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Abstract. In this study, a global land data assimilation sys-
tem (LDAS-Monde) is applied over Europe and the Mediter-
ranean basin to increase monitoring accuracy for land sur-
face variables. LDAS-Monde is able to ingest informa-
tion from satellite-derived surface soil moisture (SSM) and
leaf area index (LAI) observations to constrain the inter-
actions between soil–biosphere–atmosphere (ISBA, Interac-
tions between Soil, Biosphere and Atmosphere) land surface
model (LSM) coupled with the CNRM (Centre National de
Recherches Météorologiques) version of the Total Runoff
Integrating Pathways (ISBA-CTRIP) continental hydrolog-
ical system. It makes use of the CO2-responsive version of
ISBA which models leaf-scale physiological processes and
plant growth. Transfer of water and heat in the soil rely on
a multilayer diffusion scheme. SSM and LAI observations
are assimilated using a simplified extended Kalman filter
(SEKF), which uses finite differences from perturbed sim-
ulations to generate flow dependence between the observa-
tions and the model control variables. The latter include LAI
and seven layers of soil (from 1 to 100 cm depth). A sensi-
tivity test of the Jacobians over 2000–2012 exhibits effects
related to both depth and season. It also suggests that ob-
servations of both LAI and SSM have an impact on the dif-
ferent control variables. From the assimilation of SSM, the
LDAS is more effective in modifying soil moisture (SM)
from the top layers of soil, as model sensitivity to SSM de-
creases with depth and has almost no impact from 60 cm

downwards. From the assimilation of LAI, a strong im-
pact on LAI itself is found. The LAI assimilation impact
is more pronounced in SM layers that contain the highest
fraction of roots (from 10 to 60 cm). The assimilation is
more efficient in summer and autumn than in winter and
spring. Results shows that the LDAS works well constrain-
ing the model to the observations and that stronger correc-
tions are applied to LAI than to SM. A comprehensive eval-
uation of the assimilation impact is conducted using (i) agri-
cultural statistics over France, (ii) river discharge observa-
tions, (iii) satellite-derived estimates of land evapotranspira-
tion from the Global Land Evaporation Amsterdam Model
(GLEAM) project and (iv) spatially gridded observation-
based estimates of upscaled gross primary production and
evapotranspiration from the FLUXNET network. Compar-
isons with those four datasets highlight neutral to highly pos-
itive improvement.

1 Introduction

Land surface models (LSMs) forced by gridded atmospheric
variables and their coupling with river routing models are im-
portant for understanding the terrestrial water and vegetation
cycles (Dirmeyer et al., 2006). These LSMs need to simu-
late biogeophysical variables such as surface, root zone soil
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moisture (SSM and RZSM, respectively) and leaf area index
(LAI) in a way that is fully consistent with the representation
of surface and energy flux and river discharge simulations.
Soil moisture (SM) is an essential component in partitioning
incoming water and energy over land, thus affecting the vari-
ability of evapotranspiration, runoff and energy fluxes (Mohr
et al., 2000). By controlling land surface temperature, plant
water stress, evapotranspiration and infiltration of precipita-
tion, soil moisture drives ecosystem dynamics, biodiversity
and food production; regulates CO2 emissions (uptake) from
the land surface; and impacts natural hazards such as floods
and droughts (Seneviratne et al., 2010). The role of soil mois-
ture as a regulator for various processes in the terrestrial
ecosystem such as plant phenology, photosynthesis, biomass
allocation and soil respiration, and hence the terrestrial car-
bon balance, has also clearly been established (Ciais et al.,
2005; Van der Molen et al., 2012; Carvalhais et al., 2014;
Reichstein et al., 2013). The seasonal dynamics of vegeta-
tion properties, such as LAI, are connected to soil moisture
dynamics (Kochendorfer and Ramirez, 2010). Both the sim-
ulation of hydrological processes and the exchange of water
vapour and CO2 between the vegetation canopy and atmo-
sphere interface are strongly influenced by LAI (Jarlan et al.,
2008; Szczypta et al., 2014).

Global observations of land surface variables are now op-
erationally available from spaceborne instruments and they
can be used to constrain LSMs through data assimilation
(DA) techniques as demonstrated by several authors (e.g. Re-
ichle et al., 2002; Draper et al., 2011, 2012; Dharssi et al.,
2011; Barbu et al., 2011; de Rosnay et al., 2013, 2014; Barbu
et al., 2014; Boussetta et al., 2015; Fairbain et al., 2017). Re-
cent studies (e.g. Traore et al., 2014) have demonstrated that
a model that performs best for soil moisture does not nec-
essarily perform best for plant productivity, highlighting the
need to jointly use soil moisture and vegetation observations
to improve global and continental eco-hydrological and/or
carbon cycle models (Wang et al., 2012; Kaminski et al.,
2013). Several studies demonstrated the benefit of jointly as-
similating SSM and LAI on the representation of RZSM (e.g.
Sabater et al., 2008) and CO2 flux (e.g. Albergel et al., 2010;
Barbu et al., 2011).

