Articles | Volume 10, issue 10
https://doi.org/10.5194/gmd-10-3889-2017
https://doi.org/10.5194/gmd-10-3889-2017
Model evaluation paper
 | 
25 Oct 2017
Model evaluation paper |  | 25 Oct 2017

Sequential assimilation of satellite-derived vegetation and soil moisture products using SURFEX_v8.0: LDAS-Monde assessment over the Euro-Mediterranean area

Clément Albergel, Simon Munier, Delphine Jennifer Leroux, Hélène Dewaele, David Fairbairn, Alina Lavinia Barbu, Emiliano Gelati, Wouter Dorigo, Stéphanie Faroux, Catherine Meurey, Patrick Le Moigne, Bertrand Decharme, Jean-Francois Mahfouf, and Jean-Christophe Calvet

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Clément Albergel on behalf of the Authors (17 Aug 2017)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (26 Aug 2017) by Christoph Müller
RR by Patricia de Rosnay (29 Aug 2017)
RR by Anonymous Referee #2 (08 Sep 2017)
ED: Publish subject to technical corrections (08 Sep 2017) by Christoph Müller
AR by Clément Albergel on behalf of the Authors (12 Sep 2017)  Manuscript 
Download
Short summary
LDAS-Monde, a global land data assimilation system, is applied over Europe and the Mediterranean basin to increase monitoring accuracy for land surface variables. It is able to ingest information from satellite-derived surface soil moisture (SSM) and leaf area index (LAI) observations to constrain the ISBA land surface model coupled with the CTRIP continental hydrological system. Assimilation of SSM and LAI leads to a better representation of evapotranspiration and gross primary production.