
1 

Sequential assimilation of satellite-derived vegetation and soil moisture products using 

SURFEX_v8.0: LDAS-Monde assessment over the Euro-Mediterranean area 

Clément Albergel1,*, Simon Munier1 , Delphine Jennifer Leroux1, Hélène Dewaele1, David 

Fairbairn1,2, Alina Lavinia Barbu1, Emiliano Gelati1,3, Wouter Dorigo4 , Stéphanie Faroux1, Catherine 

Meurey1, Patrick Le Moigne1, Bertrand Decharme1, Jean-Francois Mahfouf1, Jean-Christophe 5 

Calvet1 

1 CNRM UMR 3589, Météo-France/CNRS, Toulouse, France 

2 Now at Imperial College, London, UK 

3 Now at Joint Research Centre, European Commission, Ispra, Italy 

4 Department of Geodesy and Geo-Information, TU Wien (Vienna University of Technology), Vienna, Austria 10 

* Corresponding author, Clement Albergel: clement.albergel@meteo.fr 

Abstract- In this study, a global Land Data Assimilation system (LDAS-Monde) is applied over 

Europe and the Mediterranean basin to increase monitoring accuracy for land surface variables. 

LDAS-Monde is able to ingest information from satellite-derived Surface Soil Moisture (SSM) and 

Leaf Area Index (LAI) observations to constrain the Interactions between Soil, Biosphere, and 15 

Atmosphere (ISBA) land surface model (LSM) coupled with the CNRM (Centre National de 

Recherches Météorologiques) version of the Total Runoff Integrating Pathways (ISBA-CTRIP) 

continental hydrological system. It makes use of the CO2-responsive version of ISBA which models 

leaf-scale physiological processes and plant growth. Transfer of water and heat in the soil rely on a 

multilayer diffusion scheme. SSM and LAI observations are assimilated using a simplified extended 20 

Kalman filter (SEKF), which uses finite differences from perturbed simulations to generate flow-

dependence between the observations and the model control variables. The latter include LAI and 

seven layers of soil (from 1 cm to 100 cm depth). A sensitivity test of the Jacobians over 2000-2012 

exhibits effects related to both depth and season. It also suggests that observations of both LAI and 

SSM have an impact on the different control variables. From the assimilation of SSM, the LDAS is 25 

more effective in modifying soil moisture (SM) from the top layers of soil as model sensitivity to 

SSM decreases with depth and has almost no impact from 60 cm downwards. From the assimilation 

of LAI, a strong impact on LAI itself is found. The LAI assimilation impact is more pronounced in 

SM layers that contain the highest fraction of roots (from 10 cm to 60 cm). The assimilation is more 

efficient in summer and autumn than in winter and spring. Results shows that the LDAS works well 30 
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constraining the model to the observations and that stronger corrections are applied to LAI than to 

SM. A comprehensive evaluation of the assimilation impact is conducted using (i) agricultural 

statistics over France, (ii) river discharge observations, (iii) satellite-derived estimates of land 

evapotranspiration from the Global Land Evaporation Amsterdam Model (GLEAM) project and (iv) 

spatially gridded observations based estimates of up-scaled gross primary production and 35 

evapotranspiration from the FLUXNET network. Comparisons with those four datasets highlight 

neutral to highly positive improvement. 

 1  Introduction  

Land surface models (LSMs) forced by gridded atmospheric variables and their coupling with river 

routing models are important for understanding the terrestrial water and vegetation cycles (Dirmeyer 40 

et al., 2006). These LSMs need to simulate biogeophysical variables like surface and root zone soil 

moisture (SSM and RZSM, respectively), Leaf Area Index (LAI) in a way that is fully consistent with 

the representation of surface/energy flux and river discharge simulations. Soil Moisture (SM) is an 

essential component in partitioning incoming water and energy over land, thus affecting the 

variability of evapotranspiration, runoff and energy fluxes (Mohr et al., 2000). By controlling land 45 

surface temperature and plant water stress, evapotranspiration and infiltration of precipitation, soil 

moisture drives ecosystem dynamics, biodiversity and food production, regulates CO2 emissions 

(uptake) by the land surface and impacts natural hazards such as floods and droughts (Seneviratne et 

al., 2010). The role of soil moisture as a regulator for various processes in the terrestrial ecosystem 

such as plant phenology, photosynthesis, biomass allocation, soil respiration, hence the terrestrial 50 

carbon balance, has also clearly been established (Ciais et al., 2005; Van der Molen et al., 2012; 

Carvalhais et al., 2014; Reichstein et al., 2013). The seasonal dynamics of vegetation properties, like 

LAI, are connected to soil moisture dynamics (Kochendorfer and Ramirez, 2010). Both the simulation 

of hydrological processes and the exchange of water vapour and CO2 between the vegetation canopy 

and atmosphere interface are strongly influenced by LAI (Jarlan et al., 2008; Szczypta et al., 2014).  55 

Global observations of land surface variables are now operationally available from spaceborne 

instruments and they can be used to constrain LSMs through Data Assimilation (DA) techniques as 

demonstrated by several authors (e.g., Reichle et al., 2002; Draper et al., 2011, 2012; Dharssi et al., 

2011; Barbu et al., 2011; de Rosnay et al., 2013, 2014; Barbu et al., 2014; Boussetta et al., 2015; 

Fairbain et al., 2017). Recent studies (e.g., Traore et al., 2014) have demonstrated that a model that 60 
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perform best for soil moisture does not necessarily best perform for plant productivity, highlighting 

the need to jointly use soil moisture and vegetation observations to improve global and continental 

eco-hydrological/carbon cycle models (Wang et al., 2012; Kaminski et al., 2013). Several studies 

demonstrated the benefit of jointly assimilating SSM and LAI on the representation of RZSM (e.g., 

Sabater et al., 2008) and CO2 flux (e.g., Albergel et al., 2010, Barbu et al., 2011).  65 

Within the SURFEX modelling system (SURFace EXternalisée, Masson et al. 2013) the CO2-

responsive version of ISBA (Interaction between Soil Biosphere and Atmosphere) LSM (Noilhan and 

Mahfouf, 1996; Calvet et al., 1998, 2004; Gibelin et al., 2006) allows the representation of various 

land surface processes, including evapotranspiration and SM evolution.  It is also capable of 

modelling photosynthesis and vegetation growth. The evolution of the simulated LAI and vegetation 70 

biomass changes in response to the meteorological forcing conditions. In previous studies, Barbu et 

al. (2014), Fairbairn et al. (2017) tested a combined assimilation of SSM and LAI in this CO2 

responsive version of ISBA over France within SURFEX. They used the force-restore version of 

ISBA (with three layers of soil), a Simplified formulation of an Extended Kalman Filter (SEKF) with 

a 24-h assimilation window and hourly meteorological forcing from the SAFRAN reanalysis 75 

(Système d’Analyse Fournissant des Renseignements Atmosphériques à la Neige, Quintana-Seguı et 

al., 2008; Habets et al., 2008) at 8km scale. Fairbairn et al. (2017), also made a posterior offline use 

of runoff and drainage fields from ISBA to run the MODCOU hydrological model (MODèle COUplé, 

Habets et al., 2008) to evaluate the added value of the joint assimilation of LAI and SSM on the 

representation of river discharge over France. However, the assimilation was not successful in 80 

improving the representation of river discharge within MODCOU compared to an open-loop (i.e. no 

assimilation) simulation. Following their work, the present study tests the assimilation of both satellite 

derived SSM and LAI at the continental scale. Further steps are made by: 

 Using the most recent SURFEX_v8.0 Offline Data Assimilation implementation, 

 Considering a much larger domain, Europe and the Mediterranean basin as well as a longer 85 

time period; 2000-2012, 

 Using the multi-layer soil diffusion scheme of ISBA developed by Decharme et al. (2011). 

 Assimilating a long term, global scale, multi-sensor satellite-derived surface soil moisture 

dataset (ESA CCI SSM, Liu et al., 2011, 2012; Dorigo et al., 2015, 2017) along with satellite-

derived LAI (GEOV1, http://land.copernicus.eu/global/), 90 
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 Using the modified version of WFDEI (WATCH-Forcing-Data-ERA-Interim) observation-

based atmospheric forcing dataset (Weedon et al., 2011, 2014) from the eartH2Observe 

project (Schellekens et al., 2017), 

 Having a daily interactive coupling between ISBA and the CNRM (Centre National de 

Recherches Météorologiques) version of the TRIP (Total Runoff Integrating Pathways, Oki 95 

et al., 1998) river routing model (CTRIP hereafter) to simulate hydrological variables such as 

the river flow (Decharme et al. 2010). 