Within the SURFEX modelling system (SURFace EX-
ternalisée, Masson et al., 2013) the CO2-responsive ver-
sion of the ISBA (Interaction Sol-Biosphère-Atmosphère: in-
teraction between soil–biosphere–atmosphere) LSM (Noil-
han and Mahfouf, 1996; Calvet et al., 1998, 2004; Gibelin
et al., 2006) allows the representation of various land sur-
face processes, including evapotranspiration and SM evolu-
tion. It is also capable of modelling photosynthesis and veg-
etation growth. The evolution of the simulated LAI and veg-
etation biomass changes in response to the meteorological
forcing conditions. In previous studies, Barbu et al. (2014)
and Fairbairn et al. (2017) tested a combined assimilation of
SSM and LAI in this CO2-responsive version of ISBA over
France within SURFEX. They used the force-restore version

of ISBA (with three layers of soil), a simplified formula-
tion of an extended Kalman filter (SEKF) with a 24 h as-
similation window and hourly meteorological forcing from
the SAFRAN reanalysis (Système d’Analyse Fournissant
des Renseignements Atmosphériques à la Neige, Quintana-
Seguıet al., 2008; Habets et al., 2008) on an 8 km scale. Fair-
bairn et al. (2017), also made a posterior offline use of runoff
and drainage fields from ISBA to run the MODCOU hydro-
logical model (MODèle COUplé, Habets et al., 2008) to eval-
uate the added value of the joint assimilation of LAI and
SSM on the representation of river discharge over France.
However, the assimilation was not successful in improving
the representation of river discharge within MODCOU com-
pared to an open-loop (i.e. no assimilation) simulation. Fol-
lowing their work, the present study tests the assimilation of
both satellite-derived SSM and LAI on the continental scale.
Further steps are made by the following:

– using the most recent SURFEX_v8.0 Offline Data As-
similation implementation;

– considering a much larger domain (Europe and the
Mediterranean basin) as well as a longer time period,
2000–2012;

– using the multi-layer soil diffusion scheme of ISBA de-
veloped by Decharme et al. (2011).

– assimilating a long-term, global-scale, multi-sensor and
satellite-derived surface soil moisture dataset (ESA CCI
SSM, Liu et al., 2011, 2012; Dorigo et al., 2015, 2017)
along with satellite-derived LAI (GEOV1, http://land.
copernicus.eu/global/);

– using the modified version of the WFDEI (WATCH-
Forcing-Data-ERA-Interim) observation-based atmo-
spheric forcing dataset (Weedon et al., 2011, 2014) from
the eartH2Observe project (Schellekens et al., 2017);

– having a daily interactive coupling between ISBA
and the CNRM (Centre National de Recherches
Météorologiques) version of the TRIP (Total Runoff In-
tegrating Pathways, Oki et al., 1998) river routing model
(CTRIP hereafter) to simulate hydrological variables
such as the river flow (Decharme et al., 2010).

Section 2 presents the LDAS-Monde system, i.e. (i) the CO2-
responsive version of the ISBA LSM and the soil diffusion
scheme, (ii) the CTRIP hydrological model and its coupling
with ISBA, (iii) the atmospheric forcing used to drive the
system, (iv) the equations of the SEKF, and (v) the assim-
ilated remotely sensed observation dataset as well as the
datasets used to assess the analysis impact. The latter is
evaluated using agricultural statistics over France, river dis-
charge, satellite-derived estimates of land transpiration and
spatially gridded estimates of upscaled gross primary pro-
duction from the FLUXNET network. Section 3 investigates
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and discusses the model sensitivity to the assimilated obser-
vations and provides a set of statistical diagnostics to assess
and evaluate the analysis impact. Finally Sect. 4 provides per-
spective and future research directions.

2 Materials and method

2.1 SURFEX offline data assimilation

The SURFEX modelling system includes the ISBA land sur-
face model (Noilhan and Mahfouf, 1996) to calculate the
soil, vegetation, snow energy and water budgets and is cou-
pled to the TRIP (Oki et al., 1998) river routing model in or-
der to simulate the streamflow (SURFEX–CTRIP hereafter).
SURFEX offline data assimilation implementation is used to
set up a land data assimilation system (LDAS) over Europe
and the Mediterranean basin (longitudes from 11.75◦W to
62.50◦ E, latitudes from 25.00 to 75.50◦ N). It is defined as an
offline sequential data assimilation system based on the ISBA
LSM. It is capable of ingesting information from various
satellite-derived observations to analyse and update SM and
LAI simulated by ISBA. Analysis of ISBA prognostic vari-
ables then have an impact on the CTRIP variables (e.g. river
discharge) through an interactive daily coupling (Voldoire
et al., 2017). The system is driven by WFDEI observation-
based atmospheric forcing dataset (Weedon et al., 2011,
2014). The main components of the LDAS (LSM, river rout-
ing system, analysis scheme and atmospheric forcing) are de-
scribed in the following sections.

2.1.1 ISBA land surface model

ISBA models the basic land surface physics requiring only
a small number of model parameters. The latter depend on
the soil and vegetation types. This study uses the CO2-
responsive version of ISBA, which is able to simulate the
interaction between water and carbon cycles, photosynthe-
sis, and its coupling to stomatal conductance (Calvet et al.,
1998, 2004; Gibelin et al., 2006). The CO2-responsive ver-
sion of ISBA has been developed to allow for different
biomass reservoirs for the simulation of photosynthesis and
the vegetation growth. The dynamic evolution of the vegeta-
tion biomass and LAI variables is driven by photosynthesis
in response to atmospheric and climate conditions. Photo-
synthesis enables vegetation growth resulting from the CO2
uptake. During the growing phase, enhanced photosynthe-
sis corresponds to a CO2 uptake, which results in vegeta-
tion growth from the LAI minimum threshold (prescribed as
1 m2 m−2 for coniferous forest or 0.3 m2 m−2 for other vege-
tation types). In contrast, a deficit of photosynthesis leads to
higher mortality rates. The total evaporative flux represents
the combination of the evaporation due to (i) plant transpi-
ration, (ii) liquid water intercepted by leaves, (iii) liquid wa-
ter contained in top soil layers, and (iv) the sublimation of
the snow and soil ice. The CO2 uptake from photosynthe-

sis is defined as the gross primary production (GPP) and the
release of CO2 is called the ecosystem respiration (RECO).
The net ecosystem CO2 exchange (NEE) measures the dif-
ference between these two quantities.

