Makar
Atmos. Meas. Tech., 14, 7929–7957, https://doi.org/10.5194/amt-14-7929-2021, https://doi.org/10.5194/amt-14-7929-2021, 2021
Short summary
Short summary
Satellite-derived NOx emissions from biomass burning are estimated with TROPOMI observations. Two common emission estimation methods are applied, and sensitivity tests with model output were performed to determine the accuracy of these methods. The effect of smoke aerosols on TROPOMI NO2 columns is estimated and compared to aircraft observations from four different aircraft campaigns measuring biomass burning plumes in 2018 and 2019 in North America.
Nicolas Theys, Vitali Fioletov, Can Li, Isabelle De Smedt, Christophe Lerot, Chris McLinden, Nickolay Krotkov, Debora Griffin, Lieven Clarisse, Pascal Hedelt, Diego Loyola, Thomas Wagner, Vinod Kumar, Antje Innes, Roberto Ribas, François Hendrick, Jonas Vlietinck, Hugues Brenot, and Michel Van Roozendael
Atmos. Chem. Phys., 21, 16727–16744, https://doi.org/10.5194/acp-21-16727-2021, https://doi.org/10.5194/acp-21-16727-2021, 2021
Short summary
Short summary
We present a new algorithm to retrieve sulfur dioxide from space UV measurements. We apply the technique to high-resolution TROPOMI measurements and demonstrate the high sensitivity of the approach to weak SO2 emissions worldwide with an unprecedented limit of detection of 8 kt yr−1. This result has broad implications for atmospheric science studies dealing with improving emission inventories and identifying and quantifying missing sources, in the context of air quality and climate.
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki T. Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis E. Remsberg, Alexei Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan A. Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, https://doi.org/10.5194/essd-13-1855-2021, 2021
Short summary
Short summary
An overview of the SPARC Data Initiative is presented, to date the most comprehensive assessment of stratospheric composition measurements spanning 1979–2018. Measurements of 26 chemical constituents obtained from an international suite of space-based limb sounders were compiled into vertically resolved, zonal monthly mean time series. The quality and consistency of these gridded datasets are then evaluated using a climatological validation approach and a range of diagnostics.
Xiaoyi Zhao, Vitali Fioletov, Michael Brohart, Volodya Savastiouk, Ihab Abboud, Akira Ogyu, Jonathan Davies, Reno Sit, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, Moritz Müller, Debora Griffin, and Chris McLinden
Atmos. Meas. Tech., 14, 2261–2283, https://doi.org/10.5194/amt-14-2261-2021, https://doi.org/10.5194/amt-14-2261-2021, 2021
Short summary
Short summary
The Brewer spectrophotometer is one of the main instruments for measurements of atmospheric total column ozone. The global Brewer network largely relies on the world reference instruments (the Brewer triad) operated by Environment and Climate Change Canada since the early 1980s. This study provides an updated assessment (1999–2019) of the reference instrument performance, in terms of random uncertainties and long-term stability.
Vitali Fioletov, Chris A. McLinden, Debora Griffin, Nicolas Theys, Diego G. Loyola, Pascal Hedelt, Nickolay A. Krotkov, and Can Li
Atmos. Chem. Phys., 20, 5591–5607, https://doi.org/10.5194/acp-20-5591-2020, https://doi.org/10.5194/acp-20-5591-2020, 2020
Xiaoyi Zhao, Debora Griffin, Vitali Fioletov, Chris McLinden, Alexander Cede, Martin Tiefengraber, Moritz Müller, Kristof Bognar, Kimberly Strong, Folkert Boersma, Henk Eskes, Jonathan Davies, Akira Ogyu, and Sum Chi Lee
Atmos. Meas. Tech., 13, 2131–2159, https://doi.org/10.5194/amt-13-2131-2020, https://doi.org/10.5194/amt-13-2131-2020, 2020
Short summary
Short summary
Pandora NO2 measurements made at three sites located in the Toronto area are used to evaluate the TROPOspheric Monitoring Instrument (TROPOMI) NO2 data products, including standard NO2 and research data developed using a high-resolution regional air quality forecast model. TROPOMI pixels located upwind and downwind from the Pandora sites were analyzed by a new wind-based validation method, which revealed the spatial patterns of local and transported emissions and regional air quality changes.
Debora Griffin, Christopher Sioris, Jack Chen, Nolan Dickson, Andrew Kovachik, Martin de Graaf, Swadhin Nanda, Pepijn Veefkind, Enrico Dammers, Chris A. McLinden, Paul Makar, and Ayodeji Akingunola
Atmos. Meas. Tech., 13, 1427–1445, https://doi.org/10.5194/amt-13-1427-2020, https://doi.org/10.5194/amt-13-1427-2020, 2020
Short summary
Short summary
This study looks into validating the aerosol layer height product from the recently launched TROPOspheric Monitoring Instrument (TROPOMI) for forest fire plume through comparisons with two other satellite products, and interpreting differences due to the individual measurement techniques. These satellite observations are compared to predicted plume heights from Environment and Climate Change's air quality forecast model.
Zoë Y. W. Davis, Udo Frieß, Kevin B. Strawbridge, Monika Aggarwaal, Sabour Baray, Elijah G. Schnitzler, Akshay Lobo, Vitali E. Fioletov, Ihab Abboud, Chris A. McLinden, Jim Whiteway, Megan D. Willis, Alex K. Y. Lee, Jeff Brook, Jason Olfert, Jason O'Brien, Ralf Staebler, Hans D. Osthoff, Cristian Mihele, and Robert McLaren
Atmos. Meas. Tech., 13, 1129–1155, https://doi.org/10.5194/amt-13-1129-2020, https://doi.org/10.5194/amt-13-1129-2020, 2020
Short summary
Short summary
Here, we evaluate a ground-based remote sensing method (MAX-DOAS) for measuring total pollutant loading and vertical profiles of pollution in the lower atmosphere by comparing our method to a variety of other measurement methods (lidar, sunphotometer, active DOAS, and aircraft measurements). Measurements were made in the Athabasca Oil Sands Region in Alberta, Canada. The complex dataset provided a rare opportunity to evaluate the performance of MAX-DOAS under varying atmospheric conditions.
Mark W. Shephard, Enrico Dammers, Karen E. Cady-Pereira, Shailesh K. Kharol, Jesse Thompson, Yonatan Gainariu-Matz, Junhua Zhang, Chris A. McLinden, Andrew Kovachik, Michael Moran, Shabtai Bittman, Christopher E. Sioris, Debora Griffin, Matthew J. Alvarado, Chantelle Lonsdale, Verica Savic-Jovcic, and Qiong Zheng
Atmos. Chem. Phys., 20, 2277–2302, https://doi.org/10.5194/acp-20-2277-2020, https://doi.org/10.5194/acp-20-2277-2020, 2020
Short summary
Short summary
Presented is a description and survey demonstrating the capabilities of the CrIS ammonia product for monitoring, air quality forecast model evaluation, dry deposition estimates, and emission estimates of an agricultural hotspot.
Fei Liu, Bryan N. Duncan, Nickolay A. Krotkov, Lok N. Lamsal, Steffen Beirle, Debora Griffin, Chris A. McLinden, Daniel L. Goldberg, and Zifeng Lu
Atmos. Chem. Phys., 20, 99–116, https://doi.org/10.5194/acp-20-99-2020, https://doi.org/10.5194/acp-20-99-2020, 2020
Short summary
Short summary
We present a novel method to infer CO2 emissions from individual power plants, based on satellite observations of co-emitted NO2. We find that the CO2 emissions estimated by our satellite-based method during 2005–2017 are in reasonable agreement with the CEMS measurements for US power plants. The broader implication of our methodology is that it has the potential to provide an additional constraint on CO2 emissions from power plants in regions of the world without reliable emissions accounting.
Zoe Y. W. Davis, Sabour Baray, Chris A. McLinden, Aida Khanbabakhani, William Fujs, Csilla Csukat, Jerzy Debosz, and Robert McLaren
Atmos. Chem. Phys., 19, 13871–13889, https://doi.org/10.5194/acp-19-13871-2019, https://doi.org/10.5194/acp-19-13871-2019, 2019
Short summary
Short summary
In this paper, we describe the use of mobile vehicle-mounted instrumentation to measure pollutants both at the surface and overhead (via a telescope) that are coming from a source. This allows us to calculate the total emissions from the source, in this case the city of Sarnia, ON, including both industrial emissions and emissions from the city populace. In this paper, we talk about improvements to the technique in the form of extra instrumentation in the vehicle.
Katerina Garane, Maria-Elissavet Koukouli, Tijl Verhoelst, Christophe Lerot, Klaus-Peter Heue, Vitali Fioletov, Dimitrios Balis, Alkiviadis Bais, Ariane Bazureau, Angelika Dehn, Florence Goutail, Jose Granville, Debora Griffin, Daan Hubert, Arno Keppens, Jean-Christopher Lambert, Diego Loyola, Chris McLinden, Andrea Pazmino, Jean-Pierre Pommereau, Alberto Redondas, Fabian Romahn, Pieter Valks, Michel Van Roozendael, Jian Xu, Claus Zehner, Christos Zerefos, and Walter Zimmer
Atmos. Meas. Tech., 12, 5263–5287, https://doi.org/10.5194/amt-12-5263-2019, https://doi.org/10.5194/amt-12-5263-2019, 2019
Short summary
Short summary
The Sentinel-5 Precursor TROPOMI near real time (NRTI) and offline (OFFL) total ozone column (TOC) products are validated against direct-sun and twilight zenith-sky ground-based TOC measurements and other already known spaceborne sensors. The results show that the TROPOMI TOC measurements are in very good agreement with the ground-based measurements and satellite sensor measurements and that they are well within the product requirements.