Section 2 presents the LDAS-Monde system, i.e. (i) the CO2 responsive version of the ISBA LSM 

and the soil diffusion scheme, (ii) the CTRIP hydrological model and its coupling with ISBA, (iii) 

the atmospheric forcing used to drive the system, (iv) the equations of the SEKF and (v) the 100 

assimilated remotely sensed observations dataset as well as the datasets used to assess the analysis 

impact. The latter is evaluated using agricultural statistics over France, river discharge, satellite-

derived estimates of land transpiration and spatially gridded estimates of up-scaled gross primary 

production from the FLUXNET network. Section 3 investigates and discusses the model sensitivity 

to the assimilated observations and provides a set of statistical diagnostics to assess and evaluate the 105 

analysis impact. Finally section 4 provides perspective and future research directions. 

 2  Materials and Method 

 2.1  SURFEX offline data assimilation 

The SURFEX modelling system includes the ISBA land surface model (Noilhan and Mahfouf, 1996) 

to calculate the soil/vegetation/snow energy and water budgets and is coupled to the TRIP (Total 110 

Runoff Integrating Pathways, Oki et al., 1998) river routing model in order to simulate the streamflow 

(SURFEX-CTRIP hereafter). SURFEX offline data assimilation implementation is used to set up a 

Land Data Assimilation System (LDAS) over Europe and the Mediterranean basin (longitudes from 

11.75˚W to 62.50˚E, latitudes from 25.00˚N to 75.50˚N). It is defined as an offline sequential data 

assimilation system based on the ISBA LSM. It is capable of ingesting information from various 115 

satellite-derived observations to analyse and update SM and LAI simulated by ISBA. Analysis of 

ISBA prognostic variables then have an impact on the CTRIP variables (e.g., river discharge) through 

an interactive daily coupling (Voldoire et al. 2017). The system is driven by WFDEI observations 

based atmospheric forcing dataset (Weedon et al., 2011, 2014). The main components of the LDAS 

(LSM, river routing system, analysis scheme and atmospheric forcing) are described in the following 120 



5 

sections. 

 2.1.1  ISBA Land Surface Model,  

ISBA models the basic land surface physics requiring only a small number of model parameters. The 

latter depend on the soil and vegetation types. This study uses of the CO2-responsive version of ISBA 

which is able to simulate the interaction between water and carbon cycles, photosynthesis and its 125 

coupling to stomatal conductance (Calvet et al., 1998, 2004; Gibelin et al., 2006). The CO2-responsive 

version of ISBA has been developed to allow for different biomass reservoirs for the simulation of 

photosynthesis and the vegetation growth. The dynamic evolution of the vegetation biomass and LAI 

variables is driven by photosynthesis in response to atmospheric and climate conditions. 

Photosynthesis enables vegetation growth resulting from the CO2 uptake. During the growing phase, 130 

enhanced photosynthesis corresponds to a CO2 uptake which results in vegetation growth from the 

LAI minimum threshold (prescribed as 1 m2m−2 for coniferous forest or 0.3 m2m−2 for other 

vegetation types). In contrast, a deficit of photosynthesis leads to higher mortality rates. The total 

evaporative flux represents the combination of the evaporation due to (i) plant transpiration, (ii) liquid 

water intercepted by leaves, (iii) liquid water contained in top soil layers, and (iv) the sublimation of 135 

the snow and soil ice. The CO2 uptake from photosynthesis is defined as the gross primary production 

(GPP) and the release of CO2 is called the ecosystem respiration (RECO). The Net ecosystem CO2 

exchange (NEE) measures the difference between these two quantities.  

ISBA has an explicit snow scheme (with 12 layers) as detailed in Bonne and Etchevers (2001) and 

Decharme et al. (2016). The multi-layer soil diffusion scheme version (ISBA-Dif) is based on the 140 

mixed form of the Richards’ equation (Richards, 1931) and explicitly solves the one-dimensional 

Fourier law. Additionally, ISBA-Dif incorporates soil freezing processes developed by Boone et al. 

(2000) and Decharme et al. (2013). The total soil profile is vertically discretised and the temperature 

and the moisture of each layer are computed according to the textural and hydrological characteristics. 

The Brookes and Corey model (Brooks and Corey, 1966) determines the closed-form equations 145 

between the soil moisture and the soil hydrodynamic parameters, including the hydraulic conductivity 

and the soil matrix potential (Decharme et al. 2013). A discretization with 14 layers over 12m depth 

is used. The lower boundary of each layer is: 0.01, 0.04, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 3, 5, 8 and 

12 m deep (see figure 1 of Decharme et. al., 2011). The amount of clay, sand and organic carbon 

present in the soil are determined by thermal and hydrodynamic soil properties (Decharme et al., 150 
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2016) and are taken from the Harmonised World Soil Database ( HWSD, Wieder et al., 2014). As for 

hydrology, the infiltration, surface evaporation and total runoff are accounted for in the soil water 

balance. The discrepancy between the surface runoff and the throughfall rate is defined by the 

infiltration rate.  

The throughfall rate is defined as the sum of rainfall that is not intercepted by the canopy, dripping 155 

from the canopy (interception reservoir) and snow melt water. Evaporation only affects the superficial 

layer, which represents the top 1 cm of soil. The soil evaporation is proportional to the relative 

humidity of the superficial layer. Transpiration water from the root zone (the region where the roots 

are asymptotically distributed) follows the equations in Jackson et al. (1996). More information on 

the root density profile is available in Canal et al. (2014). ISBA total runoff has two contributions: 160 

the surface runoff (the lateral subsurface flow in the topsoil) and a free drainage condition at the 

bottom layer. A basic TOPMODEL approach is used to compute the Dunne runoff (i.e. when no 

further soil moisture storage is available) and lateral subsurface flow from a subgrid distribution of 

the topography. The Horton runoff (i.e. when rainfall has exceeded infiltration capacity) is estimated 

from the maximum soil infiltration capacity and a subgrid exponential distribution of the rainfall 165 

intensity.  

 2.1.2  CTRIP river routing  

The present CTRIP version consists of a global streamflow network at 0.5° spatial resolution. The 

CTRIP model is driven by the three prognostic equations corresponding to the groundwater, the 

surface stream water and the seasonal floodplains. Streamflow velocity is computed using the 170 

Manning's formula (Decharme et al., 2010). The floodplain reservoir fills when the river water level 

overtops the riverbank and empties again when the water level drops below this threshold (Decharme 

et al., 2012). Flooding impacts the ISBA soil hydrology through infiltration. It also influences the 

overlying atmosphere via free surface water evaporation and precipitation interception. 

At last, the groundwater scheme (Vergnes and Decharme, 2012) is based on the two-dimensional 175 

groundwater flow equation for the piezometric head. Its coupling with ISBA permits accounting for 

the presence of a water table under the soil moisture column allowing upward capillary fluxes into 

the soil (Vergnes et al., 2014). CTRIP is coupled to ISBA through OASIS-MCT (Voldoire et al. 

2017). Once a day, ISBA provides CTRIP with updates on runoff, drainage, groundwater and 

floodplain recharges, CTRIP returns to ISBA the water table depth/rise, floodplain fraction, flood 180 
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potential infiltration. 

 2.1.3  Extended Kalman Filter 

This section describes the analysis update of the Extended Kalman Filter while its application setup 

is described in section 2.3.  

The analysis update equation of the Extended Kalman Filter is:  185 

௜ሻݐ௔ሺݔ = ௜ሻݐ௙ሺݔ + ௜ሻݐ௢ሺݕ௜൫ܭ − ℎ௜ൣݔ௙൧൯       (1) 

The “a”, “f” and “o” subscripts stand for analysis, forecast and observation, respectively. ݔ is the 

control vector of dimension ௫ܰ, computed at time ti, that represents the prognostic equations of the 

LSM ܯ. 