ISBA has an explicit snow scheme (with 12 layers),
as detailed in Bonne and Etchevers (2001) and Decharme
et al. (2016). The multi-layer soil diffusion scheme ver-
sion (ISBA-Dif) is based on the mixed form of the
Richards equation (Richards, 1931) and explicitly solves
the one-dimensional Fourier law. Additionally, ISBA-Dif
incorporates soil freezing processes developed by Boone
et al. (2000) and Decharme et al. (2013). The total soil profile
is vertically discretized and the temperature and the mois-
ture of each layer are computed according to the textural and
hydrological characteristics. The Brookes and Corey model
(Brooks and Corey, 1966) determines the closed-form equa-
tions between the soil moisture and the soil hydrodynamic
parameters, including the hydraulic conductivity and the soil
matrix potential (Decharme et al., 2013). A discretization
with 14 layers over 12 m depth is used. The lower bound-
ary of each layer is 0.01, 0.04, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.5,
2, 3, 5, 8 and 12 m deep (see Fig. 1 of Decharme et al., 2011).
The amounts of clay, sand and organic carbon present in the
soil are determined by thermal and hydrodynamic soil prop-
erties (Decharme et al., 2016) and are taken from the Har-
monised World Soil Database (HWSD, Wieder et al., 2014).
As for hydrology, the infiltration, surface evaporation and to-
tal runoff are accounted for in the soil water balance. The
discrepancy between the surface runoff and the throughfall
rate is defined by the infiltration rate.

The throughfall rate is defined as the sum of rainfall that is
not intercepted by the canopy, dripping from the canopy (in-
terception reservoir), and snow melt water. Evaporation only
affects the superficial layer, which represents the top 1 cm
of soil. The soil evaporation is proportional to the relative
humidity of the superficial layer. Transpiration water from
the root zone (the region where the roots are asymptotically
distributed) follows the equations in Jackson et al. (1996).
More information on the root density profile is available in
Canal et al. (2014). ISBA total runoff has two contributions:
the surface runoff (the lateral subsurface flow in the topsoil)
and a free drainage condition at the bottom layer. A basic
TOPMODEL approach is used to compute the Dunne runoff
(i.e. when no further soil moisture storage is available) and
lateral subsurface flow from a sub-grid distribution of the to-
pography. The Horton runoff (i.e. when rainfall has exceeded
infiltration capacity) is estimated from the maximum soil in-
filtration capacity and a sub-grid exponential distribution of
the rainfall intensity.

2.1.2 CTRIP river routing

The present CTRIP version consists of a global stream-
flow network at 0.5◦ spatial resolution. The CTRIP model
is driven by the three prognostic equations corresponding
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to the groundwater, the surface stream water and the sea-
sonal floodplains. Streamflow velocity is computed using the
Manning formula (Decharme et al., 2010). The floodplain
reservoir fills when the river water level overtops the river-
bank and empties again when the water level drops below
this threshold (Decharme et al., 2012). Flooding impacts the
ISBA soil hydrology through infiltration. It also influences
the overlying atmosphere via free surface water evaporation
and precipitation interception.

At last, the groundwater scheme (Vergnes and Decharme,
2012) is based on the two-dimensional groundwater flow
equation for the piezometric head. Its coupling with ISBA
permits the presence of a water table under the soil mois-
ture column to be accounted for, allowing upward capillary
fluxes into the soil (Vergnes et al., 2014). CTRIP is cou-
pled to ISBA through OASIS-MCT (Voldoire et al., 2017).
Once a day, ISBA provides CTRIP with updates on runoff,
drainage, groundwater and floodplain recharges, and CTRIP
returns to ISBA the water table depth or rise, floodplain frac-
tion, and flood potential infiltration.

2.1.3 Extended Kalman filter

This section describes the analysis update of the extended
Kalman filter while its application setup is described in
Sect. 2.3.

The analysis update equation of the extended Kalman filter
is as follows:

xa (ti)= xf (ti)+Ki

(
yo (ti)−hi [xf]

)
. (1)

The “a”, “f” and “o” subscripts stand for analysis, forecast
and observation, respectively. The term x denotes the control
vector of dimension Nx , computed at time ti , that represents
the prognostic equations of the LSM M .