Enrico Dammers, Chris A. McLinden, Debora Griffin, Mark W. Shephard, Shelley Van Der Graaf, Erik Lutsch, Martijn Schaap, Yonatan Gainairu-Matz, Vitali Fioletov, Martin Van Damme, Simon Whitburn, Lieven Clarisse, Karen Cady-Pereira, Cathy Clerbaux, Pierre Francois Coheur, and Jan Willem Erisman
Atmos. Chem. Phys., 19, 12261–12293, https://doi.org/10.5194/acp-19-12261-2019, https://doi.org/10.5194/acp-19-12261-2019, 2019
Short summary
Short summary
Ammonia is an essential molecule in the environment, but at its current levels it is unsustainable. However, the emissions are highly uncertain. We explore the use of satellites to estimate the ammonia lifetime and emissions around point sources to help improve the budget. The same method applied to different satellite instruments shows consistent results. Comparison to the emission inventories shows that those are underestimating emissions of point sources by on average a factor of 2.5.
Xiaoyi Zhao, Debora Griffin, Vitali Fioletov, Chris McLinden, Jonathan Davies, Akira Ogyu, Sum Chi Lee, Alexandru Lupu, Michael D. Moran, Alexander Cede, Martin Tiefengraber, and Moritz Müller
Atmos. Chem. Phys., 19, 10619–10642, https://doi.org/10.5194/acp-19-10619-2019, https://doi.org/10.5194/acp-19-10619-2019, 2019
Short summary
Short summary
New nitrogen dioxide (NO2) retrieval algorithms are developed for Pandora zenith-sky measurements. A column-to-surface conversion look-up table was produced for the Pandora instruments; therefore, quick and practical Pandora-based surface NO2 concentration data can be obtained for air quality monitoring purposes. It is demonstrated that the surface NO2 concentration is controlled not only by the planetary boundary layer height but also by both boundary layer dynamics and photochemistry.
Yves J. Rochon, Michael Sitwell, and Young-Min Cho
Atmos. Chem. Phys., 19, 9431–9451, https://doi.org/10.5194/acp-19-9431-2019, https://doi.org/10.5194/acp-19-9431-2019, 2019
Short summary
Short summary
This paper describes adaptable methodologies and results of bias correction applied for the assimilation of total column ozone data from different satellite instruments. The results demonstrate the capability of ensuring short-term forecast biases of total column ozone to be typically within 1 % of a reference for latitudinal ranges where measurements are available. The bias estimation and correction software can be utilized for measurements of other constituents.
Cristen Adams, Chris A. McLinden, Mark W. Shephard, Nolan Dickson, Enrico Dammers, Jack Chen, Paul Makar, Karen E. Cady-Pereira, Naomi Tam, Shailesh K. Kharol, Lok N. Lamsal, and Nickolay A. Krotkov
Atmos. Chem. Phys., 19, 2577–2599, https://doi.org/10.5194/acp-19-2577-2019, https://doi.org/10.5194/acp-19-2577-2019, 2019
Short summary
Short summary
We estimated how much carbon monoxide, ammonia, and nitrogen oxides were emitted in the smoke from the Fort McMurray Horse River wildfire using satellite data and air quality models. The fire emitted amounts of carbon monoxide that were similar to anthropogenic (human-caused) emissions for all of Alberta over a full year. We also estimated large amounts of ammonia and nitrogen oxides emitted from the fire. These results can be used to evaluate the performance of air quality forecasting models.
Fei Liu, Sungyeon Choi, Can Li, Vitali E. Fioletov, Chris A. McLinden, Joanna Joiner, Nickolay A. Krotkov, Huisheng Bian, Greet Janssens-Maenhout, Anton S. Darmenov, and Arlindo M. da Silva
Atmos. Chem. Phys., 18, 16571–16586, https://doi.org/10.5194/acp-18-16571-2018, https://doi.org/10.5194/acp-18-16571-2018, 2018
Short summary
Short summary
Sulfur dioxide measurements from space have been used to detect emissions from large sources. We developed a new emission inventory by combining the satellite-based emission estimates and the conventional bottom-up inventory for smaller sources. The new inventory improves the model agreement with in situ observations and offers the possibility of rapid updates to emissions.
Jeffrey A. Geddes, Randall V. Martin, Eric J. Bucsela, Chris A. McLinden, and Daniel J. M. Cunningham
Atmos. Meas. Tech., 11, 6271–6287, https://doi.org/10.5194/amt-11-6271-2018, https://doi.org/10.5194/amt-11-6271-2018, 2018
Short summary
Short summary
This paper describes an approach for separating the stratospheric and tropospheric contributions in geostationary observations of nitrogen dioxide from the upcoming TEMPO instrument. We find minimal impact of the limited field of observation compared to previous low-Earth-observing systems with global coverage. We find that continued development of low-Earth-orbit retrievals will benefit geostationary data by providing important context outside the field of regard.
Matthew J. Cooper, Randall V. Martin, Alexei I. Lyapustin, and Chris A. McLinden
Atmos. Meas. Tech., 11, 2983–2994, https://doi.org/10.5194/amt-11-2983-2018, https://doi.org/10.5194/amt-11-2983-2018, 2018
Short summary
Short summary
To accurately infer air pollutant concentrations from satellite observations, we must first know the reflectivity of the Earth’s surface. Using a model, we show that satellite observations are better able to observe NO2 near the surface if snow is present. However, knowing when snow is present is difficult due to its variability. We test seven existing snow cover data sets to assess their ability to inform future satellite observations and find that the IMS data set is best suited for this task.
Pieternel F. Levelt, Joanna Joiner, Johanna Tamminen, J. Pepijn Veefkind, Pawan K. Bhartia, Deborah C. Stein Zweers, Bryan N. Duncan, David G. Streets, Henk Eskes, Ronald van der A, Chris McLinden, Vitali Fioletov, Simon Carn, Jos de Laat, Matthew DeLand, Sergey Marchenko, Richard McPeters, Jerald Ziemke, Dejian Fu, Xiong Liu, Kenneth Pickering, Arnoud Apituley, Gonzalo González Abad, Antti Arola, Folkert Boersma, Christopher Chan Miller, Kelly Chance, Martin de Graaf, Janne Hakkarainen, Seppo Hassinen, Iolanda Ialongo, Quintus Kleipool, Nickolay Krotkov, Can Li, Lok Lamsal, Paul Newman, Caroline Nowlan, Raid Suleiman, Lieuwe Gijsbert Tilstra, Omar Torres, Huiqun Wang, and Krzysztof Wargan
Atmos. Chem. Phys., 18, 5699–5745, https://doi.org/10.5194/acp-18-5699-2018, https://doi.org/10.5194/acp-18-5699-2018, 2018
Short summary
Short summary
The aim of this paper is to highlight the many successes of the Ozone Monitoring Instrument (OMI) spanning more than 13 years. Data from OMI have been used in a wide range of applications. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. OMI data continue to be used for new research and applications.
Adam E. Bourassa, Chris Z. Roth, Daniel J. Zawada, Landon A. Rieger, Chris A. McLinden, and Douglas A. Degenstein
Atmos. Meas. Tech., 11, 489–498, https://doi.org/10.5194/amt-11-489-2018, https://doi.org/10.5194/amt-11-489-2018, 2018
Short summary
Short summary
OSIRIS satellite measurements of ozone in the stratosphere are corrected for slowly varying errors. These changes make the OSIRIS data compare better with other satellite measurements over the long term and make an impact on our understanding of the recovery of the ozone layer.
Cristen Adams, Adam E. Bourassa, Chris A. McLinden, Chris E. Sioris, Thomas von Clarmann, Bernd Funke, Landon A. Rieger, and Douglas A. Degenstein
Atmos. Chem. Phys., 17, 8063–8080, https://doi.org/10.5194/acp-17-8063-2017, https://doi.org/10.5194/acp-17-8063-2017, 2017
Short summary
Short summary
We measured the relationship between volcanic aerosol and trace gases in the stratosphere using the OSIRIS and MIPAS satellite instruments between 2002 and 2014. We found that levels of stratospheric NO2 and N2O5 both decreased significantly in the presence of volcanic aerosol. These decreases were consistent with the modeling results.
Shailesh K. Kharol, Chris A. McLinden, Christopher E. Sioris, Mark W. Shephard, Vitali Fioletov, Aaron van Donkelaar, Sajeev Philip, and Randall V. Martin
Atmos. Chem. Phys., 17, 5921–5929, https://doi.org/10.5194/acp-17-5921-2017, https://doi.org/10.5194/acp-17-5921-2017, 2017
Yan Zhang, Can Li, Nickolay A. Krotkov, Joanna Joiner, Vitali Fioletov, and Chris McLinden
Atmos. Meas. Tech., 10, 1495–1509, https://doi.org/10.5194/amt-10-1495-2017, https://doi.org/10.5194/amt-10-1495-2017, 2017
Short summary
Short summary
In this study, we demonstrate a very good consistency of the SO2 retrievals from OMI and OMPS using our state-of-the-art principal component analysis technique. Four full years of OMI and OMPS SO2 retrievals, during 2012–2015 have been analyzed over some of the world’s most polluted regions: eastern China, Mexico, and South Africa. The consistency of retrievals between OMI and OMPS make it possible to continue the long-term global SO2 pollution monitoring.