 ௜is computed at time ti as: 190ܭ ௢ is the observation vector of dimension ௬ܰ. The Kalman gain matrixݕ

௜ܭ = ்ܪܤܪሺ்ܪܤ + ܴሻିଵ         (2) 

A non-linear observation operator ℎ, enables the extraction of the model counterpart of the 

observations: 

௜ሻݐሺݕ = ℎሺݔሻ           (3) 

ܴ and ܤ  are error covariance matrices characterising the forecast and observations vectors. The cross-195 

correlated terms represent covariances. The operator ܪ (and its transpose ்ܪ) from Eq.2 is the 

Jacobian matrix: the linearized version of the observation operator (defined as ௬ܰ rows and 

௫ܰcolumns) that transforms the model states into the observations space. A numerical estimation of 

each Jacobian element is calculated by finite differences, by perturbing each component ݔ௝ of the 

control vector ݔ by a specific amount ݔߜ௝  resulting in a column of the matrix ܪfor each integration 200 

m: 

௠௝ܪ =
డ௬೘
డ௫ೕ

≈
௬೘൫௫ାఋ௫ೕ൯ି௬೘

ఋ௫ೕ
       (4) 

The control vector evolution from time ti to the end of the 24-hour assimilation window (ti+1) is then 

controlled by the following equation: 

௜ାଵሻݐ௙ሺݔ =  ௜ሻሿ         (5) 205ݐ௔ሺݔ௜ሾܯ
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In line with previous studies (e.g, Mahfouf et al., 2009; Albergel et al., 2010; Barbu et al., 2011; de 

Rosnay et al., 2013; Barbu et al., 2014; Fairbairn et al., 2015, 2017) a fixed estimate of the 

background-error variances and zero covariances at the start of each cycle are used leading to a 

Simplified version of the Extended Kalman Filter (SEKF hereafter). The initial state at the start of a 

24-hour assimilation window is analysed by assimilating the observations available over the previous 210 

24-hour assimilation window. This approach is similar to the “simplified 2-D-Var (2-dimensional 

variational data assimilation scheme)” proposed by Balsamo et al. (2004) but the increments are 

applied at the final timestep of the 24-hour assimilation window. Draper et al. (2009) found that the 

SEKF could generate flow-dependence from the 24-hour assimilation window and cycling the 

background-error covariance (as in the EKF) gave no additional benefit.  215 

 2.2  Data and data processing 

 2.2.1  WFDEI observations based atmospheric forcing dataset  

Atmospheric forcing from the WFDEI dataset (Weedon et al., 2011, 2014) is used to drive the LDAS. 

It spans the period 1979-2012 and contains three-hourly time intervals of: wind speed, atmospheric 

pressure, air temperature (averaged values are used), air humidity, incoming shortwave and longwave 220 

radiations and solid and liquid precipitation. WFDEI originates from the ECMWF ERA-Interim 

reanalysis (Dee et al., 2011) interpolated to a spatial resolution of 0.5o, and is corrected with the CRU 

dataset (Climatic Research Unit, Harris et al., 2014) using a sequential elevation correction of surface 

meteorological variables plus monthly bias correction from gridded observations (e.g., precipitation 

data from the Global Precipitation Climatology Centre; GPCC). A more exhaustive description of the 225 

dataset is available in Schellekens et al. (2017). 

 2.2.2  ESA CCI surface soil moisture 

This study makes use of a multi-sensor, long-term and global satellite-derived surface soil moisture 

dataset (Liu et al., 2011, 2012; Wagner et al., 2012 ; Dorigo et al., 2015, 2017) developed within The 

European Space Agency Water Cycle Multi-mission Observation Strategy (ESA-WACMOS) project 230 

and Climate Change Initiative (CCI, http://www.esa-soilmoisture-cci.org). Several authors (e.g., 

Albergel et al., 2013a, 2013b; Dorigo et al., 2015) have highlighted the quality and stability over time 

of the product. Despite some limitations, this data set has shown potential for assessing model 

performance (Szczypta et al., 2014; van der Schrier, et al., 2013), for investigating the connection 

between soil moisture and atmosphere–ocean oscillations (Bauer-Marschallinger et al., 2013) as well 235 
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as vegetation dynamics (Barichivich et al.,2014; Muñoz et al., 2014). This study uses the ESA CCI 

SM COMBINED latest version of the product (v03.2) which merges SM observations from seven 

microwave radiometers (SMMR, SSM/I, TMI, ASMR-E, WindSat, AMSR2, SMOS) and four  

scatterometers (ERS-1/2 AMI and MetOp-A/B ASCAT) into a harmonious dataset covering the 

period November 1978 to December 2015. For a more comprehensive overview of the ESA CCI SM 240 

see Dorigo et al, 2015, 2017.  

To assimilate SM data, it is important to rescale the observations such that they are consistent with 

the model climatology (Reichle and Koster, 2004; Drusch et al., 2005). The climatology of the SM 

data set is defined by the specific mean value, variability and dynamical range. The ISBA model 

climatology for each gridpoint is dependent on the dynamical range, which is calculated from the 245 

wilting point and field capacity parameters (functions of soil texture types). It is necessary to 

transform the ESA CCI SSM product into model equivalent SSM to address possible mis-

specification of physiographic parameters, such as the wilting point and the field capacity. The linear 

rescaling approach described in Scipal et al., 2008 (using the first two moments of the Cumulative 

Distribution Function, CDF) has been used in this study; it is a linear rescaling that enables a 250 

correction of the differences in the mean and variance of the distribution. The first two moments, the 

intercept a and the slope b are: 

ܽ = ௠ܯܵܵ − ܾ ×  ௢         (6)ܯܵܵ

ܾ =
ఙ೘
ఙ೚

           (7) 

Where ܵܵܯ௠, ܵܵܯ௢, ߪ௠ and ߪ଴ correspond to the model and observation means and standard 255 

deviations, respectively. Barbu et al., 2014 and Draper et al., 2011 discussed the importance of 

allowing for seasonal variability in the CDF matching. a and b parameters vary spatially and were 

derived on a monthly basis by using a three-month moving window over 2000 to 2012 after screening 

for presence of ice and urban areas.  The ESA CCI SSM observations are interpolated by an arithmetic 

average to the 0.5̊ model gridpoints. 260 

 2.2.3  GEOV1 Leaf Area Index 

The GEOV1 LAI is produced by the European Copernicus Global Land Service project 

(http://land.copernicus.eu/global/). The LAI observations are retrieved from the SPOT-VGT and 

PROBA-V (from 1999 to present) satellite data according to the methodology discussed in Baret et 
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al. (2013). Following Barbu et al. (2014), the 1 km resolution observations are interpolated by an 265 

arithmetic average to the 0.5̊ model gridpoints, as long as 50% of the observation gridpoints are 

observed (half the maximum amount). LAI observations have a temporal frequency of 10 days. Both 

SSM and LAI observed data set are illustrated in Figure 1Figure 1 presenting averaged values over 

2000-2012. Figure 1Figure 1 also illustrates the studied domain. 

 2.2.4  Evaluation data sets and strategies 270 

A common diagnostic in data assimilation is to compute (1) differences between the assimilated 

observations and the model background, called the innovations, and (2) differences between the 

assimilated observations and the analysis, called the residuals (Barbu et al., 2011). Assuming that the 

system is working well, residuals have to be reduced compared to the innovations. 

After evaluating innovations and residuals of SSM and LAI, analysis impact is assessed using (1) 275 

agricultural statistics over France, (2) observed river discharge over Europe, (3) satellite-derived 

estimates of terrestrial evapotranspiration from the Global Land Evaporation Amsterdam Model 

(GLEAM, Martens et al., 2016) and (4) spatially gridded estimates of up-scaled Gross Primary 

Production (GPP) and evapotranspiration from the FLUXNET network (Jung et al., 2009, 2011). 

Smith et al. (2010a, b) demonstrated that crop simulations can be validated by agricultural statistics 280 

on a country scale. With a finer spatial scale over France, Calvet et al. (2012) benchmarked several 

configurations of the ISBA LSM using agricultural statistics (Agreste, 2016), namely the correlation 

between yield time series and above-ground biomass (Bag) simulations. In ISBA, Bag of herbaceous 

vegetation is made up of two components: the active biomass and the structural biomass. The former 

describes the photosynthetically active leaves and is linked to Bag by a nitrogen dilution allometric 285 

logarithmic law (Calvet and Soussana, 2001). Calvet et al. (2012), found that Bag simulated by the 

model is in agreement with the agricultural statistics, and therefore can be used to benchmark 

model/system development.  Yearly statistical surveys over France are provided by the Agreste portal 

(http://agreste.agriculture.gouv.fr/). This has enabled a database of annual straw cereal grain yield 

(GY) values to be established. The GY estimates are available according to administrative unit 290 

(département) and per crop type. Following Calvet et al. (2012), Canal et al. (2014) and Dewaele et 

al. (2017), the GY values for rainfed straw cereals over 45 départements are used, which include 

barley, oat, rye, triticale and wheat. Simulated and analysed annual maximum of Bag are compared to 

GY estimates following the methodology from Dewaele et al. (2017). Although SURFEX does not 
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directly represent GY, it is assumed that the regional-scale simulations of above-ground biomass from 295 

a generic LSM can provide the inter-annual variability as a proxy for GY (Calvet et al., 2012; Canal 

et al., 2014).  