The term yo denotes the observation vector of dimension
Ny . The Kalman gain matrix Ki is computed at time ti as
follows:

Ki = BHT
(

HBHT
+R

)−1
. (2)

A non-linear observation operator h enables the extraction of
the model counterpart of the observations:

y (ti)= h(x) . (3)

B and R are error covariance matrices characterizing the
forecast and observation vectors. The cross-correlated terms
represent covariances. The operator H (and its transpose HT )
from Eq. (2) is the Jacobian matrix: the linearized version
of the observation operator (defined as Ny rows and Nx
columns) that transforms the model states into the observa-
tion space. A numerical estimation of each Jacobian element
is calculated by finite differences, by perturbing each com-
ponent xj of the control vector x by a specific amount δxj ,
resulting in a column of the matrix H for each integration m:

Hmj =
∂ym

∂xj
≈
ym
(
x+ δxj

)
− ym

δxj
. (4)

The control vector evolution from time ti to the end of the
24 h assimilation window (ti+1) is then controlled by the fol-
lowing equation:

xf (ti+1)=Mi [xa (ti)] . (5)

In line with previous studies (e.g, Mahfouf et al., 2009; Al-
bergel et al., 2010; Barbu et al., 2011, 2014; de Rosnay et al.,
2013; Fairbairn et al., 2015, 2017) a fixed estimate of the
background-error variances and zero covariances at the start
of each cycle are used, leading to a SEKF. The initial state
at the start of a 24 h assimilation window is analysed by as-
similating the observations available over the previous 24 h
assimilation window. This approach is similar to the “simpli-
fied 2-D-Var (two-dimensional variational data assimilation
scheme)” proposed by Balsamo et al. (2004), but the incre-
ments are applied at the final timestep of the 24 h assimila-
tion window. Draper et al. (2009) found that the SEKF could
generate flow dependence from the 24 h assimilation window
and that cycling the background-error covariance (as in the
EKF) gave no additional benefit.

2.2 Data and data processing

2.2.1 WFDEI observation-based atmospheric forcing
dataset

Atmospheric forcing from the WFDEI dataset (Weedon
et al., 2011, 2014) is used to drive the LDAS. It spans the pe-
riod 1979–2012 and contains 3-hourly time intervals of wind
speed, atmospheric pressure, air temperature (averaged val-
ues are used), air humidity, incoming shortwave and long-
wave radiations, and solid and liquid precipitation. WFDEI
originates from the ECMWF ERA-Interim reanalysis (Dee
et al., 2011), interpolated to a spatial resolution of 0.5◦,
and is corrected with the CRU dataset (Climatic Research
Unit, Harris et al., 2014) using a sequential elevation correc-
tion of surface meteorological variables plus monthly bias
correction from gridded observations (e.g. precipitation data
from the Global Precipitation Climatology Centre; GPCC).
A more exhaustive description of the dataset is available in
Schellekens et al. (2017).

2.2.2 ESA CCI surface soil moisture

This study makes use of a multi-sensor, long-term and
global satellite-derived surface soil moisture dataset (Liu
et al., 2011, 2012; Wagner et al., 2012; Dorigo et al.,
2015, 2017) developed within The European Space Agency
Water Cycle Multi-mission Observation Strategy (ESA-
WACMOS) project and Climate Change Initiative (CCI,
http://www.esa-soilmoisture-cci.org). Several authors (e.g.
Albergel et al., 2013a, b; Dorigo et al., 2015) have high-
lighted the quality and stability over time of the product.
Despite some limitations, this dataset has shown potential
for assessing model performance (Szczypta et al., 2014;
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Figure 1. Averaged (a) surface soil moisture from the Climate Change Initiative project of ESA. (b) GEOV1 leaf area index from the
Copernicus Global Land Service project (for pixels covered by more than 90 % of vegetation) over 2000–2012.

van der Schrier et al., 2013), for investigating the connec-
tion between soil moisture and atmosphere–ocean oscilla-
tions (Bauer-Marschallinger et al., 2013) as well as vegeta-
tion dynamics (Barichivich et al.,2014; Muñoz et al., 2014).
This study uses the ESA CCI SM COMBINED latest ver-
sion of the product (v03.2) which merges SM observations
from seven microwave radiometers (SMMR, SSM/I, TMI,
ASMR-E, WindSat, AMSR2, SMOS) and four scatterome-
ters (ERS-1 and 2 AMI and MetOp-A and B ASCAT) into
a harmonious dataset covering the period November 1978 to
December 2015. For a more comprehensive overview of the
ESA CCI SM see Dorigo et al. (2015, 2017).

To assimilate SM data, it is important to rescale the ob-
servations such that they are consistent with the model cli-
matology (Reichle and Koster, 2004; Drusch et al., 2005).
The climatology of the SM dataset is defined by the spe-
cific mean value, variability and dynamical range. The ISBA
model climatology for each grid point is dependent on the dy-
namical range, which is calculated from the wilting point and
field capacity parameters (functions of soil texture types). It
is necessary to transform the ESA CCI SSM product into
model-equivalent SSM to address possible mis-specification
of physiographic parameters, such as the wilting point and
the field capacity. The linear rescaling approach described in
Scipal et al. (2008) (using the first two moments of the cumu-
lative distribution function, CDF) has been used in this study;
it is a linear rescaling that enables a correction of the differ-
ences in the mean and variance of the distribution. The first
two moments, the intercept a and the slope b, are as follows:

a = SSMm− b ·SSMo, (6)

b =
σm

σo
, (7)

where SSMm, SSMo, σm and σo correspond to the model
and observation means and standard deviations (SDs), re-
spectively. Barbu et al. (2014) and Draper et al. (2011) dis-
cussed the importance of allowing for seasonal variability in
the CDF matching. Parameters a and b vary spatially and

were derived on a monthly basis by using a 3-month mov-
ing window over 2000–2012 after screening for the presence
of ice and urban areas. The ESA CCI SSM observations are
interpolated by an arithmetic average to the 0.5◦ model grid
points.