Christopher E. Sioris, Landon A. Rieger, Nicholas D. Lloyd, Adam E. Bourassa, Chris Z. Roth, Douglas A. Degenstein, Claude Camy-Peyret, Klaus Pfeilsticker, Gwenaël Berthet, Valéry Catoire, Florence Goutail, Jean-Pierre Pommereau, and Chris A. McLinden
Atmos. Meas. Tech., 10, 1155–1168, https://doi.org/10.5194/amt-10-1155-2017, https://doi.org/10.5194/amt-10-1155-2017, 2017
Short summary
Short summary
A new OSIRIS NO2 retrieval algorithm is described and validated using > 40 balloon-based profile measurements. The validation results indicate a slight improvement relative to the existing operational algorithm in terms of the bias versus the balloon data, particularly in the lower stratosphere. The implication is that this new algorithm should replace the operational one. The motivation was to combine spectral fitting and the SaskTRAN radiative transfer model to achieve an improved product.
Christopher E. Sioris, Chris A. McLinden, Mark W. Shephard, Vitali E. Fioletov, and Ihab Abboud
Atmos. Chem. Phys., 17, 1931–1943, https://doi.org/10.5194/acp-17-1931-2017, https://doi.org/10.5194/acp-17-1931-2017, 2017
Short summary
Short summary
The contribution of the oil sands region to the local aerosol optical depth (AOD) is sought. Satellite data are used since they provide spatial coverage over many years. Satellites measure AOD with high correlation and small biases relative to coincident AERONET AODs. Trends are determined using annual mean AODs, and an increasing trend is found near the Shell mines. Spatially variable and high surface albedo is challenging for some sensors. Measuring polarization appears to be an asset.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Chris A. McLinden, Peter F. Bernath, Adam E. Bourassa, John P. Burrows, Doug A. Degenstein, Bernd Funke, Didier Fussen, Gloria L. Manney, C. Thomas McElroy, Donal Murtagh, Cora E. Randall, Piera Raspollini, Alexei Rozanov, James M. Russell III, Makoto Suzuki, Masato Shiotani, Joachim Urban, Thomas von Clarmann, and Joseph M. Zawodny
Atmos. Meas. Tech., 9, 5781–5810, https://doi.org/10.5194/amt-9-5781-2016, https://doi.org/10.5194/amt-9-5781-2016, 2016
Short summary
Short summary
This study validates version 3.5 of the ACE-FTS NOy species data sets by comparing diurnally scaled ACE-FTS data to correlative data from 11 other satellite limb sounders. For all five species examined (NO, NO2, HNO3, N2O5, and ClONO2), there is good agreement between ACE-FTS and the other data sets in various regions of the atmosphere. In these validated regions, these NOy data products can be used for further investigation into the composition, dynamics, and climate of the stratosphere.
Vitali E. Fioletov, Chris A. McLinden, Nickolay Krotkov, Can Li, Joanna Joiner, Nicolas Theys, Simon Carn, and Mike D. Moran
Atmos. Chem. Phys., 16, 11497–11519, https://doi.org/10.5194/acp-16-11497-2016, https://doi.org/10.5194/acp-16-11497-2016, 2016
Short summary
Short summary
We introduce the first space-based catalogue of SO2 emission sources seen by OMI. The inventory contains about 500 sources. They account for about a half of all SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr−1 and not detected by OMI. The sources are grouped by type (volcanoes, power plants, oil- and gas-related sources, and smelters) and country. The catalogue presented herein can be used for verification of available SO2 emission inventories.
Cristen Adams, Elise N. Normand, Chris A. McLinden, Adam E. Bourassa, Nicholas D. Lloyd, Douglas A. Degenstein, Nickolay A. Krotkov, Maria Belmonte Rivas, K. Folkert Boersma, and Henk Eskes
Atmos. Meas. Tech., 9, 4103–4122, https://doi.org/10.5194/amt-9-4103-2016, https://doi.org/10.5194/amt-9-4103-2016, 2016
Short summary
Short summary
A new "OMI-minus-OSIRIS" (OmO) prototype dataset for tropospheric NO2 was created by combining information from the OMI satellite instrument, which is sensitive to NO2 in both the troposphere and stratosphere, with information from the OSIRIS satellite instrument, which measures NO2 in the stratosphere. This paper demonstrates that this approach is feasible and could be applied to future geostationary missions.
Vitali E. Fioletov, Chris A. McLinden, Alexander Cede, Jonathan Davies, Cristian Mihele, Stoyka Netcheva, Shao-Meng Li, and Jason O'Brien
Atmos. Meas. Tech., 9, 2961–2976, https://doi.org/10.5194/amt-9-2961-2016, https://doi.org/10.5194/amt-9-2961-2016, 2016
Nickolay A. Krotkov, Chris A. McLinden, Can Li, Lok N. Lamsal, Edward A. Celarier, Sergey V. Marchenko, William H. Swartz, Eric J. Bucsela, Joanna Joiner, Bryan N. Duncan, K. Folkert Boersma, J. Pepijn Veefkind, Pieternel F. Levelt, Vitali E. Fioletov, Russell R. Dickerson, Hao He, Zifeng Lu, and David G. Streets
Atmos. Chem. Phys., 16, 4605–4629, https://doi.org/10.5194/acp-16-4605-2016, https://doi.org/10.5194/acp-16-4605-2016, 2016
Short summary
Short summary
We examine changes in SO2 and NO2 over the world's most polluted regions during the first decade of Aura OMI observations. Over the eastern US, both NO2 and SO2 levels decreased by 40 % and 80 %, respectively. OMI confirmed large reductions in SO2 over eastern Europe's largest coal power plants. The North China Plain has the world's most severe SO2 pollution, but a decreasing trend been observed since 2011, with a 50 % reduction in 2012–2014. India's SO2 and NO2 levels are growing at a fast pace.
M. W. Shephard, C. A. McLinden, K. E. Cady-Pereira, M. Luo, S. G. Moussa, A. Leithead, J. Liggio, R. M. Staebler, A. Akingunola, P. Makar, P. Lehr, J. Zhang, D. K. Henze, D. B. Millet, J. O. Bash, L. Zhu, K. C. Wells, S. L. Capps, S. Chaliyakunnel, M. Gordon, K. Hayden, J. R. Brook, M. Wolde, and S.-M. Li
Atmos. Meas. Tech., 8, 5189–5211, https://doi.org/10.5194/amt-8-5189-2015, https://doi.org/10.5194/amt-8-5189-2015, 2015
Short summary
Short summary
This study provides direct validations of Tropospheric Emission Spectrometer (TES) satellite retrieved profiles against coincident aircraft profiles of carbon monoxide, ammonia, methanol, and formic acid, all of which are of interest for air quality. The comparisons are performed over the Canadian oil sands region during an intensive field campaign in support of the Joint Canada-Alberta Implementation Plan for the Oil Sands Monitoring (JOSM). Initial model evaluations are also provided.