Over 2000-2010, simulated and analysed river discharge are compared to gauging measurements 

from the Global Runoff Data Center (GRDC; http://grdc.sr.unh.edu/index.html) and the Banque 

Hydro (http://www.hydro.eaufrance.fr/) at a monthly time step. Data are chosen over the domain 300 

presented in Figure 1Figure 1 for sub-basins with large drainage areas (10000km2 or greater) and with 

a long observation time series (4 years or more). It is common to express observed and simulated 

river discharge (Q) data in m3s−1. However, given that the observed drainage areas may differ slightly 

from the simulated ones, scaled Q-values in mm.d−1 (the ratio of Q to the drainage area) are used in 

this study. Stations with drainage areas differing by more than 15% from the simulated (analysed) 305 

ones are also discarded. This leads to 83 stations. Impact on Q is evaluated using correlation, RMSD 

as well as the efficiency score (݂݂ܧ) (Nash and Sutcliff, 1970). ݂݂ܧ evaluates the model’s ability to 

represent the monthly discharge dynamics and is given by: 

݂݂ܧ = 1 −
∑ ൫ொೞ

೘೟ିொ೚
೘೟൯

మ೅
೘೟సభ

∑ ቀொ೚
೘೟ିொ೚

೘೟ቁ
మ

೅
೘೟సభ

         (8) 

where ܳ௦௧ is the simulated river discharge (or analysed) at time t and ܳ௢௧  is observed river discharge 310 

at month  mt. The ݂݂ܧ can vary between –∞ and 1. A value of 1 corresponds to identical model 

predictions and observed data. A value of 0 implies that the model predictions have the same accuracy 

as the mean of the observed data. Negative values indicate that the observed mean is a more accurate 

predictor than the model simulation.  

The GLEAM product uses a set of algorithms to estimate terrestrial evaporation and root-zone SM 315 

from satellite data (Miralles et al., 2011).  It is a useful validation tool given that such quantities are 

difficult to measure directly at large scales. The global evaporation model in GLEAM is mainly 

driven by microwave remote sensing observations, while potential evaporation rates are constrained 

by satellite derived SM data. It is a well-established dataset that has been widely used to study trends 

and spatial variability in the hydrological cycle (e.g., Jasechko et al., 2013; Greve et al., 2014; 320 

Miralles et al., 2014a; Zhang et al., 2016) and land–atmosphere feedbacks (e.g., Miralles et al., 2014b; 

Guillod et al., 2015). This study makes use of the latest version available, v3.0. It is a 35-year data 

set spanning from 1980 to 2014 and is derived from a variety of sources, namely vegetation optical 
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depth (VOD) and snow water equivalents (SWE), satellite-derived soil moisture (SM), reanalysis air 

temperature and radiation and a multi-source precipitation product (Martens et al., 2016). It is 325 

available at a spatial resolution of 0.25o. Martens et al. (2016), provide a full description of the dataset 

including an extensive validation using measurements from 64 eddy-covariance towers worldwide. 

The up-scaled FLUXNET GPP and evapotranspiration were derived from the FLUXNET network 

using a model tree ensemble (FLUXNET-MTE hereafter) approach as described in Jung et al. (2009). 

It is a machine learning technique that can be trained to ascertain land-atmosphere fluxes, providing 330 

a way of benchmarking LSMs at large scales (Jung et al., 2009, 2010; Beer et al., 2010; Bonan et al., 

2011; Jung et al., 2011; Slevin et al., 2016 in review). The machine learning algorithm is trained using 

a combination of land cover data, observed meteorological data and remotely sensed vegetation 

properties (fraction of absorbed photosynthetic active radiation). The algorithm uses model tree 

ensembles to provide estimates of carbon fluxes at FLUXNET sites with available quality-filtered 335 

flux data, after which the trained model can be implemented globally using grids of the input data 

(Jung et al., 2009, 2011). It is limited to a 0.5o spatial resolution and a monthly temporal resolution 

over a 20-year period (1982-2011). It can be found in the Max Planck Institute for Biogeochemistry 

Data Portal (https://www.bgc-jena.mpg.de/geodb/projects/Home.php).   

 2.3  Experimental setup  340 

The LDAS used in this study is designed as follow; ݔ is the 8-dimensional control vector including 

soil layers 2 to 8 (representing a depth from 1 cm to 100cm) and LAI propagated by ISBA LSM. ݕ௢ 

is the 2-dimensional observation vector (SSM, LAI). The model counterparts of the observations are 

the second layer of soil of ISBA LSM (ݓଶ between 1 and 4 cm) and LAI for SSM and LAI 

observations, respectively. A comparison between ESA CCI SM and the two top ISBA soil layers 345 

suggests that the second layer of soil better represents the satellite-derived product (not shown). Also 

the first layer of soil (1 cm depth) is discarded from the control vector as over a 24-hour window it is 

more reactive to the atmospheric forcing than to a small initial perturbation (Draper et al., 2011, Barbu 

et al, 2014). This leads to the following expression of the Jacobians matrices: 

ܪ = ൮

డௌௌெ೟

డ௅஺ூబ
డௌௌெ೟

డ௪మ
బ . . .

డ௅஺ூ೟

డ௅஺ூబ
డ௅஺ூ೟

డ௪మ
బ . . .

డௌௌெ೟

డ௪ఴ
బ

డ௅஺ூ೟

డ௪ఴ
೚

൲     (9)  350 

Several studies (e.g. Draper et al. 2009; Rüdiger et al., 2010) have demonstrated that small 
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perturbations (10-3 or less) lead to a good approximation of this linear behaviour, provided that 

computational round-off error is not significant. Following Draper et al. (2011), Mahfouf et al. (2009), 

the soil moisture errors are assumed to be proportional to the dynamic range (the difference between 

the volumetric field capacity (ݓ௙௖) and the wilting point (ݓ௪௜௟௧), which is determined by the soil 355 

texture (Noilhan and Mahfouf [1996]); in this study the Jacobian perturbations were assigned values 

of 1. 10ିସ × ൫ݓ௙௖ −  ௪௜௟௧൯. Following Rüdiger et al. (2010), the LAI perturbation was set to aݓ

fraction (0.001) of the LAI itself. In this configuration, for every 24-hour analysis cycle, the LSM is 

run several times; first to get the model trajectory (forecast), then perturbing the initial conditions of 

the various control variables, allowing computation of the various terms of the Jacobians (Eq.4).  360 

For soil moisture in the second layer of soil, i.e. the model equivalent of the SSM observations, a 

mean volumetric standard deviation error of 0.04 m3m−3 is prescribed. A smaller mean volumetric 

standard deviation error of  0.02 m3m−3 is prescribed to the deeper layers, as suggested by several 

authors for RZSM (Mahfouf et al., 2009; Draper et al., 2011; Barbu et al., 2011, 2014).  The 

observational SSM error is set to 0.05 m3m−3 as in Barbu et al., 2014. This value is consistent with 365 

errors estimated from a range of remotely sensed soil moisture sources (e.g. de Jeu et al., 2008; Draper 

et al., 2011; Gruber et al., 2016). Soil moisture observational and background errors are also scaled 

by the model soil moisture range. The error standard deviations in the GEOV1 LAI and the modelled 

LAI (for modelled LAI values higher than 2 m2m−2) are both assumed to be equal to 20% of the LAI 

values. In accordance with a study by Barbu et al. (2011), the modelled LAI values lower than 2 370 

m2m−2 are assigned a constant error of 0.4 m2m−2. 

SURFEX-CTRIP was spun up by cycling twenty times through the year 1990, then a 10-yr model 

run is allowed before considering both an open-loop (a model run with no assimilation) and an 

analysis experiment over 2000-2012. Diagnostic studies of the Jacobian values have usually been 

performed before including new observations types (Chevallier and Mahfouf, 2001, Fillion and 375 

Mahfouf, 2003, Garand et al., 2001 and Rudiger et al., 2010). That is why, following Rudiger et al., 

2010, an analysis experiment without assimilating any observations has also been run over 2000-2012 

to study the model sensitivity to the observations through the Jacobians. Table 1Table 1 summarizes 

the SURFEX-CTRIP set-up used in this study. 

Table 1: Summary of the experimental setup used in this study. “Dif” indicates that the diffusion 
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scheme of the ISBA LSM is used, ‘NIT’ represents the biomass option selected. 

Model Domaine Atm. Forcing 
Data 

Assimilation 
Method 

Assimilated Obs. 
Observation 

Operator 

Control 
Variables 

Additional 
Option 

ISBA 
model, 
options 
Dif and 

NIT 

 

Europe and the 
Mediterranean 

basin (0.5°) 

 

EartH2Observe/WFDEI 

 

SEKF 

SSM 

(http://www.esa-soilmoisture-
cci.org) 

LAI 

(http://land.copernicus.eu/global/) 

Second layer 
of soil (1-

4cm), 

LAI 

Layers of 
soil 2 to 8            

(1-100cm), 

LAI 

Coupling 
with CTRIP 

(0.5°) 

 3  Results  380 

 3.1  Consistency between the model and observations 

Consistency over time is crucial when assimilating long-term datasets. Several authors assessed the 

consistency of the ESA CCI soil moisture product with respect to re-analysis products (e.g., Loew et. 

al., 2013; Albergel et. al., 2013a; 2013b) and in-situ measurements (Dorigo et. al., 2015, 2017). 