2.2.3 GEOV1 leaf area index

The GEOV1 LAI is produced by the European Coperni-
cus Global Land Service project (http://land.copernicus.eu/
global/). The LAI observations are retrieved from the SPOT-
VGT and PROBA-V (from 1999 to present) satellite data ac-
cording to the methodology discussed in Baret et al. (2013).
Following Barbu et al. (2014), the 1 km resolution observa-
tions are interpolated by an arithmetic average to the 0.5◦

model grid points, as long as 50 % of the observation grid
points are observed (half the maximum amount). LAI ob-
servations have a temporal frequency of 10 days. Both SSM
and LAI observed datasets are illustrated in Fig. 1, which
presents averaged values over 2000–2012. Figure 1 also il-
lustrates the studied domain.

2.2.4 Evaluation datasets and strategies

A common diagnostic in data assimilation is to compute
Eq. (1) differences between the assimilated observations and
the model background, called the innovations, and Eq. (2)
differences between the assimilated observations and the
analysis, called the residuals (Barbu et al., 2011). Assuming
that the system is working well, residuals have to be reduced
compared to the innovations.

After evaluating innovations and residuals of SSM and
LAI, analysis impact is assessed using Eq. (1) agricultural
statistics over France, Eq. (2) observed river discharge over
Europe, Eq. (3) satellite-derived estimates of terrestrial evap-
otranspiration from the Global Land Evaporation Amsterdam
Model (GLEAM, Martens et al., 2017) and Eq. (4) spatially
gridded estimates of upscaled GPP and evapotranspiration
from the FLUXNET network (Jung et al., 2009, 2011).
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Smith et al. (2010a, b) demonstrated that crop simulations
can be validated by agricultural statistics on a country scale.
With a finer spatial scale over France, Calvet et al. (2012)
benchmarked several configurations of the ISBA LSM us-
ing agricultural statistics (Agreste, 2016), namely the corre-
lation between yield time series and above-ground biomass
(Bag) simulations. In ISBA, Bag of herbaceous vegetation
is made up of two components: the active biomass and the
structural biomass. The former describes the photosyntheti-
cally active leaves and is linked to Bag by a nitrogen dilu-
tion allometric logarithmic law (Calvet and Soussana, 2001).
Calvet et al. (2012), found that Bag simulated by the model
is in agreement with the agricultural statistics, and there-
fore can be used to benchmark model and system develop-
ment. Yearly statistical surveys over France are provided by
the Agreste portal (http://agreste.agriculture.gouv.fr/). This
has enabled a database of annual straw-cereal grain yield
(GY) values to be established. The GY estimates are avail-
able according to administrative unit (département) and per
crop type. Following Calvet et al. (2012), Canal et al. (2014)
and Dewaele et al. (2017), the GY values for rainfed straw
cereals over 45 départements are used, which include bar-
ley, oat, rye, triticale and wheat. Simulated and analysed an-
nual maximum of Bag are compared to GY estimates follow-
ing the methodology from Dewaele et al. (2017). Although
SURFEX does not directly represent GY, it is assumed that
the regional-scale simulations of above-ground biomass from
a generic LSM can provide the inter-annual variability as
a proxy for GY (Calvet et al., 2012; Canal et al., 2014).

Over 2000–2010, simulated and analysed river discharge
is compared to gauging measurements from the Global
Runoff Data Center (GRDC; http://grdc.sr.unh.edu/index.
html) and the Banque Hydro (http://www.hydro.eaufrance.
fr/) at a monthly time step. Data are chosen over the domain
presented in Fig. 1 for sub-basins with large drainage areas
(10 000 km2 or greater) and with a long observation time se-
ries (4 years or more). It is common to express observed and
simulated river discharge (Q) data in cubic metres per second
(m3 s−1). However, given that the observed drainage areas
may differ slightly from the simulated ones, scaled Q val-
ues in millimetres per day (mmd−1, the ratio of Q to the
drainage area) are used in this study. Stations with drainage
areas differing by more than 15 % from the simulated (anal-
ysed) ones are also discarded. This leads to 83 stations. Im-
pact on Q is evaluated using correlation, root mean square
difference (RMSD) and the efficiency score (Eff) (Nash and
Sutcliffe, 1970). Eff evaluates the model’s ability to represent
the monthly discharge dynamics and is given by the follow-
ing:

Eff= 1−

∑T
mt=1

(
Qmt
s −Q

mt
o
)2∑T

mt=1

(
Qmt

o −Q
mt
o

)2 , (8)

where Qt
s is the simulated river discharge (or analysed) at

time t , and Qt
o is observed river discharge at month mt. The

Eff can vary between−∞ and 1. A value of 1 corresponds to
identical model predictions and observed data. A value of 0
implies that the model predictions have the same accuracy
as the mean of the observed data. Negative values indicate
that the observed mean is a more accurate predictor than the
model simulation.