V. Proschek, G. Kirchengast, S. Schweitzer, J. S. A. Brooke, P. F. Bernath, C. B. Thomas, J.-G. Wang, K. A. Tereszchuk, G. González Abad, R. J. Hargreaves, C. A. Beale, J. J. Harrison, P. A. Martin, V. L. Kasyutich, C. Gerbig, O. Kolle, and A. Loescher
Atmos. Meas. Tech., 8, 3315–3336, https://doi.org/10.5194/amt-8-3315-2015, https://doi.org/10.5194/amt-8-3315-2015, 2015
A. E. Bourassa, D. A. Degenstein, W. J. Randel, J. M. Zawodny, E. Kyrölä, C. A. McLinden, C. E. Sioris, and C. Z. Roth
Atmos. Chem. Phys., 14, 6983–6994, https://doi.org/10.5194/acp-14-6983-2014, https://doi.org/10.5194/acp-14-6983-2014, 2014
C. A. McLinden, V. Fioletov, K. F. Boersma, S. K. Kharol, N. Krotkov, L. Lamsal, P. A. Makar, R. V. Martin, J. P. Veefkind, and K. Yang
Atmos. Chem. Phys., 14, 3637–3656, https://doi.org/10.5194/acp-14-3637-2014, https://doi.org/10.5194/acp-14-3637-2014, 2014
C. E. Sioris, C. A. McLinden, V. E. Fioletov, C. Adams, J. M. Zawodny, A. E. Bourassa, C. Z. Roth, and D. A. Degenstein
Atmos. Chem. Phys., 14, 3479–3496, https://doi.org/10.5194/acp-14-3479-2014, https://doi.org/10.5194/acp-14-3479-2014, 2014
C. Adams, A. E. Bourassa, V. Sofieva, L. Froidevaux, C. A. McLinden, D. Hubert, J.-C. Lambert, C. E. Sioris, and D. A. Degenstein
Atmos. Meas. Tech., 7, 49–64, https://doi.org/10.5194/amt-7-49-2014, https://doi.org/10.5194/amt-7-49-2014, 2014
J. Liu, D. W. Tarasick, V. E. Fioletov, C. McLinden, T. Zhao, S. Gong, C. Sioris, J. J. Jin, G. Liu, and O. Moeini
Atmos. Chem. Phys., 13, 11441–11464, https://doi.org/10.5194/acp-13-11441-2013, https://doi.org/10.5194/acp-13-11441-2013, 2013
D. Griffin, K. A. Walker, J. E. Franklin, M. Parrington, C. Whaley, J. Hopper, J. R. Drummond, P. I. Palmer, K. Strong, T. J. Duck, I. Abboud, P. F. Bernath, C. Clerbaux, P.-F. Coheur, K. R. Curry, L. Dan, E. Hyer, J. Kliever, G. Lesins, M. Maurice, A. Saha, K. Tereszchuk, and D. Weaver
Atmos. Chem. Phys., 13, 10227–10241, https://doi.org/10.5194/acp-13-10227-2013, https://doi.org/10.5194/acp-13-10227-2013, 2013
P. I. Palmer, M. Parrington, J. D. Lee, A. C. Lewis, A. R. Rickard, P. F. Bernath, T. J. Duck, D. L. Waugh, D. W. Tarasick, S. Andrews, E. Aruffo, L. J. Bailey, E. Barrett, S. J.-B. Bauguitte, K. R. Curry, P. Di Carlo, L. Chisholm, L. Dan, G. Forster, J. E. Franklin, M. D. Gibson, D. Griffin, D. Helmig, J. R. Hopkins, J. T. Hopper, M. E. Jenkin, D. Kindred, J. Kliever, M. Le Breton, S. Matthiesen, M. Maurice, S. Moller, D. P. Moore, D. E. Oram, S. J. O'Shea, R. C. Owen, C. M. L. S. Pagniello, S. Pawson, C. J. Percival, J. R. Pierce, S. Punjabi, R. M. Purvis, J. J. Remedios, K. M. Rotermund, K. M. Sakamoto, A. M. da Silva, K. B. Strawbridge, K. Strong, J. Taylor, R. Trigwell, K. A. Tereszchuk, K. A. Walker, D. Weaver, C. Whaley, and J. C. Young
Atmos. Chem. Phys., 13, 6239–6261, https://doi.org/10.5194/acp-13-6239-2013, https://doi.org/10.5194/acp-13-6239-2013, 2013
K. A. Tereszchuk, D. P. Moore, J. J. Harrison, C. D. Boone, M. Park, J. J. Remedios, W. J. Randel, and P. F. Bernath
Atmos. Chem. Phys., 13, 5601–5613, https://doi.org/10.5194/acp-13-5601-2013, https://doi.org/10.5194/acp-13-5601-2013, 2013
C. Adams, A. E. Bourassa, A. F. Bathgate, C. A. McLinden, N. D. Lloyd, C. Z. Roth, E. J. Llewellyn, J. M. Zawodny, D. E. Flittner, G. L. Manney, W. H. Daffer, and D. A. Degenstein
Atmos. Meas. Tech., 6, 1447–1459, https://doi.org/10.5194/amt-6-1447-2013, https://doi.org/10.5194/amt-6-1447-2013, 2013
K. A. Tereszchuk, G. González Abad, C. Clerbaux, J. Hadji-Lazaro, D. Hurtmans, P.-F. Coheur, and P. F. Bernath
Atmos. Chem. Phys., 13, 4529–4541, https://doi.org/10.5194/acp-13-4529-2013, https://doi.org/10.5194/acp-13-4529-2013, 2013
R. A. Stachnik, L. Millán, R. Jarnot, R. Monroe, C. McLinden, S. Kühl, J. Puķīte, M. Shiotani, M. Suzuki, Y. Kasai, F. Goutail, J. P. Pommereau, M. Dorf, and K. Pfeilsticker
Atmos. Chem. Phys., 13, 3307–3319, https://doi.org/10.5194/acp-13-3307-2013, https://doi.org/10.5194/acp-13-3307-2013, 2013
C. Adams, K. Strong, X. Zhao, A. E. Bourassa, W. H. Daffer, D. Degenstein, J. R. Drummond, E. E. Farahani, A. Fraser, N. D. Lloyd, G. L. Manney, C. A. McLinden, M. Rex, C. Roth, S. E. Strahan, K. A. Walker, and I. Wohltmann
Atmos. Chem. Phys., 13, 611–624, https://doi.org/10.5194/acp-13-611-2013, https://doi.org/10.5194/acp-13-611-2013, 2013
Related subject area
Atmospheric sciences
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
Assessment of object-based indices to identify convective organization
The Global Forest Fire Emissions Prediction System version 1.0
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0
Recent improvements and maximum covariance analysis of aerosol and cloud properties in the EC-Earth3-AerChem model
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Orbital-Radar v1.0.0: A tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Impact of ITCZ width on global climate: ITCZ-MIP
Deep-learning-driven simulations of boundary layer clouds over the Southern Great Plains
Mixed-precision computing in the GRIST dynamical core for weather and climate modelling
A conservative immersed boundary method for the multi-physics urban large-eddy simulation model uDALES v2.0
RCEMIP-II: mock-Walker simulations as phase II of the radiative–convective equilibrium model intercomparison project
Objective identification of meteorological fronts and climatologies from ERA-Interim and ERA5
TAMS: a tracking, classifying, and variable-assigning algorithm for mesoscale convective systems in simulated and satellite-derived datasets
Development of the adjoint of the unified tropospheric–stratospheric chemistry extension (UCX) in GEOS-Chem adjoint v36
New explicit formulae for the settling speed of prolate spheroids in the atmosphere: theoretical background and implementation in AerSett v2.0.2
ZJU-AERO V0.5: an Accurate and Efficient Radar Operator designed for CMA-GFS/MESO with the capability to simulate non-spherical hydrometeors
The Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP) phase 1: project overview and Arctic winter forecast evaluation
Evaluating CHASER V4.0 global formaldehyde (HCHO) simulations using satellite, aircraft, and ground-based remote-sensing observations
Global variable-resolution simulations of extreme precipitation over Henan, China, in 2021 with MPAS-Atmosphere v7.3
The CHIMERE chemistry-transport model v2023r1
tobac v1.5: introducing fast 3D tracking, splits and mergers, and other enhancements for identifying and analysing meteorological phenomena
Merged Observatory Data Files (MODFs): an integrated observational data product supporting process-oriented investigations and diagnostics
Simulation of marine stratocumulus using the super-droplet method: numerical convergence and comparison to a double-moment bulk scheme using SCALE-SDM 5.2.6-2.3.1
Modeling of PAHs From Global to Regional Scales: Model Development and Investigation of Health Risks from 2013 to 2018 in China
WRF-Comfort: simulating microscale variability in outdoor heat stress at the city scale with a mesoscale model
Representing effects of surface heterogeneity in a multi-plume eddy diffusivity mass flux boundary layer parameterization
Can TROPOMI NO2 satellite data be used to track the drop in and resurgence of NOx emissions in Germany between 2019–2021 using the multi-source plume method (MSPM)?
A spatiotemporally separated framework for reconstructing the sources of atmospheric radionuclide releases
A parameterization scheme for the floating wind farm in a coupled atmosphere–wave model (COAWST v3.7)
RoadSurf 1.1: open-source road weather model library
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024, https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Short summary
We use a comprehensive approach to select a subset of CMIP6 models for dynamical downscaling over Southeast Asia, taking into account model performance, model independence, data availability and the range of future climate projections. The standardised benchmarking framework is applied to assess model performance through both statistical and process-based metrics. Ultimately, we identify two independent model groups that are suitable for dynamical downscaling in the Southeast Asian region.
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024, https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
Short summary
Monitoring greenhouse gas emission reductions requires a combination of models and observations, as well as an initial emission estimate. Each component provides information with a certain level of certainty and is weighted to yield the most reliable estimate of actual emissions. We describe efforts for estimating the uncertainty in the initial emission estimate, which significantly impacts the outcome. Hence, a good uncertainty estimate is key for obtaining reliable information on emissions.
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024, https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the analog method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities for broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024, https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Short summary
We enhance the WDM6 scheme by incorporating predicted graupel density. The modification affects graupel characteristics, including fall velocity–diameter and mass–diameter relationships. Simulations highlight changes in graupel distribution and precipitation patterns, potentially influencing surface snow amounts. The study underscores the significance of integrating predicted graupel density for a more realistic portrayal of microphysical properties in weather models.
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024, https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024, https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Short summary
Using high-resolution and state-of-the-art modeling techniques we simulate five atmospheric river events for California to test the capability to represent precipitation for these events. We find that our model is able to capture the distribution of precipitation very well but suffers from overestimating the precipitation amounts over high elevation. Increasing the resolution further has no impact on reducing this bias, while increasing the domain size does have modest impacts.
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024, https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
Short summary
Aerosol–cloud interactions occur at a range of spatio-temporal scales. While evaluating recent developments in EC-Earth3-AerChem, this study aims to understand the extent to which the Twomey effect manifests itself at larger scales. We find a reduction in the warm bias over the Southern Ocean due to model improvements. While we see footprints of the Twomey effect at larger scales, the negative relationship between cloud droplet number and liquid water drives the shortwave radiative effect.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024, https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary
Short summary
Solar activity weakly ionises Earth's atmosphere, charging cloud droplets. Electro-coalescence is when oppositely charged droplets stick together. We introduce an analytical expression of electro-coalescence probability and use it in a warm-cumulus-cloud simulation. Results show that charge cases increase rain and droplet size, with the new method outperforming older ones. The new method requires longer computation time, but its impact on rain justifies inclusion in meteorology models.