Lambin et al. (1999) found that the GEOV1 LAI data set is also consistent over time and can be used 385 

e.g. for detection of change and for providing information on shifting trends or trajectories in land 

use and cover change. To verify the results from literature for the spatial and temporal domain 

considered in this study a consistency evaluation both for SSM and LAI against the open-loop 

experiment has been performed. As observed SSM climatology is matched to the model climatology 

(see section 2.2.2.), consistency between observations and the model over time (2000-2012) is 390 

expressed as correlations on both absolute and anomaly time-series. The latter is computed using 

monthly sliding windows as described in Albergel et al. (2009). Only significant correlations values 

(at p-value<0.005) are retained. For LAI consistency is expressed both as correlations and Root Mean 

Square Differences (RMSD). 

Median soil moisture correlation (anomaly correlation), of ESA CCI SSM with SURFEX-CTRIP 395 

second layer of soil, ݓଶbetween 1 and 4 cm, is 0.65 (0.47) over 2000-2012. Year-to-year correlation 

(anomaly correlation), which can potentially be impacted by the prevailing conditions in the given 

years, ranges from 0.62 (0.45) to 0.71 (0.48). Although many different sensors are used over time and 

space to retrieve ESA CCI SSM, the product can be considered stable. Over the same period, 

correlation and Root Mean Square Differences (RMSD) between GEOV1 LAI and SURFEX-CTRIP 400 

is 0.75 and 0.85 m2m-2, correlations range from 0.72 in 2000 to 0.77 in 2012. RMSD values are 
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relatively stable too with a minimum value of 0.76 m2m-2 in 2002 and a maximum of 0.91 m2m-2 in 

2007. Figure 2Figure 2 (blue line) illustrates seasonal RMSDs (fig. 2a) and correlations (fig. 2b) 

between LAI from the open-loop and the GEOV1 LAI estimates over 2000-2012. From fig. 2a, a 

strong seasonal dependency of RMSD is noticeable with values close to 1 m2m-2 from June to 405 

October. During these months correlation is better with values between 0.75 and 0.85. Too large 

RMSD values observed in winter time are not desirable since the vegetation is supposed to be 

dormant. 

Overall both ESA CCI SSM and GEOV1 LAI were found stable over time with respect to SURFEX-

CTRIP, as illustrated in Figure 3Figure 3 for 2000, 2006 and 2012. Figure 3Figure 3 top row illustrates 410 

correlations between ESA CCI SSM and SURFEX-CTRIP (ݓଶ). While in 2000 not all of Europe is 

covered, it is the case from 2003 onwards. Low correlations values are found in desert areas (over the 

Sahara), high elevation (e.g. over the Alps) and at high latitudes whereas high correlations values are 

obtained over e.g., the Iberian Peninsula, France and Turkey. Figure 3Figure 3 middle and bottom 

rows present the correlations and RMSD values respectively for GEOV1 LAI with SURFEX-CTRIP, 415 

only for vegetated  grid points (>90%). Generally, LAI at high elevation is not represented well (low 

correlations and high RMSD) as well as in the northeastern part of the domain, which is mainly 

covered by broad-leaves trees. Conversely, the southern part of the domain presents high level of 

correlations and low RMSD values. 

 3.2  Model sensitivity to observations 420 

The Jacobians, ܪ (Eq.4) are dependent on the model physics. Their examination provides useful 

insight in explaining the data assimilation system performances (Barbu et al., 2011, Fairbairn et al., 

2017). Median values over 2000-2012 are presented in Table 2Table 2.   

 

 425 

Table 2 : Median Jacobians values for the eight control variables considered in this study over the 
whole spatial domain for 2000-2012. 

2000-2012 

௧ܯ߲ܵܵ

଴ܫܣܮ߲
 

 

௧ܯ߲ܵܵ

ଶݓ߲
଴  

1-4 cm 

௧ܯ߲ܵܵ

ଷݓ߲
଴  

4-10 cm 

௧ܯ߲ܵܵ

ସݓ߲
଴  

10-20 cm 

௧ܯ߲ܵܵ

ହݓ߲
଴  

20-40 cm 

௧ܯ߲ܵܵ

଺ݓ߲
଴  

40-60 cm 

௧ܯ߲ܵܵ

଻ݓ߲
଴  

60-80 cm 

௧ܯ߲ܵܵ

଼ݓ߲
଴  

80-100 cm 
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Median -0.0010 0.1719 0.1543 0.0694 0.0275 0.0043 0.0006 0.0001 

 

௧ܫܣܮ߲

଴ܫܣܮ߲
 

 

௧ܫܣܮ߲

ଶݓ߲
଴  

1-4 cm 

௧ܫܣܮ߲

ଷݓ߲
଴  

4-10 cm 

௧ܫܣܮ߲

ସݓ߲
଴  

10-20 cm 

௧ܫܣܮ߲

ହݓ߲
଴  

20-40 cm 

௧ܫܣܮ߲

଺ݓ߲
଴  

40-60 cm 

௧ܫܣܮ߲

଻ݓ߲
଴  

60-80 cm 

௧ܫܣܮ߲

଼ݓ߲
଴  

80-100 cm 

Median 0.2220 0.0006 0.0015 0.0032 0.0068 0.0038 0.0011 0.0006 

The model equivalent of SSM is the second layer of soil (ݓଶbetween 1 and 4 cm depth). It is then 

expected that the sensitivity of SSM to changes in soil moisture of that layer is higher than those of 

the other layers of soil. Sensitivity of LAI to changes in soil moisture (Table 2Table 2, bottom rows) 

suggests that control variables related to soil moisture will also be impacted by the assimilation of 

LAI. The model sensitivity to SSM decreases with depth as presented in Table 2Table 2 revealing 430 

that the assimilation of SSM will be more effective in modifying soil moisture from the first layers. 

Over Europe, median values of ܪ with respect to SSM observations (Table 2Table 2 top rows) range 

from 0.1719 to 0.0001 for layers ݓଶ to ଼ݓ, respectively and is –0.0001 for LAI. The negative value 

of 
డௌௌெ೟

డ௅஺ூబ
 also indicates that a positive increments of LAI will generally lead to a decrease of SSM 

 over 435 ܪ The depth impact is also illustrated in Figure 4Figure 4 which represents histograms of .(ଶݓ)

Europe for three control variables (ݓଶin red, ݓସin cyan and ଼ݓin blue) with respect to a change in 

SSM for six months (January, March, June, August, October, December) over 2000-2012 (Figure 

4Figure 4, a to f). Additionally Figure 4Figure 4 depicts a seasonal dependency. For instance, the 

histogram representing ܪ of control variable ݓଶ(Figure 4Figure 4,a) presents mainly three types, (1) 

values close or equal to 0 (type_A), (2) values between 0.2 and 0.8 (type_B) and (3) close to 1 440 

(type_C). The values of type_C correspond to the situation in which the model dynamic is close to 

the identity i.e. the perturbation of the initial state is almost unchanged by the end of the assimilation 

window (24h). For values of type_B, the model dynamic is strongly dissipative and therefore the final 

offset is only a fraction of the initial perturbation. Distributions of types A, B, C vary in time; while 

for January they are 75%, 14% and 11%, for June they are 36%, 44% and 20% and for October 48%, 445 

30% and 22%, respectively. It suggests a higher sensitivity of the first layers of soil to a change in 

SSM, particularly during late summer and autumn than during winter months. While a similar 

behaviour is observed up to the fourth layer of soil, the deepest layers of soil (e.g. ଼ݓ, blue line) do 

not show any seasonal dependency, and very small sensitivity with mainly Jacobian’s values of type 
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A. 450 

The same typology can apply to ܪ values 
డ௅஺ூ೟

డ௅஺ூబ
 (Figure 4Figure 4, g, h, i), with an even stronger 

seasonal dependency. For all Januaries, distributions are 81%, 18% and 1%, while they are 22%, 77% 

and 1% for Junes and 27%, 45% and 28% for Octobers for types A, B and C, respectively. 

Assimilation of LAI will be more effective in modifying LAI from late spring to autumn. Finally,  the 

assimilation of LAI will be more effective in modifying soil moisture from layers 4 to 6 (Table 2Table 455 

2) where most of the roots are present for the different vegetation types from ISBA (between 20 cm 

and 60 cm, see Table 1 of Decharme et al., 2013). 

 3.3  Impact of the analysis on control variables 

Control variables are directly impacted by the assimilation of LAI and SSM, Figure 5Figure 5 

illustrates averaged analysis increments for the period 2000-2012 for LAI and soil moisture in ݓଶ 460 

(between 1 cm and 4 cm), ݓସ (between 10 cm and 20 cm) and ݓ଺ (between 40 cm and 60 cm) for all 

months of February, May, August and October. Red (blue) colours indicate that the analysis removes 

(adds) LAI and soil moisture. At the beginning of the year vegetation is not very active, but on the 

very western part of the domain the analysis tends to add LAI over the United Kingdom, northwestern 

parts of France and it reduces LAI over the Iberian Peninsula. At the beginning of the year soil 465 

moisture is only slightly affected by the analysis. Later in spring and summer the analysis is more 

efficient: it removes LAI over a large part of Europe reducing the bias observed between open-loop 

and observations. It mainly adds water in ݓଶ and remove water from layers ݓସ to ݓ଺. The seasonally 

marked impact of the analysis is consistent with the above description of the Jacobians behaviour. 