The GLEAM product uses a set of algorithms to estimate
terrestrial evaporation and root-zone SM from satellite data
(Miralles et al., 2011). It is a useful validation tool given
that such quantities are difficult to measure directly on large
scales. The global evaporation model in GLEAM is mainly
driven by microwave remote sensing observations, while po-
tential evaporation rates are constrained by satellite-derived
SM data. It is a well-established dataset that has been widely
used to study trends and spatial variability in the hydrological
cycle (e.g. Jasechko et al., 2013; Greve et al., 2014; Miralles
et al., 2014a; Zhang et al., 2016) and land–atmosphere feed-
backs (e.g. Miralles et al., 2014b; Guillod et al., 2015). This
study makes use of the latest version available, v3.0. It is
a 35-year dataset spanning from 1980 to 2014 and is derived
from a variety of sources, namely vegetation optical depth
(VOD) and snow water equivalents (SWEs), satellite-derived
SM, reanalysis air temperature and radiation, and a multi-
source precipitation product (Martens et al., 2017). It is avail-
able at a spatial resolution of 0.25◦. Martens et al. (2017)
provide a full description of the dataset, including an exten-
sive validation using measurements from 64 eddy-covariance
towers worldwide.

The upscaled FLUXNET GPP and evapotranspiration
were derived from the FLUXNET network using a model
tree ensemble (FLUXNET-MTE hereafter) approach as de-
scribed in Jung et al. (2009). It is a machine learning tech-
nique that can be trained to ascertain land–atmosphere fluxes,
providing a way of benchmarking LSMs on large scales
(Jung et al., 2009, 2010; Beer et al., 2010; Bonan et al., 2011;
Jung et al., 2011; Slevin et al., 2017). The machine learn-
ing algorithm is trained using a combination of land cover
data, observed meteorological data and remotely sensed veg-
etation properties (fraction of absorbed photosynthetic active
radiation). The algorithm uses model tree ensembles to pro-
vide estimates of carbon fluxes at FLUXNET sites with avail-
able quality-filtered flux data, after which the trained model
can be implemented globally using grids of the input data
(Jung et al., 2009, 2011). It is limited to a 0.5◦ spatial resolu-
tion and a monthly temporal resolution over a 20-year period
(1982–2011). It can be found in the Max Planck Institute for
Biogeochemistry Data Portal (https://www.bgc-jena.mpg.de/
geodb/projects/Home.php).

2.3 Experimental setup

The LDAS used in this study is designed as follows: x is the
eight-dimensional control vector including soil layers 2 to 8
(representing a depth from 1 to 100 cm) and LAI propagated
by the ISBA LSM. The term yo denotes the two-dimensional
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observation vector (SSM, LAI). The model counterparts of
the observations are the second layer of soil of ISBA LSM
(w2 between 1 and 4 cm) and LAI for SSM and LAI obser-
vations, respectively. A comparison between ESA CCI SM
and the two top ISBA soil layers suggests that the second
layer of soil better represents the satellite-derived product
(not shown). Also, the first layer of soil (1 cm depth) is dis-
carded from the control vector as, over a 24 h window, it is
more reactive to the atmospheric forcing than to a small ini-
tial perturbation (Draper et al., 2011; Barbu et al., 2014). This
leads to the following expression of the Jacobians matrices:

H=


∂SSMt

∂LAI0
∂SSMt

∂w0
2

. . .

∂LAIt

∂LAI0
∂LAIt

∂w0
2

. . .

∂SSMt

∂w0
8

∂LAIt

∂w0
8

 . (9)

Several studies (e.g. Draper et al., 2009; Rüdiger et al., 2010)
have demonstrated that small perturbations (10−3 or less)
lead to a good approximation of this linear behaviour, pro-
vided that computational round-off error is not significant.
Following Draper et al. (2011) and Mahfouf et al. (2009),
the soil moisture errors are assumed to be proportional to the
dynamic range (the difference between the volumetric field
capacity, wfc, and the wilting point, wwilt), which is deter-
mined by the soil texture (Noilhan and Mahfouf, 1996); in
this study the Jacobian perturbations were assigned values of
1×10−4

×(wfc−wwilt). Following Rüdiger et al. (2010), the
LAI perturbation was set to a fraction (0.001) of the LAI it-
self. In this configuration, for every 24 h analysis cycle, the
LSM is run several times: first to get the model trajectory
(forecast), then perturbing the initial conditions of the var-
ious control variables, allowing computation of the various
terms of the Jacobians (Eq. 4).

For soil moisture in the second layer of soil, i.e. the model
equivalent of the SSM observations, a mean volumetric SD
error of 0.04 m3 m−3 is prescribed. A smaller mean volu-
metric SD error of 0.02 m3 m−3 is prescribed to the deeper
layers, as suggested by several authors for RZSM (Mahfouf
et al., 2009; Draper et al., 2011; Barbu et al., 2011, 2014).
The observational SSM error is set to 0.05 m3 m−3 as in
Barbu et al. (2014). This value is consistent with errors esti-
mated from a range of remotely sensed soil moisture sources
(e.g. de Jeu et al., 2008; Draper et al., 2011; Gruber et al.,
2016). Soil moisture observational and background errors are
also scaled by the model soil moisture range. The error SDs
in the GEOV1 LAI and the modelled LAI (for modelled LAI
values higher than 2 m2 m−2) are both assumed to be equal to
20 % of the LAI values. In accordance with a study by Barbu
et al. (2011), the modelled LAI values lower than 2 m2 m−2

are assigned a constant error of 0.4 m2 m−2.
SURFEX–CTRIP was spun up by cycling 20 times

through the year 1990, and then a 10-year model run is al-
lowed before considering both an open loop (a model run
with no assimilation) and an analysis experiment over 2000–

2012. Diagnostic studies of the Jacobian values have usu-
ally been performed before, including new observation types
(Chevallier and Mahfouf, 2001; Fillion and Mahfouf, 2003;
Garand et al., 2001; Rudiger et al., 2010). That is why, fol-
lowing Rudiger et al. (2010), an analysis experiment with-
out assimilating any observations has also been run over
2000–2012 to study the model sensitivity to the observations
through the Jacobians. Table 1 summarizes the SURFEX–
CTRIP setup used in this study.