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024, https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Short summary
Satellite observations provide crucial information about atmospheric constituents in a global distribution that helps to better predict the weather over sparsely observed regions like the Arctic. However, the use of satellite data is usually conservative and imperfect. In this study, a better spatial representation of satellite observations is discussed and explored by a so-called footprint function or operator, highlighting its added value through a case study and diagnostics.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-129, https://doi.org/10.5194/gmd-2024-129, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Orbital-radar is a Python tool transferring sub-orbital radar data (ground-based, airborne, and forward-simulated NWP) into synthetical space-borne cloud profiling radar data mimicking the platform characteristics, e.g. EarthCARE or CloudSat CPR. The novelty of orbital-radar is the simulation platform characteristic noise floors and errors. By this long time data sets can be transformed into synthetic observations for Cal/Valor sensitivity studies for new or future satellite missions.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024, https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Short summary
The forecast error growth of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. With a negative result, we investigate in the extended Lorenz (2005) system whether omitting these phenomena will improve predictability. A theory explaining and describing this behavior is developed.
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024, https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
Short summary
In this study, we present VERT (Vehicular Emissions from Road Traffic), an R package designed to estimate transport emissions using traffic estimates and vehicle fleet composition data. Compared to other tools available in the literature, VERT stands out for its user-friendly configuration and flexibility of user input. Case studies demonstrate its accuracy in both urban and regional contexts, making it a valuable tool for air quality management and transport scenario planning.
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024, https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Short summary
A Python successor to the aerosol module of the OPAC model, named AeroMix, has been developed, with enhanced capabilities to better represent real atmospheric aerosol mixing scenarios. AeroMix’s performance in modeling aerosol mixing states has been evaluated against field measurements, substantiating its potential as a versatile aerosol optical model framework for next-generation algorithms to infer aerosol mixing states and chemical composition.
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024, https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary
Short summary
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.
Tianning Su and Yunyan Zhang
Geosci. Model Dev., 17, 6319–6336, https://doi.org/10.5194/gmd-17-6319-2024, https://doi.org/10.5194/gmd-17-6319-2024, 2024
Short summary
Short summary
Using 2 decades of field observations over the Southern Great Plains, this study developed a deep-learning model to simulate the complex dynamics of boundary layer clouds. The deep-learning model can serve as the cloud parameterization within reanalysis frameworks, offering insights into improving the simulation of low clouds. By quantifying biases due to various meteorological factors and parameterizations, this deep-learning-driven approach helps bridge the observation–modeling divide.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Sam O. Owens, Dipanjan Majumdar, Chris E. Wilson, Paul Bartholomew, and Maarten van Reeuwijk
Geosci. Model Dev., 17, 6277–6300, https://doi.org/10.5194/gmd-17-6277-2024, https://doi.org/10.5194/gmd-17-6277-2024, 2024
Short summary
Short summary
Designing cities that are resilient, sustainable, and beneficial to health requires an understanding of urban climate and air quality. This article presents an upgrade to the multi-physics numerical model uDALES, which can simulate microscale airflow, heat transfer, and pollutant dispersion in urban environments. This upgrade enables it to resolve realistic urban geometries more accurately and to take advantage of the resources available on current and future high-performance computing systems.
Allison A. Wing, Levi G. Silvers, and Kevin A. Reed
Geosci. Model Dev., 17, 6195–6225, https://doi.org/10.5194/gmd-17-6195-2024, https://doi.org/10.5194/gmd-17-6195-2024, 2024
Short summary
Short summary
This paper presents the experimental design for a model intercomparison project to study tropical clouds and climate. It is a follow-up from a prior project that used a simplified framework for tropical climate. The new project adds one new component – a specified pattern of sea surface temperatures as the lower boundary condition. We provide example results from one cloud-resolving model and one global climate model and test the sensitivity to the experimental parameters.
Philip G. Sansom and Jennifer L. Catto
Geosci. Model Dev., 17, 6137–6151, https://doi.org/10.5194/gmd-17-6137-2024, https://doi.org/10.5194/gmd-17-6137-2024, 2024
Short summary
Short summary
Weather fronts bring a lot of rain and strong winds to many regions of the mid-latitudes. We have developed an updated method of identifying these fronts in gridded data that can be used on new datasets with small grid spacing. The method can be easily applied to different datasets due to the use of open-source software for its development and shows improvements over similar previous methods. We present an updated estimate of the average frequency of fronts over the past 40 years.
Kelly M. Núñez Ocasio and Zachary L. Moon
Geosci. Model Dev., 17, 6035–6049, https://doi.org/10.5194/gmd-17-6035-2024, https://doi.org/10.5194/gmd-17-6035-2024, 2024
Short summary
Short summary
TAMS is an open-source Python-based package for tracking and classifying mesoscale convective systems that can be used to study observed and simulated systems. Each step of the algorithm is described in this paper with examples showing how to make use of visualization and post-processing tools within the package. A unique and valuable feature of this tracker is its support for unstructured grids in the identification stage and grid-independent tracking.
Irene C. Dedoussi, Daven K. Henze, Sebastian D. Eastham, Raymond L. Speth, and Steven R. H. Barrett
Geosci. Model Dev., 17, 5689–5703, https://doi.org/10.5194/gmd-17-5689-2024, https://doi.org/10.5194/gmd-17-5689-2024, 2024
Short summary
Short summary
Atmospheric model gradients provide a meaningful tool for better understanding the underlying atmospheric processes. Adjoint modeling enables computationally efficient gradient calculations. We present the adjoint of the GEOS-Chem unified chemistry extension (UCX). With this development, the GEOS-Chem adjoint model can capture stratospheric ozone and other processes jointly with tropospheric processes. We apply it to characterize the Antarctic ozone depletion potential of active halogen species.
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024, https://doi.org/10.5194/gmd-17-5641-2024, 2024
Short summary
Short summary
We propose two explicit expressions to calculate the settling speed of solid atmospheric particles with prolate spheroidal shapes. The first formulation is based on theoretical arguments only, while the second one is based on computational fluid dynamics calculations. We show that the first method is suitable for virtually all atmospheric aerosols, provided their shape can be adequately described as a prolate spheroid, and we provide an implementation of the first method in AerSett v2.0.2.
Hejun Xie, Lei Bi, and Wei Han
Geosci. Model Dev., 17, 5657–5688, https://doi.org/10.5194/gmd-17-5657-2024, https://doi.org/10.5194/gmd-17-5657-2024, 2024
Short summary
Short summary
A radar operator plays a crucial role in utilizing radar observations to enhance numerical weather forecasts. However, developing an advanced radar operator is challenging due to various complexities associated with the wave scattering by non-spherical hydrometeors, radar beam propagation, and multiple platforms. In this study, we introduce a novel radar operator named the Accurate and Efficient Radar Operator developed by ZheJiang University (ZJU-AERO) which boasts several unique features.
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, https://doi.org/10.5194/gmd-17-5511-2024, 2024
Short summary
Short summary
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
Hossain Mohammed Syedul Hoque, Kengo Sudo, Hitoshi Irie, Yanfeng He, and Md Firoz Khan
Geosci. Model Dev., 17, 5545–5571, https://doi.org/10.5194/gmd-17-5545-2024, https://doi.org/10.5194/gmd-17-5545-2024, 2024
Short summary
Short summary
Using multi-platform observations, we validated global formaldehyde (HCHO) simulations from a chemistry transport model. HCHO is a crucial intermediate in the chemical catalytic cycle that governs the ozone formation in the troposphere. The model was capable of replicating the observed spatiotemporal variability in HCHO. In a few cases, the model's capability was limited. This is attributed to the uncertainties in the observations and the model parameters.
Zijun Liu, Li Dong, Zongxu Qiu, Xingrong Li, Huiling Yuan, Dongmei Meng, Xiaobin Qiu, Dingyuan Liang, and Yafei Wang
Geosci. Model Dev., 17, 5477–5496, https://doi.org/10.5194/gmd-17-5477-2024, https://doi.org/10.5194/gmd-17-5477-2024, 2024
Short summary
Short summary
In this study, we completed a series of simulations with MPAS-Atmosphere (version 7.3) to study the extreme precipitation event of Henan, China, during 20–22 July 2021. We found the different performance of two built-in parameterization scheme suites (mesoscale and convection-permitting suites) with global quasi-uniform and variable-resolution meshes. This study holds significant implications for advancing the understanding of the scale-aware capability of MPAS-Atmosphere.
Laurent Menut, Arineh Cholakian, Romain Pennel, Guillaume Siour, Sylvain Mailler, Myrto Valari, Lya Lugon, and Yann Meurdesoif
Geosci. Model Dev., 17, 5431–5457, https://doi.org/10.5194/gmd-17-5431-2024, https://doi.org/10.5194/gmd-17-5431-2024, 2024
Short summary
Short summary
A new version of the CHIMERE model is presented. This version contains both computational and physico-chemical changes. The computational changes make it easy to choose the variables to be extracted as a result, including values of maximum sub-hourly concentrations. Performance tests show that the model is 1.5 to 2 times faster than the previous version for the same setup. Processes such as turbulence, transport schemes and dry deposition have been modified and updated.