Analysis increments are also presented in Figure 6Figure 6 for the entire period 2000-2012. 470 

Generally, the analysis tends to remove LAI, add water in ݓଶ but dries layers where the roots are 

mainly located (from ݓସ to ݓ଺). Its effect is however less pronounced at greater depths. 

Figure 7Figure 7 shows the averaged analysis impact on LAI for all months of January, April, July 

and October over 2000-2012 expressed in RMSD in the following way: GEOV1 LAI vs. open-loop 

and GEOV1 LAI vs. analysis. Only points where observed LAI is available (and assimilated) are 475 

retained. As this impact assessment is conducted against the observations that were assimilated, 

improvements from the analysis are expected and shows that the LDAS is working well. From Figure 

7Figure 7, this is mostly the case (e.g. in October). As indicated in section 3.2, the analysis is most 
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efficient during late summer and autumn. The geographical patterns highlighted in section 3.1 are 

also observed with a clear improvement, e.g. in the northeastern part of the domain. Analysis 480 

improvement with respect to the observations is also visible in Figure 7Figure 7. 

Figure 8Figure 8 illustrates histograms of innovations (in red) and residuals (in green) of LAI for all 

months of February, April, June, August, October and December over 2000-2012. As expected, the 

distribution of residuals is more centred on 0 than the distribution of the innovations. A seasonal 

pattern can be observed:  during the growing phase (and up to June) both innovations and residuals 485 

present a right tail indicating that the model (and the analysis to a lesser extent) tends to underestimate 

LAI. In this period, similarities between innovations and residuals suggest that the analysis is not very 

efficient. At the end of summer and in autumn distributions present a left tail distribution; LAI is 

overestimated but this time the analysis is more efficient. Distributions of SSM residuals are even 

more centred on zero than those of innovations with no seasonal dependency and smaller differences 490 

(not shown). The common CDF-matching technique applied to SSM to remove systematic errors is 

responsible for this smaller impact as the LDAS can only correct SSM short term variability. Contrary 

to SSM, the LAI mismatch between the open-loop and the GEOV1 estimates concerns both 

magnitude and timing (see e.g. Figure 6 in Barbu et al. (2014)).  

Figure 9Figure 9 presents averaged differences over 2000-2012 between the open-loop and the 495 

analysis for other land surface variables that are indirectly impacted by the assimilation, namely: daily 

cumulated soil drainage flux, supersaturation runoff, evapotranspiration and daily mean river 

discharge. Although the analysis impact is relatively weak on those variables (e.g. ~1% on the river 

discharge represented over the Danube) geographical patterns are observed. Areas where positive 

analysis increments were found for LAI (Figure 5Figure 5) tend to correspond to a decrease in 500 

drainage and runnoff (in red on Figure 9Figure 9) while evapotranspiration increases (in blue Figure 

9Figure 9). Changes in these, indirectly impacted land surface variables are in agreement with the 

analysis increments maps (Figure 6Figure 6).  

 3.4  Evaluation of analysis impact  

First, the evaluation of the analysis impact is effectuated over France using straw cereal grain yield 505 

(GY) values from the Agreste French agricultural statistics portal. Only the ‘département’ 

administrative units corresponding to a high proportion of straw cereals are considered. Yearly 

maximal above ground biomass (Bag) values from the open-loop (i.e model) and analysis are 
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compared to GY over 2000-2010. Yearly-scaled anomalies from the mean and the standard deviation 

for observations, open-loop and analysis are used for 45 sites over France as in Dewaele et al. (2017). 510 

Figure 10Figure 10a and 10b present correlations and RMSD values, respectively and Figure 

10Figure 10c time-series for one site illustrating the inter-annual variability. After assimilation of 

SSM and LAI, correlation as well as RMSD between Bag and GY is clearly improved for 43 and 41 

sites, respectively, out of 45 sites showing the added value of the analysis compared to the open-loop. 

Figure 10Figure 10c presents Bag from the open-loop (black dashed line) and analysis (black solid 515 

line) as well as observed GY (red solid line) scaled anomaly times-series for one site in Allier, France 

(46.09oN-3.21oE). Correlations and RMSD for open-loop and analysis experiments are 0.45 and 0.99, 

0.78 and 0.63, respectively. 

Over 2000-2010, 48 of 83 gauge stations present ݂݂ܧ values greater than 0 and 22 gauge stations 

report ݂݂ܧ greater than 0.5. As suggested in the previous section, the analysis impact on river 520 

discharge is rather small. If the analysis generally leads to an improvement in river discharge 

representation, only 8 stations present an ݂݂ܧ increase greater than to 0.05 (3 stations report a 

decrease greater than 0.05). ݂݂ܧ, R and RMSD histograms of differences are presented in Figure 

11Figure 11 (b, c and d) along with a hydro-graph (Fig.11a) for the Loire River in France (47.25oN, 

1.52oW). Although the assimilation impact is relatively small, evaluation results suggest that they are 525 

neutral to positive. Analysis impact on other CTRIP variables (e.g., floodplain fraction and storage, 

groundwater height) is rather neutral. 

Evapotranspiration from both the open-loop and the analysis are compared to monthly values of 

GLEAM satellite-derived estimates over 2000-2012 for vegetated grid points (>90%). As for the river 

discharge, the assimilation impact on evapotranspiration is small. However the comparison with the 530 

GLEAM satellite-derived estimates is rather positive, as illustrated in Figure 12Figure 12 representing  

evapotranspiration from the open-loop (Fig.12a) , GLEAM estimates (Fig.12b), the analysis (Fig.12c) 

and their differences (Fig.12d). Open-loop simulation of evapotranspiration tends to over-estimate 

the GLEAM product over most of Europe, particularly over France and the Iberian Peninsula, North 

Africa. Analysis is able to reduce this bias (Figure 12Figure 12d). Figure 14 shows maps of RMSD 535 

(Fig.14a) and correlations (Fig.14b) differences: scores between the analysis and the GLEAM 

estimates minus scores between the open-loop and the GLEAM estimates. Most of the pixels present 

negative values for differences in RMSD (76% fig.14 a) indicating that for those pixels RMSDs from 
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the analysis are smaller than those from the open-loop. Most of the pixels present positive values for 

differences in correlations (80% fig.14 b indicating that for those pixels correlations from the analysis 540 

are higher than those from the open-loop. It shows the added value of the analysis when compared to 

an open-loop. Evapotranspiration from the open-loop and analysis has also been evaluated using 

FLUXNET-MTE estimates of evapotranspiration (2000-2011). Results are illustrated by Figure 12e 

to h and Figure 14e and f. They are similar of those obtained using GLEAM estimates: over the whole 

domain most of the pixels present negative values for differences in RMSD (70%), most of the pixels 545 

present positive values for differences in correlation (79%). 

As for evapotranspiration, GPP from both the open-loop and the analysis are compared to monthly 

GPP estimates from FLUXNET-MTE dataset. Figure 12Figure 12 illustrates averaged carbon uptake 

by GPP over land for 2000-2011 from the open-loop (Fig.13a), FLUXNET-MTE (Fig.13b) and the 

analysis (Fig.13c) as well as differences between the analysis and the model (Fig.13d). Also, Figures 550 

14 c) and d) show RMSD and correlation differences between the open-loop or the analysis and 

FLUXNET-MET dataset (analysis minus open-loop). Finally Figure 15 presents seasonal scores over 

the same period (fig. 15a: RMSD values and fig. 15b: Correlation values). Compared to the 

FLUXNET-MTE estimates, the open-loop tends to underestimate GPP over the Scandinavian 

countries, the northwestern part of France, UK and Ireland, north of the Caspian Sea while an 555 

overestimation is visible over most of the Iberian peninsula, Eastern Europe as well as the north-

eastern part of the domain (Figure 14, a, b). From Figures 14 d) and e) and Figure 15 one may notice 

that after assimilation of SSM and LAI there is a clear improvement in the GPP representation for 

RMSD and correlation with a systematic seasonal decrease and increase of the scores, respectively. 

Over the whole domain, 79% and 90% of the grid points present better RMSD and correlation values, 560 

respectively, after assimilation with respect to the FLUXNET-MTE estimates of GPP. 

 4  Discussion 

 4.1  Towards different data assimilation techniques to improve the analysis 

This study introducing the LDAS-Monde is based on a Simplified version of an Extended Kalman 

filter. Although a version of an Ensemble Kalman Filter is available (EnKF, Evensen, 1994), to date 565 

SEKF is the most mature technique developed for land surface data assimilation within SURFEX. 