3 Results

3.1 Consistency between the model and observations

Consistency over time is crucial when assimilating long-term
datasets. Several authors assessed the consistency of the ESA
CCI soil moisture product with respect to re-analysis prod-
ucts (e.g. Loew et al., 2013; Albergel et al., 2013a, b) and
in situ measurements (Dorigo et al., 2015, 2017). Lambin
et al. (1999) found that the GEOV1 LAI dataset is also con-
sistent over time and can be used, for example, for detection
of change and for providing information on shifting trends or
trajectories in land use and cover change. To verify the results
from literature for the spatial and temporal domain consid-
ered in this study, a consistency evaluation both for SSM and
LAI against the open-loop experiment has been performed.
As observed SSM climatology is matched to the model cli-
matology (see Sect. 2.2.2), consistency between observations
and the model over time (2000–2012), is expressed as corre-
lations on both absolute and anomaly time series. The latter
is computed using monthly sliding windows as described in
Albergel et al. (2009). Only significant correlation values (at
p value< 0.005) are retained. For LAI, consistency is ex-
pressed both as correlations and RMSDs.

Median soil moisture correlation (anomaly correlation),
of ESA CCI SSM with the SURFEX–CTRIP second layer
of soil, w2 between 1 and 4 cm, is 0.65 (0.47) over 2000–
2012. Year-to-year correlation (anomaly correlation), which
can potentially be impacted by the prevailing conditions in
the given years, ranges from 0.62 (0.45) to 0.71 (0.48).
Although many different sensors are used over time and
space to retrieve ESA CCI SSM, the product can be consid-
ered stable. Over the same period, correlation and RMSDs
between GEOV1 LAI and SURFEX–CTRIP is 0.75 and
0.85 m2 m−2, correlations range from 0.72 in 2000 to 0.77
in 2012. RMSD values are relatively stable too with a min-
imum value of 0.76 m2 m−2 in 2002 and a maximum of
0.91 m2 m−2 in 2007. Figure 2 (blue line) illustrates sea-
sonal RMSDs (Fig. 2a) and correlations (Fig. 2b) between
LAI from the open loop and the GEOV1 LAI estimates over
2000–2012. From Fig. 2a, a strong seasonal dependency of
RMSD is noticeable with values close to 1 m2 m−2 from June
to October. During these months correlation is better, with
values between 0.75 and 0.85. Too-large RMSD values ob-
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Figure 2. Seasonal (a) RMSD and (b) correlation values between
leaf area index (LAI) from the open-loop, analysis and GEOV1 LAI
estimates from the Copernicus Global Land Service project over
2000–2012.

served in winter time are not desirable since the vegetation is
supposed to be dormant.

Overall both ESA CCI SSM and GEOV1 LAI were found
to be stable over time with respect to SURFEX–CTRIP, as
illustrated in Fig. 3 for 2000, 2006 and 2012. Figure 3a–c il-
lustrate correlations between ESA CCI SSM and SURFEX–
CTRIP (w2). While in 2000 not all of Europe is covered, it
is the case from 2003 onwards. Low correlation values are
found in desert areas (over the Sahara), high elevation (e.g.
over the Alps) and at high latitudes, whereas high correla-
tion values are obtained over, for example, the Iberian Penin-
sula, France and Turkey. Figure 3d–f present the correlations
and RMSD values for GEOV1 LAI with SURFEX–CTRIP,
respectively, only for vegetated grid points (> 90 %). Gener-
ally, LAI at high elevation is not represented well (low corre-
lations and high RMSD) as well as in the northeastern part of
the domain, which is mainly covered by broad-leaved trees.
Conversely, the southern part of the domain presents high
levels of correlations and low RMSD values.

3.2 Model sensitivity to observations

The Jacobians, H (Eq. 4), are dependent on the model
physics. The examination of the Jacobians provides useful
insight into explaining the data assimilation system perfor-
mances (Barbu et al., 2011; Fairbairn et al., 2017). Median
values over 2000–2012 are presented in Table 2.

The model equivalent of SSM is the second layer of soil
(w2 between 1 and 4 cm depth). It is then expected that the
sensitivity of SSM to changes in soil moisture of that layer
is higher than those of the other layers of soil. Sensitivity of
LAI to changes in soil moisture (Table 2, bottom rows) sug-
gests that control variables related to soil moisture will also
be impacted by the assimilation of LAI. The model sensi-
tivity to SSM decreases with depth, as presented in Table 2
revealing that the assimilation of SSM will be more effec-
tive in modifying soil moisture from the first layers. Over
Europe, median values of H with respect to SSM observa-
tions (Table 2 top rows) range from 0.1719 to 0.0001 for
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Figure 3. Top row, yearly averaged correlations between satellite-derived surface soil moisture from the Climate Change Initiative project
from ESA and the second layer of soil of SURFEX–CTRIP (w2: 1–4 cm depth) for (a) 2000, (b) 2006 and (c) 2012. (d–f) Yearly averaged
correlation between the GEOV1 leaf area index from the Copernicus Global Land Service project and SURFEX–CTRIP for 2000, 2006 and
2012, respectively. (g–i) same as (d–f) for RMSD.