G. Alexander Sokolowsky, Sean W. Freeman, William K. Jones, Julia Kukulies, Fabian Senf, Peter J. Marinescu, Max Heikenfeld, Kelcy N. Brunner, Eric C. Bruning, Scott M. Collis, Robert C. Jackson, Gabrielle R. Leung, Nils Pfeifer, Bhupendra A. Raut, Stephen M. Saleeby, Philip Stier, and Susan C. van den Heever
Geosci. Model Dev., 17, 5309–5330, https://doi.org/10.5194/gmd-17-5309-2024, https://doi.org/10.5194/gmd-17-5309-2024, 2024
Short summary
Short summary
Building on previous analysis tools developed for atmospheric science, the original release of the Tracking and Object-Based Analysis (tobac) Python package, v1.2, was open-source, modular, and insensitive to the type of gridded input data. Here, we present the latest version of tobac, v1.5, which substantially improves scientific capabilities and computational efficiency from the previous version. These enhancements permit new uses for tobac in atmospheric science and potentially other fields.
Taneil Uttal, Leslie M. Hartten, Siri Jodha Khalsa, Barbara Casati, Gunilla Svensson, Jonathan Day, Jareth Holt, Elena Akish, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Laura X. Huang, Robert Crawford, Zen Mariani, Øystein Godøy, Johanna A. K. Tjernström, Giri Prakash, Nicki Hickmon, Marion Maturilli, and Christopher J. Cox
Geosci. Model Dev., 17, 5225–5247, https://doi.org/10.5194/gmd-17-5225-2024, https://doi.org/10.5194/gmd-17-5225-2024, 2024
Short summary
Short summary
A Merged Observatory Data File (MODF) format to systematically collate complex atmosphere, ocean, and terrestrial data sets collected by multiple instruments during field campaigns is presented. The MODF format is also designed to be applied to model output data, yielding format-matching Merged Model Data Files (MMDFs). MODFs plus MMDFs will augment and accelerate the synergistic use of model results with observational data to increase understanding and predictive skill.
Chongzhi Yin, Shin-ichiro Shima, Lulin Xue, and Chunsong Lu
Geosci. Model Dev., 17, 5167–5189, https://doi.org/10.5194/gmd-17-5167-2024, https://doi.org/10.5194/gmd-17-5167-2024, 2024
Short summary
Short summary
We investigate numerical convergence properties of a particle-based numerical cloud microphysics model (SDM) and a double-moment bulk scheme for simulating a marine stratocumulus case, compare their results with model intercomparison project results, and present possible explanations for the different results of the SDM and the bulk scheme. Aerosol processes can be accurately simulated using SDM, and this may be an important factor affecting the behavior and morphology of marine stratocumulus.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1437, https://doi.org/10.5194/egusphere-2024-1437, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can well reproduce the distribution of PAHs. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change of BaP is less than PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although "the Action Plan" has been implemented.
Alberto Martilli, Negin Nazarian, E. Scott Krayenhoff, Jacob Lachapelle, Jiachen Lu, Esther Rivas, Alejandro Rodriguez-Sanchez, Beatriz Sanchez, and José Luis Santiago
Geosci. Model Dev., 17, 5023–5039, https://doi.org/10.5194/gmd-17-5023-2024, https://doi.org/10.5194/gmd-17-5023-2024, 2024
Short summary
Short summary
Here, we present a model that quantifies the thermal stress and its microscale variability at a city scale with a mesoscale model. This tool can have multiple applications, from early warnings of extreme heat to the vulnerable population to the evaluation of the effectiveness of heat mitigation strategies. It is the first model that includes information on microscale variability in a mesoscale model, something that is essential for fully evaluating heat stress.
Nathan P. Arnold
Geosci. Model Dev., 17, 5041–5056, https://doi.org/10.5194/gmd-17-5041-2024, https://doi.org/10.5194/gmd-17-5041-2024, 2024
Short summary
Short summary
Earth system models often represent the land surface at smaller scales than the atmosphere, but surface–atmosphere coupling uses only aggregated surface properties. This study presents a method to allow heterogeneous surface properties to modify boundary layer updrafts. The method is tested in single column experiments. Updraft properties are found to reasonably covary with surface conditions, and simulated boundary layer variability is enhanced over more heterogeneous land surfaces.
Enrico Dammers, Janot Tokaya, Christian Mielke, Kevin Hausmann, Debora Griffin, Chris McLinden, Henk Eskes, and Renske Timmermans
Geosci. Model Dev., 17, 4983–5007, https://doi.org/10.5194/gmd-17-4983-2024, https://doi.org/10.5194/gmd-17-4983-2024, 2024
Short summary
Short summary
Nitrogen dioxide (NOx) is produced by sources such as industry and traffic and is directly linked to negative impacts on health and the environment. The current construction of emission inventories to keep track of NOx emissions is slow and time-consuming. Satellite measurements provide a way to quickly and independently estimate emissions. In this study, we apply a consistent methodology to derive NOx emissions over Germany and illustrate the value of having such a method for fast projections.
Yuhan Xu, Sheng Fang, Xinwen Dong, and Shuhan Zhuang
Geosci. Model Dev., 17, 4961–4982, https://doi.org/10.5194/gmd-17-4961-2024, https://doi.org/10.5194/gmd-17-4961-2024, 2024
Short summary
Short summary
Recent atmospheric radionuclide leakages from unknown sources have posed a new challenge in nuclear emergency assessment. Reconstruction via environmental observations is the only feasible way to identify sources, but simultaneous reconstruction of the source location and release rate yields high uncertainties. We propose a spatiotemporally separated reconstruction strategy that avoids these uncertainties and outperforms state-of-the-art methods with respect to accuracy and uncertainty ranges.
Shaokun Deng, Shengmu Yang, Shengli Chen, Daoyi Chen, Xuefeng Yang, and Shanshan Cui
Geosci. Model Dev., 17, 4891–4909, https://doi.org/10.5194/gmd-17-4891-2024, https://doi.org/10.5194/gmd-17-4891-2024, 2024
Short summary
Short summary
Global offshore wind power development is moving from offshore to deeper waters, where floating offshore wind turbines have an advantage over bottom-fixed turbines. However, current wind farm parameterization schemes in mesoscale models are not applicable to floating turbines. We propose a floating wind farm parameterization scheme that accounts for the attenuation of the significant wave height by floating turbines. The results indicate that it has a significant effect on the power output.
Virve Eveliina Karsisto
Geosci. Model Dev., 17, 4837–4853, https://doi.org/10.5194/gmd-17-4837-2024, https://doi.org/10.5194/gmd-17-4837-2024, 2024
Short summary
Short summary
RoadSurf is an open-source library that contains functions from the Finnish Meteorological Institute’s road weather model. The evaluation of the library shows that it is well suited for making road surface temperature forecasts. The evaluation was done by making forecasts for about 400 road weather stations in Finland with the library. Accurate forecasts help road authorities perform salting and plowing operations at the right time and keep roads safe for drivers.
Cited articles
Allaart, M., van Weele, M., Fortuin, P., and Kelder, H.: An empirical model
to predict the UV-index based on solar zenith angles and total ozone,
Meteorol. Appl., 11, 59–64, https://doi.org/10.1017/S1350482703001130, 2004. a
Bais, A. F., Gardiner, B. G., Slaper, H., Blumthaler, M., Bernhard. G.,
McKenzie, R., Webb, A. R., Seckmeyer, G., Kjeldstad, B., Koskela, T., Kirsch,
P. J., Grobner, J., Kerr, J. B., Kazadzis, S., Leszczynski, K., Wardle, D.,
Josefsson, W., Brogniez, C., Gillotay, D., Reinen, H., Weihs, P., Svenoe, T.,
Eriksen, P., Kuik, F., and Redondas, A.: SUSPEN intercomparison of
ultraviolet spectroradiometers, J. Geophys. Res., 106, 12509–12525, 2001. a
Bian, H. and Prather, M. J.: Fast-J2: Accurate Simulation of Stratospheric
Photolysis in Global Chemical Models, J. Atmos. Chem., 41, 281–296,
https://doi.org/10.1023/A:1014980619462, 2002. a
Burrows, W. R., Vallée, M., Wardle, D. I., Kerr, J. B., Wilson, L. J.,
and Tarasick, D. W.: The Canadian operational procedure for forecasting total
ozone and UV radiation, Meteorol. Appl., 1, 247–265,
https://doi.org/10.1002/met.5060010307, 1994. a
Burrows, J. P., Richter, A., Dehn, A., Deters, B., Himmelmann, S., Voigt, S.,
and Orphal J.: Atmospheric remote-sensing reference data from GOME 2.
Temperature-dependent absorption cross-sections of O3 in the
231–794 nm range, J. Quant. Spectrosc. Ra., 61, 509–517,
https://doi.org/10.1016/S0022-4073(98)00037-5, 1999. a
Callies, J., Corpaccioli, E., Eisinger, M., Hahne, A., and Lefebvre, A.:
GOME-2 – Metop's second generation sensor for operational ozone monitoring,
ESA Bull.-Eur. Space, 102, 28–36, 2000. a
Caron, L.-P., Jones, C. G., Vaillancourt, P. A., and Winger, K.,: On the
relationship between cloud-radiation interaction, atmospheric stability and
Atlantic tropical cyclones in a variable-resolution climate model, Clim.