Many studies using SURFEX exposed the strengths and weaknesses of this technique (Mahfouf et. 

al., 2009, Albergel et. al., 2010., Draper et. al., 2011, Barbu et al., 2011, 2014, Duerinckx et. al., 2015, 
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Fairbairn et. al., 2015, 2017). The SEKF relies on accurate linear assumptions in deriving the 

Jacobians. Draper et al. (2009), Duerinckx et. al. (2015) and Fairbairn et al. (2015) pointed out that 570 

outliers in Jacobian’s values may occur under specific conditions (e.g. close to threshold values like 

the wilting point and field capacity for soil moisture) possibly leading to instabilities in the analysis. 

Those outliers in the Jacobian’s values were however obtained using the force-restore version of the 

ISBA LSM with three layers of soil and not with the diffusion soil scheme: ISBA-Dif. In such 

configuration they used only one control variable related to soil moisture; the second layer of soil that 575 

was a thick layer representing all the root-zone (ݓଶିோ௓) while the model equivalent was the very thin 

top layer (~ 1cm). Thus 
డௌௌெ೟

డ௪మషೃೋ
బJacobians, representing the impact of perturbing ݓଶ(i.e. the whole 

root-zone) on SSM (~ 1cm) can be quite different compared to those obtained using the soil diffusion 

scheme and presented in this study (e.g., where ݓଶand SSM representing the same depth; 1-4 cm). 

For instance, 
డௌௌெ೟

డ௪మషೃೋ
బJacobians exhibit a rather large proportion of negative values as illustrated by 580 

Figure 10 of Fairbairn et al. (2017) and discussed in Parrens et al. (2014). Very few negative Jacobian 

values are obtained with the diffusion soil scheme (as in Figure 4Figure 4) over Europe for 2000-

2012. The SEKF is also limited in correcting errors from the atmospheric forcing uncertainty making 

the too reliant on the chosen forcing. Alternatively an EnKF, which relies on the ensemble spread to 

capture background errors, can be modified to stochastically capture both model and precipitation 585 

errors (Maggioni et al., 2012; Carrera et al., 2015). The use of an EnKF within LDAS-Monde is 

currently under investigation at Meteo-France. Alternatively, particle filters could provide a means 

to capture non-Gaussian errors (e.g., Moradkhani et al., 2012).  

The performance of an analysis scheme depends on appropriate statistics for background and 

observation errors. Wrongly specified error parameterisation may negatively affect the analysis. The 590 

main objective of this study was to present the newly developed LDAS-Monde while the statistics 

for background and observation errors were obtained from the literature. Soil moisture observations 

and background errors were scaled using the open-loop soil moisture dynamical range. The accounts 

for texture-based spatial variability in the error and assumes that the soil moisture errors and the 

dynamic range have a linear relationship. Time correlations in the errors have also been neglected in 595 

this study, which are likely to occur in reality. It is also possible to employ an a-posteriori diagnostic 

to estimate observation errors, such as the statistics of the innovations (observations-minus-

background) (Andersson, 2003; Mahfouf et al., 2007). This approach has been successfully applied 
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by Barbu et al. (2011) on a point scale experiment to obtain seasonal error variability, the approach 

does not provide objective estimates of the observational errors but assesses the sub-optimality of the 600 

analysis. Future work will investigate having spatially and temporally variant observations errors, 

based on statistical methods already applied to the ESA CCI SSM dataset like triple-collocation 

(Dorigo et al., 2015) or error decomposition (Su et al., 2016). 

Having LAI estimates every 10 days while using 24h assimilation window may also trigger analysis 

discrepancies, as between two LAI assimilations the system relies only on SSM assimilation. When 605 

a large analysis update occurs on LAI (from the assimilation of LAI), it then tends to go back towards 

the model states in the successive days before being constrained again by the next observations. For 

instance, in winter most of the 
డ௅஺ூ೟

డ௅஺ூబ
Jacobians are equal (or close) to zero and therefore the analysis 

update caused the LAI to return almost instantaneously to the incorrect LAI minimum value. This 

issue could be addressed using longer assimilation windows, from 10 days up to one month (e.g. as 610 

in Jarlan et al., 2008) where different data assimilation techniques could be used (e.g. variational 

methods to obtain a best fit between several observations). An alternative could be to keep a 1-day 

assimilation window and use smoothing techniques (e.g. Munier et al., 2014) to keep the benefit of 

the analysis update by propagating the error covariance forward up to the next available observation. 

 4.2  Can better use of the observations improve the analysis? 615 

 4.2.1  Towards a better use of GEOV1 Leaf Area Index 

SURFEX_v8.0 does not use any crop-specific parameterisation, which would be required to simulate 

the crop grain yield formation. In addition, the simulations of photosynthesis and vegetation growth 

do not take into account certain factors impacting the long-term agricultural production (e.g., changes 

in agricultural practices, diseases, pests, crop migration, the grain formation and crop cultivars). 620 

However, previous studies (Calvet et al., 2012, Canal et al., 2014) showed that agricultural statistics 

like grain yields can be used to benchmark SURFEX development in representing the above ground 

biomass inter-annual variability. A strong positive impact from the assimilation of SSM and LAI on 

the representation of above ground biomass inter-annual variability has been highlighted in this study. 

The impact on river discharge representation is only small (section 3.3). Improvements are however 625 

expected from a better representation in the model of vegetation parameter like LAI (e.g., Szczypta 

et al., 2014). Although the analysis is efficient in correcting LAI, high RMSD values remain, 
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particularly during the senescence phase when SURFEX-CTRIP over-estimate LAI over a large part 

of Europe. RMSD and correlations with GEOV1 and SURFEX-CTRIP still expose a strong seasonal 

dependency after the analysis (red line on Figure 2Figure 2) which is mainly attributed to model 630 

errors. The GEOV1 estimates have been shown to exhibit some realistic environmental features that 

are not, or poorly, simulated by the model (Fairbairn et al., 2017). Therefore, it was decided not to 

rescale the GEOV1 estimates to the model climatology. 

Figure 2 also suggests that the minimum LAI values used as model parameters (see section 2.1.1) 

should be revisited because such large differences are not desirable particularly when the vegetation 635 

is dormant. Another caveat of this study is the use of a single LAI value for all vegetation types that 

are represented in SURFEX-CTRIP. As detailed in Barbu et al. (2014), the Kalman gain is calculated 

for each individual vegetation type (patch). The analysis increment is added to the background for 

each patch, producing a patch-dependent analysis update. The patch-dependence is introduced in the 

Kalman gain via the Jacobian elements. The possibility of having LAI estimates for each type of 640 

vegetation is under investigation and has the capacity of overcoming the two above-mentioned 

weaknesses. Recently, the GEOV1 LAI data has been disaggregated following a Kalman filtering 

technique developed by Carrer et al. (2014). This enables the LAI signal for each patch to be separated 

within the pixel, which provides a dynamic patch-dependent estimate of the assimilated LAI within 

the pixel (Munier et al., 2017, in prep.). From the individual estimates over 1999-2015, minimum 645 

LAI values have also been used to update the model parameterisation. Preliminary results from 

assimilating disaggregated LAI time series and using new LAI minimum values (not shown) suggest 

better representation of vegetation variables like LAI and above-ground biomass as well as an 

enhanced representation of river discharge compared to an open-loop simulation using the former 

LAI minimum values. Better performances from the assimilation of disaggregated LAI are also 650 

expected on the representation of evapotranspiration.  

 4.2.2  Towards a better use of microwave satellite observations for soil moisture 

ESA CCI SM is based on multiple microwave sources from space, namely passive radiometer 

brightness temperature (Tb) observations and active radar backscatter (ߪ௢) observations. As they are 

both indirectly related to soil moisture, retrieval methods making use of e.g. radiative transfer model 655 

(for Tb, Kerr et al., 2012) or change-detection approaches (for ߪ௢, Wagner et al., 1999) are usually 

required to transform Tb and ߪ௢ into soil moisture values that can be assimilated in LSMs. Despite 
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the proven record of assimilating retrieved soil moisture from point scale to regional and continental 

scale (e.g. Albergel et al., 2010 ; Draper et al., 2012; Matgen et al., 2012; De Rosnay et al., 2013; 

Barbu et al., 2014; Wanders et al., 2014; Ridler et al., 2014), there is an increasing tendency towards 660 

the direct assimilation of Tb and ߪ௢ observations (De Lannoy et al., 2013; Han et al., 2014; Lievens 

et al., 2015, Lievens et al., 2017). Retrieval methods usually make use of land surface parameters and 

auxiliary information, like vegetation, texture and temperature, possibly proving inconsistencies with 

specific model simulations (which also include these parameters but potentially from different 

sources). Also, if retrievals and model simulations rely on similar types of auxiliary information, their 665 

errors may be cross-correlated, potentially degrading the system performance (De Lannoy and 

Reichle, 2016). The direct assimilation of Tb and ߪ௢ observations requires that the LSM is coupled to 

a radiative transfer model that serves as a forward operator for predicting ߪ௢and/or Tb. It has the 

advantage of allowing for consistent parameters and auxiliary inputs between the model simulations 

and the radiative transfer model, avoiding cross-correlated errors. The development of a forward 670 

operator for ߪ௢from active microwave instruments is under-way at Meteo-France; it will allow 

accounting for vegetation effects in the signal and using the vegetation information content of ߪ௢. 