Dynam., 40, 1257–1269, https://doi.org/10.1007/s00382-012-1311-6, 2013.
Chadyšien, R. and Girgždys, A.: Ultraviolet Radiation Albedo of
Natural Surfaces, J. Environ. Eng. Landsc., 16, 83–88,
https://doi.org/10.3846/1648-6897.2008.16.83-88, 2008. a, b, c
Chance, K. V. and Spurr, R. J. D.: Ring effect studies: Rayleigh scattering,
including molecular parameters for rotational Raman scattering, and the
Fraunhofer spectrum, Appl. Opt., 36, 5224–5230, https://doi.org/10.1364/AO.36.005224,
1997. a, b, c, d
Chance, K. and Kurucz, R. L.: An improved high-resolution solar reference
spectrum for Earth's atmosphere measurements in the ultraviolet, visible, and
near infrared, J. Quant. Spectrosc. Ra., 111, 1289–1295,
https://doi.org/10.1016/j.jqsrt.2010.01.036, 2010. a, b, c
Charron, M., Polavarapu, S., Buehner, M., Vaillancourt, P. A., Charette, C.,
Roch, M., Morneau, J., Garand, L., Aparicio, J., MacPherson, S., Pellerin,
S., St-James, J., and Heilliette, S.: The stratospheric extension of the
Canadian Global Deterministic Medium-Range Weather Forecasting System and its
impact on tropospheric forecasts, Mon. Weather Rev., 140, 1924–1944,
https://doi.org/10.1175/MWR-D-11-00097.1, 2012. a, b
Colblentz, M. W. and Stair, R.: Data on the spectral erythemic reaction of
the untanned human skin to ultraviolet radiation, Research Paper RP631,
National Bureau of Standards Journal of Research, vol. 12, 13–14, 1934. a
Crutzen, P. J.: Ultraviolet on the increase, Nature, 356, 104–105,
https://doi.org/10.1038/356104a0, 1992. a
de Grandpré, J., Tanguay, M., Qaddouri, A., Zerroukat, M., and McLinden,
C. A.: Semi-Lagrangian Advection of Stratospheric Ozone on a Yin-Yang Grid
System, Mon. Weather Rev., 144, 1035–1050, https://doi.org/10.1175/MWR-D-15-0142.1,
2016. a
Dobber, M., Voors, R., Dirksen, R., Kleipool, Q., and Levelt, P.: The
High-Resolution Solar Reference Spectrum between 250 and 550 nm and its
Application to Measurements with the Ozone Monitoring Instrument, Solar
Phys., 249, 281–291, https://doi.org/10.1007/s11207-008-9187-7, 2008. a, b, c, d, e, f, g
Fisher, M. and Andersson, E.: Developments in 4-D-Var and Kalman filtering,
in: Technical Memorandum Research Department, 347, ECMWF, Reading, UK, 2001. a
Fioletov, V. E., Kerr, J. B., and Wardle, D. I.: The relationship between
total ozone and spectral UV irradiance from Brewer observations and its use
for derivation of total ozone from UV measurements, Geophys. Res. Lett., 24,
2997–3000, https://doi.org/10.1029/97GL53153, 1997. a
Girard, C., Plante, A., Desgagné, M., McTaggart-Cowan, R., Côté,
J., Charron, M., Gravel, S., Lee, V., Patoine, A., Qaddouri, A., Roch, M.,
Spacek, L., Tanguay, M., Vaillancourt, P. A., and Zadra, A.: Staggered
Vertical Discretization of the Canadian Environmental Multiscale (GEM) Model
Using a Coordinate of the Log-Hydrostatic-Pressure Type, Mon. Weather Rev.,
142, 1183–1196, https://doi.org/10.1175/MWR-D-13-00255.1, 2014. a
Gong, W., Makar, P. A., Zhang, J., Milbrandt, J., Gravel, S., Hayden, K. L.,
Macdonald, A. M., and Leaith, W. R.: Modelling aerosol-cloud-meteorology
interaction: a case study with a fully coupled air quality model (GEM-MACH),
Atmos. Environ., 115, 695–715, https://doi.org/10.1016/j.atmosenv.2015.05.062, 2015.
Hall, L. A. and Anderson, G. P.: High resolution solar spectrum between 2000
and 3100 Angstroms, J. Geophys. Res., 96, 12927–12931,
https://doi.org/10.1029/91JD01111, 1991. a, b
He, H., Fioletov, V. E., Tarasick, D. W., Mathews, T. W., and Long, C.:
Validation of Environment Canada and NOAA UV Index Forecasts with Brewer
Measurements from Canada, J. Appl. Meteor. Climatol., 52, 1477–1489,
https://doi.org/10.1175/JAMC-D-12-0286.1, 2013.
Jacquinet-Husson, N., Scott, N. A., Chédin, A., Crépeau, L., Armante,
R., Capelle, V., Orphal, J., Coustenis, A., Boonne, C., Poulet-Crovisier, N.,
Barbe, A., Birk, M., Brown, L. R., Camy-Peyret, C., Claveau, C., Chance, K.,
Christidis, N., Clerbaux, C., Coheur, P. F., Dana, V., Daumont, L., De
Backer-Barilly, M. R., Di Lonardo, G., Flaud, J. M., Goldman, A., Hamdouni,
A., Hess, M., Hurley, M. D., Jacquemart, D., Kleiner, I., Köpke, P.,
Mandin, J. Y., Massie, S., Mikhailenko, S., Nemtchinov, V., Nikitin, A.,
Newnham, D., Perrin, A., Perevalov, V. I., Pinnock, S., Régalia-Jarlot,
L., Rinsland, C. P., Rublev, A., Schreier, F., Schult, L., Smith, K. M.,
Tashkun, S. A., Teffo, J. L., Toth, R. A., Tyuterev, Vl. G., Auwera, J. V.,
Varanasi, P., and Wagner, G.: The GEISA spectroscopic database: Current and
future archive for Earth and planetary atmosphere studies, J. Quant.
Spectrosc. Ra., 109, 1043–1059, https://doi.org/10.1016/j.jqsrt.2007.12.015, 2008. a
Kleipool, Q. L., Dobber, M. R., de Haan, J. F., and Levelt, P. F.: Earth
surface reflectance climatology from 3 years of OMI data, J. Geophys. Res.,
113, D18308, https://doi.org/10.1029/2008JD010290, 2008. a
Long, C. S.: UV index forecasting practices around the world,
WCRP/Stratospheric Processes And their Role in Climate (SPARC), Newsletter
no. 21, available at:
http://www.atmosp.physics.utoronto.ca/SPARC/News21/21_Long.html, 2003. a
Marchenko, S. V., DeLand, M. T., and Lean, J. L.: Solar spectral irradiance
variability in cycle 24: observations and models, J. Space Weather Spac., 6,
1–12, https://doi.org/10.1051/swsc/2016036, 2016. a
Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau,
P., Clilverd, M. A., Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman,
C. H., Kretzschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D. R.,
Maycock, A. C., Misios, S., Rodger, C. J., Scaife, A. A., Seppälä,
A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M.,
Verronen, P. T., and Versick, S.: Solar forcing for CMIP6 (v3.2), Geosci.
Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, 2017.
a
Markovic, M., Jones, C., Vaillancourt, P. A., Paquin, D., Winger, K., and
Paquin-Ricard, D.: An Evaluation of the Surface Radiation Budget Over North
America for a Suite of Regional Climate Models against Surface Station
Observation, Clim. Dynam., 31, 779–794, https://doi.org/10.1007/s00382-008-0378-6,
2008. a
Matsumi, Y., Comes, F. J., Hancock, G., Hofzumahaus, A., Hynes, A. J.,
Kawasaki, M., and Ravishankara, A. R.: Quantum yields for production of
O(1D) in the ultraviolet photolysis of ozone: Recommendation based on
evaluation of laboratory data, J. Geo. Res., 107, 4024,
https://doi.org/10.1029/2001JD000510, 2002. a
McKinlay, A. F. and Diffey, B. L.: A reference action spectrum for
ultraviolet induced erythema in human skin, CIE Research Note, 6, 17–22,
1987. a
McLinden, C. A., Olson, S. C., Hannegan, B., Wild, O., Prather, M. J., and
Sundet, J.: Stratospheric ozone in 3-D models: a simplified chemistry and the
cross-tropopause flux, J. Geophys. Res., 105, 14653–14665,
https://doi.org/10.1029/2000JD900124, 2000. a
Moran, M. D., Menard, S., Talbot, D., Huang, P., Makar, P. A., Gong, W.,
Landry, H., Gravel, S., Gong, S., Crevier, L.-P., Kallaur, A., and Sassi, M.:
Particulate-matter forecasting with GEM-MACH15, a new Canadian operational
air quality forecast model, in: Air Pollution Modelling and its Application
XX, edited by: Steyn, D. G. and Rao, S. T., Springer, Dordrecht, 289–293,
2010.