 5   Conclusions  

This study provides an assessment of the LDAS-Monde implementation to increase monitoring 

accuracy for land surface variables over the Europe-Mediterranean area. Satellite-derived surface soil 675 

moisture and leaf area index are assimilated over 2000-2012 in the CO2-responsive and multilayer 

diffusion scheme version of the ISBA land surface model coupled with the CTRIP hydrological 

system. Joint assimilation of leaf area index and surface soil moisture has been shown to efficiently 

improve the representation of above-ground biomass, gross primary production and 

evapotranspiration, while having a neutral to positive impact on river discharge. To our knowledge, 680 

LDAS-Monde is the only system able to sequentially assimilate vegetation products together with 

soil moisture observations. LDAS-Monde permits an efficient monitoring of various land surface 

variable and has a powerful potential in monitoring extreme events like agricultural droughts at a 

global scale.  

The analysis of the Extended Kalman Filter observation operator Jacobians permitted to identifying 685 

both seasonal and soil depth effects of the assimilation on ISBA. A clear added value of the 

assimilation has been highlighted based on agricultural statistics over France, evapotranspiration and 
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gross primary production observations based estimates over the whole domain. More analysis impact 

could however be expected on variables like river discharge. Studies focusing on a better use of the 

observations along with other data assimilation techniques like the Ensemble Kalman Filter are 690 

currently under-way. Recent studies discussed in the previous section suggest that the direct 

assimilation of microwave observations of Tb and ߪ௢instead of Level 2 or 3 soil moisture products 

could leads to better results. The development of a forward operator for ߪ௢from active microwave 

instruments is under-way. The long-term confrontation of model and observations at continental scale 

prior to the assimilation has also highlighted parameterisation issues like the minimum leaf area index 695 

values used as threshold when the vegetation is dormant. The GEOV1 leaf area index estimates permit 

setting up new thresholds for the different vegetation patches used in ISBA thanks to the development 

of a disaggregated product resulting to new leaf area index estimates, different for each patch. The 

assimilation of this new product is also promising.  
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Code availability 
LDAS-Monde is a part of the ISBA land surface model and is available as open source via the surface 715 
modelling platform called SURFEX. SURFEX can be downloaded freely at http://www.cnrm-game-
meteo.fr/surfex/ using a CECILL-C Licence (a French equivalent to the L-GPL licence; 
http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.txt). It is updated at a relatively low 
frequency (every 3 to 6 months). If more frequent updates are needed, or if what is required is not in 
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Open-SURFEX (DrHOOK, FA/LFI formats, GAUSSIAN grid), you are invited to follow the 720 
procedure to get a SVN account and to access real-time modifications of the code (see the instructions 
at the first link). The developments presented in this study stemmed on SURFEX version 8.0 and are 
now part of the version 8.1 (revision number 4621).  
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Figures 1135 

 

Figure 1: Averaged (left) surface soil moisture from the Climate Change Initiative project of ESA 
(right) GEOV1 Leaf Area Index from the Copernicus Global Land Service project (for pixels covered 
by more than 90% of vegetation) over 2000-2012 

 

Figure 2: Seasonal a) RMSD and b) correlation values between leaf area index (LAI) from the open-
loop, analysis and GEOV1 LAI estimates from the Copernicus Global Land Service project over 
2000-2012. 
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Figure 3 : Top row, yearly averaged correlations between satellite-derived surface soil moisture from 
the Climate Change Initiative project from ESA and the second layer of soil of SURFEX-CTRIP (w2: 
1 cm-4 cm depth) for a) 2000, b) 2006 and c) 2012. d), e) and f) yearly averaged correlation between 
the GEOV1 leaf area index from the Copernicus Global Land Service project and SURFEX-CTRIP 
for 2000, 2006 and 2012, respectively. g), h) and i) same as d), e) and f) for RMSD. 
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Figure 4: Jacobian values distribution: a) to f), 
డௌௌெ೟

డ௪మ
బ (red line), 

డௌௌெ೟

డ௪ర
బ (cyan line) and 

డௌௌெ೟

డ௪ఴ
బ (blue 

line) all months of January, March, June, August, October and December over 2000-2012, g) to i), 
డ௅஺ூ೟

డ௅஺ூబ
(red line), 

డ௅஺ூ೟

డ௪ర
బ (cyan line) and 

డ௅஺ூ೟

డ௪ఴ
బ (blue line) for all months of January, June and October 

over 2000-2012. Black solid line represents a value of 0. 
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Figure 5 : Rows from top to bottom represent averaged analysis increments for all months of 
February, May, August and November over 2000-2012. From left to right for 4 control variables are 
illustrated, leaf area index and soil moisture in the second (w2, 1 cm- 4 cm), fourth (w4, 10 cm-20 cm) 
and sixth (w6, 40 cm – 60 cm) layer of soil, respectively. 
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Figure 6 : Averaged analysis increments for the whole period 2000-2012. Four control variables are 
illustrated: a) leaf area index and soil moisture in a) the second (w2, 1 cm- 4 cm), b) fourth (w4, 10 
cm-20 cm) and c) sixth (w6, 40 cm – 60 cm) layer of soil. 

 

 

 1155 

 



47 

 

 1165 

 

 

 

Figure 7: RMSD maps between leaf area index from the open-loop (analysis) and that from the 
Copernicus Global Land Service project GEOV1 index for a(b) January, e(f) April, c(d) July and e(f) 
October over 2000-2012. 
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Figure 9: Averaged analysis impact on land surface variables that are indirectly affected over the 
period 2000-2012: a) drainage, b) runoff, c) evapotranspiration and d) river discharge. 
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Figure 8 : Probability density function of innovation (observations-open-loop in red) and residuals 
(observations –analysis, in green) for Leaf Area Index for a) February, b) April, c) June, d) August, 
e) October and f) December over 2000-2012. Sampling (N) is reported on each panel. 
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Figure 10 : a) Correlation values for the above ground biomass from the open-loop with grain yields 
estimates from Agreste French agricultural statistics portal (http://agreste.agriculture.gouv.fr) over 
45 sites in France plotted against correlations between the same quantities but above ground biomass 
from the analysis; b) same as a) for RMSD values; c) scaled anomalies time-series of above ground 
biomass from the open-loop (black dashed line) the analysis (black solid line) and grain yields 
observations (red solid) for one site in Allier, France (46.09N-3.21E). 
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Figure 11 : a) hydrograph for the Loire River in France (47.25oN, 1.52oW) representing scaled river 
discharge Q (using either observed or simulated drainage areas), in situ data (blues dots), open-loop 
(green solid line) and analysis (red solid line); b) to d) histograms of Efficiency, Correlations and 
RMSDs differences between Q from the open-loop and the analysis compared to the observations for 
the 83 stations retained (see section 2.2.3 on evaluation strategy). 
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Figure 13 : Maps of averaged Gross Primary Production taken over 2000-2011 from a) the model 
(i.e open-loop), b) FLUXNET-MTE estimates, c) the analysis and d) differences between the analysis 
and model. 

Figure 12 : Top row: maps of averaged evapotranspiration taken over 2000-2012 from a) the model 
(i.e open-loop), b) the GLEAM estimates, c) the analysis and d) differences between the analysis and 
model. Bottom row: maps of averaged evapotranspiration taken over 2000-2011 from a) the model 
(i.e open-loop), b) FLUXNET-MTE estimates, c) the analysis and d) differences between the analysis 
and model. 
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Figure 14: RMSD (a) and Correlations (b) differences between analysed (modelled) 
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evapotranspiration and GLEAM estimates over 2000-2012. c) and d) are similar to a) and b) for 
Carbon mass flux out of the atmosphere due to Gross Primary Production (GPP) from the analysis 
(model), and FLUXNET-MTE GPP estimates over 2000-2011. Finally e) and f) are similar to a) and 
b) for analysed (modelled) evapotranspiration and FLUXNET-MTE evapotranspiration estimates 
over 2000-2011.    

Figure 15: Seasonal a) RMSD and b) correlation values between  the Carbon mass flux out of the 
atmosphere due to Gross Primary Production on land from the open-loop, analysis and FLUXNET-
MTE estimates over 2000-2011. 