Moshammer, P., Simic, S., and Haluza, D.: UV “Indices” – What Do They
Indicate?, Int. J. Environ. Res. Public Health, 13, 1041,
https://doi.org/10.3390/ijerph13101041, 2016. a
Munro, R., Eisinger, M., Anderson, C., Callies, J., Corpaccioli, E., Lang,
R., Lefebvre, A., Livschitz, Y., and Albinana, A. P.: GOME-2 on MetOp, Proc.
of The 2006 EUMETSAT Meteorological Satellite Conference, ESRIN, Helsinki,
Finland, 8–12 May 2006. a
Paquin-Ricard, D., Jones, C., and Vaillancourt, P. A.: Using ARM Observations
to Evaluate Cloud and Clear-Sky Radiation Processes as Simulated by the
Canadian Regional Climate Model GEM, Mon. Weather Rev., 138, 818–838,
https://doi.org/10.1175/2009MWR2745.1, 2010. a
Prather, M. J.: Photolysis rates in correlated overlapping cloud fields:
Cloud-J 7.3c, Geosci. Model Dev., 8, 2587–2595,
https://doi.org/10.5194/gmd-8-2587-2015, 2015. a, b
Ravanat, J.-L., Douki, T., and Cadet, J.: Direct and indirect effects of UV
radiation on DNA and its components, J. Photochem. Photobiol. B, 63, 88–102,
https://doi.org/10.1016/S1011-1344(01)00206-8, 2001. a
Rowland, F. S.: Stratospheric Ozone Depletion by Chlorofluorocarbons (Nobel
Lecture)*, Angew. Chem. Int. Edit., 35, 1786–1798,
https://doi.org/10.1002/anie.199617861, 1996. a
Schmalwieser, A. W., Gröbner, J., Blumthaler, M., Klotz, B., De Backer,
H., Bolsée, D., Werner, R., Tomsic, D., Metelka, L., Eriksen, P., Jepsen,
N., Aun, M., Heikkilä, A., Duprat, T., Sandmann, H., Weiss, T., Bais, A.,
Toth, Z., Siani, A., Vaccaro, L., Diémoz, H., Grifoni, D., Zipoli, G.,
Lorenzetto, G., Petkov, B. H., di Sarra, A. G., Massen, F., Yousif, C.,
Aculinin, A. A., den Outer, P., Svendby, T., Dahlback, A., Johnsen, B.,
Biszczuk-Jakubowska, J., Krzyscin, J., Henriques, D., Chubarova, N.,
Kolarž, P., Mijatovic, Z., Groselj, D., Pribullova, A., Gonzales, J. R.
M., Bilbao, J., Guerrero, J. M. V., Serrano, A., Andersson, S., Vuilleumier,
L., Webb, A., and O'Hagan, J.: UV Index monitoring in Europe, Photochem.
Photobiol. Sci., 16, 1349–1370, https://doi.org/10.1039/C7PP00178A, 2017. a
Scinocca, J. F., McFarlane, N. A., Lazare, M., Li, J., and Plummer, D.:
Technical Note: The CCCma third generation AGCM and its extension into the
middle atmosphere, Atmos. Chem. Phys., 8, 7055–7074,
https://doi.org/10.5194/acp-8-7055-2008, 2008. a
Smith, G. C., Roy, F., Mann, P., Dupont, F., Brasnett, B., Lemieux, J.-F.,
Laroche, S., and Bélair, S.: A new atmospheric dataset for forcing
ice-ocean models: Evaluation of reforecasts using the Canadian global
deterministic prediction system, Q. J. Roy. Meteor. Soc., 140, 881–894,
https://doi.org/10.1002/qj.2194, 2014.
Sundqvist, H., Berge, E., and Kristjansson, J. E.: Condensation and cloud
parameterisation studies with a mesoscale numerical weather prediction model,
Mon. Weather Rev., 117, 1641–1657,
https://doi.org/10.1175/1520-0493(1989)117<1641:CACPSW>2.0.CO;2, 1989. a
Thompson, A., Early, E. A., DeLuisi, J., Disterhoft, P., Wardle, D., Kerr,
J., Rives, J., Sun, Y., Lucas, T., Mestechkina, T., and Neale, P.: The 1994
North American interagency intercomparison of ultraviolet monitoring
spectroradiometers, J. Res. Natl. Inst. Stand. Technol. 102, 279–322, 1997. a, b
Thuillier, G., Hersé, M., Simon, P., Labs, D., Mandel, H., Gillotay, D.,
and Foujols, T.: The Visible Solar Spectral Irradiance from 350 to 850 nm As
Measured by the SOLSPEC Spectrometer During the ATLAS I Mission, Solar Phys.,
177, 41–61, https://doi.org/10.1023/A:1004953215589, 1998. a
Thuillier, G., Hersé, M., Labs, D., Foujols, T., Peetermans, W.,
Gillotay, D., Simon, P., and Mandel, H.: The Solar Spectral Irradiance from
200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the Atlas and
Eureca Missions, Solar Phys., 214, 1–22, https://doi.org/10.1023/A:1024048429145, 2003. a, b, c
Toon, O. B. and Pollack, J. B.: A global average model of atmospheric
aerosols for radiative transfer calculations, J. Appl. Meteor., 15, 225–246,
https://doi.org/10.1175/1520-0450(1976)015<0225:AGAMOA>2.0.CO;2, 1976. a
van der A, R. J., Allaart, M. A. F., and Eskes, H. J.: Extended and refined
multi sensor reanalysis of total ozone for the period 1970–2012, Atmos.
Meas. Tech., 8, 3021–3035, https://doi.org/10.5194/amt-8-3021-2015, 2015. a
Voigt, S., Orphal, J., Bogumil, K., and Burrows, J. P.: The temperature
dependence (203–293 K) of the absorption cross-sections of O3 in the
230–850 nm region measured by Fourier-transform spectroscopy, J. Photochem.
Photobiol., 143, 1–9, https://doi.org/10.1016/S1010-6030(01)00480-4, 2001. a, b
von Salzen, K., Scinocca, J. F., McFarlane, N. A., Li, J., Cole, J. N. S.,
Plummer, D., Verseghy, D., Reader, M. C., Ma, X., Lazare, M., and Solheim,
L.: The Canadian Fourth Generation Atmospheric Global Climate Model (CanAM4),
Part I: Representation of Physical Processes, Atmos. Ocean, 51, 104–125,
https://doi.org/10.1080/07055900.2012.755610, 2013. a
Webb, A. R., Slaper, H., Koepke, P., and Schmalwieser, A. W.: Know Your
Standard: Clarifying the CIE Erythema Action Spectrum, Photochem. Photobiol.,
87, 483–486, https://doi.org/10.1111/j.1751-1097.2010.00871.x, 2011. a
WHO: Global Solar UV Index: A Practical Guide, A joint recommendation of the
World Health Organization, World Meteorological Organization, United Nations
Environment Programme, and the International Commission on Non-Ionizing
Radiation Protection, ISBN: 92-4-159007-6, 2002. a
Wild, O., Zhu, X., and Prather, M. J.: Fast-J: Accurate simulation of in- and
below-cloud photolysis in tropospheric chemical models, J. Atmos. Chem., 37,
245–282, https://doi.org/10.1023/A:1006415919030, 2000. a
Yeo, K. L., Ball, W. T., Krivova, N. A., Solanki, S. K., Unruh, Y. C., and
Morrill, J.: UV solar irradiance in observations and the NRLSSI and SATIRE-S
models, J. Geophys. Res., 120, 6055–6070, https://doi.org/10.1002/2015JA021277, 2015. a
Zadra, A., McTaggart-Cowan, R., Vaillancourt, P. A., Roch, M., Bélair,
S., and Leduc, A.-M.: Evaluation of tropical cyclones in the Canadian Global
Modeling System: Sensitivity to moist process parameterization, Mon. Weather
Rev., 142, 1197–1220, https://doi.org/10.1175/MWR-D-13-00124.1, 2014a. a
Zadra, A., Antonopoulos, S., Archambault, B., Beaulne, A., Bois, N., Buehner,
M., Giguère, A., Marcoux, J., Petrucci, F., Poulin, L., Reszka, M.,
Robinson, T., St-James, J., and Rahill, A.: Improvements to the Global
Deterministic Prediction system (GDPS) (from version 2.2.2 to 3.0.0), and
related changes to the Regional Deterministic Prediction System (RDPS) (from
version 3.0.0 to 3.1.0), Canadian Meteorological Centre, Tech. Note, 88 pp.,
available at:
http://collaboration.cmc.ec.gc.ca/cmc/CMOI/product_guide/docs/lib/op_systems/doc_opchanges/technote_gdps300_20130213_e.pdf,
2014b. a
Zepp, R, G., Callaghan, T. V., and Erickson, D. J.: Effects of enhanced solar
ultraviolet radiation on biogeochemical cycles, J. Photochem. Photobiol., 46,
69–82, https://doi.org/10.1016/S1011-1344(98)00186-9, 1998. a
Short summary
To reduce computational costs, ECCC's new method to calculate the UV Index involves scaling and weighting the irradiance contribution of four low-res UV broadbands currently produced by the GEM forecast model. A high-res irradiance spectrum was produced using Cloud-J to create simulated GEM broadbands to calibrate the original GEM broadbands. The scaled GEM broadbands are then weighted accordingly so that the resultant UV Index field emulates the high-res UV Index field calculated from Cloud-J.
To reduce computational costs, ECCC's new method to calculate the UV Index involves scaling and...