Table 2. Median Jacobian values for the eight control variables considered in this study over the whole spatial domain for 2000–2012.

2000–2012
∂SSMt

∂LAI0
∂SSMt

∂w20
∂SSMt

∂w30
∂SSMt

∂w40
∂SSMt

∂w50
∂SSMt

∂w60
∂SSMt

∂w70
∂SSMt

∂w80

1–4 cm 4–10 cm 10–20 cm 20–40 cm 40–60 cm 60–80 cm 80–100 cm

Median −0.0010 0.1719 0.1543 0.0694 0.0275 0.0043 0.0006 0.0001

∂LAIt

∂LAI0
∂LAIt
∂w20

∂LAIt
∂w30

∂LAIt
∂w40

∂LAIt
∂w50

∂LAIt
∂w60

∂LAIt
∂w70

∂LAIt
∂w80

1–4 cm 4–10 cm 10–20 cm 20–40 cm 40–60 cm 60–80 cm 80–100 cm

Median 0.2220 0.0006 0.0015 0.0032 0.0068 0.0038 0.0011 0.0006

layers w2 to w8, respectively, and is –0.0001 for LAI. The
negative value of ∂SSMt

∂LAI0 also indicates that a positive incre-
ment of LAI will generally lead to a decrease of SSM (w2).
The depth impact is also illustrated in Fig. 4 which repre-
sents histograms of H over Europe for three control vari-
ables (w2 in red, w4 in cyan and w8 in blue) with respect
to a change in SSM for 6 months (January, March, June, Au-
gust, October, December) over 2000–2012 (Fig. 4a–f). Addi-
tionally Fig. 4 depicts a seasonal dependency. For instance,
the histogram representing H of control variable w2 (Fig. 4a)
presents mainly three types, Eq. (1) values close or equal to

0 (type_A), Eq. (2) values between 0.2 and 0.8 (type_B), and
Eq. (3) close to 1 (type_C). The values of type_C correspond
to the situation in which the model dynamic is close to the
identity, i.e. the perturbation of the initial state is almost un-
changed by the end of the assimilation window (24 h). For
values of type_B, the model dynamic is strongly dissipative
and therefore the final offset is only a fraction of the initial
perturbation. Distributions of types A, B and C vary in time;
for January they are 75, 14 and 11 %, for June they are 36,
44 and 20 %, and for October they are 48, 30 and 22 %, re-
spectively. It suggests a higher sensitivity of the first layers

www.geosci-model-dev.net/10/3889/2017/ Geosci. Model Dev., 10, 3889–3912, 2017



3898 C. Albergel et al.: Integration of soil wetness index and leaf area index into SURFEX

Figure 4. Jacobian value distribution: (a–f), ∂SSMt

∂w20 (red line), ∂SSMt

∂w40 (cyan line) and ∂SSMt

∂w80 (blue line) for all months of January, March,

June, August, October and December over 2000–2012, (g–i), ∂LAIt

∂LAI0 (red line), ∂LAIt
∂w40 (cyan line) and ∂LAIt

∂w80 (blue line) for all months of
January, June and October over 2000–2012. A black solid line represents a value of 0.

of soil to a change in SSM, particularly during late summer
and autumn rather than during winter months. While a sim-
ilar behaviour is observed up to the fourth layer of soil, the
deepest layers of soil (e.g. w8, blue line) do not show any
seasonal dependency, and very small sensitivity with mainly
Jacobian values of type A.

The same typology can apply to H values ∂LAIt

∂LAI0 (Fig. 4g–
i), with an even stronger seasonal dependency. For all months
of January, distributions are 81, 18 and 1 %, while they are
22, 77 and 1 % for all months of June and 27, 45 and 28 %
for all months of October for types A, B and C, respectively.
Assimilation of LAI will be more effective in modifying LAI
from late spring to autumn. Finally, the assimilation of LAI
will be more effective in modifying soil moisture from lay-
ers 4 to 6 (Table 2).

3.3 Impact of the analysis on control variables

Control variables are directly impacted by the assimilation
of LAI and SSM. Figure 5 illustrates averaged analysis in-
crements for the period 2000–2012 for LAI and soil mois-
ture in w2 (between 1 and 4 cm), w4 (between 10 and 20 cm)
and w6 (between 40 and 60 cm) for all months of February,
May, August and October. Red (blue) colours indicate that
the analysis removes (adds) LAI and soil moisture. At the
beginning of the year vegetation is not very active, but on the
very western part of the domain the analysis tends to add LAI

over the United Kingdom and northwestern parts of France
and it reduces LAI over the Iberian Peninsula. At the begin-
ning of the year soil moisture is only slightly affected by the
analysis. Later in spring and summer the analysis is more
efficient: it removes LAI over a large part of Europe, reduc-
ing the bias observed between open loop and observations. It
mainly adds water in w2 and remove water from layers w4
to w6. The seasonally marked impact of the analysis is con-
sistent with the above description of the Jacobians behaviour.
Analysis increments are also presented in Fig. 6 for the entire
period 2000–2012. Generally, the analysis tends to remove
LAI and add water in w2 but dries layers where the roots are
mainly located (from w4 to w6). Its effect is, however, less
pronounced at greater depths.

Figure 7 shows the averaged analysis impact on LAI for all
months of January, April, July and October over 2000–2012
expressed in RMSD in the following way: GEOV1 LAI vs.
open loop and GEOV1 LAI vs. analysis. Only points where
observed LAI is available (and assimilated) are retained. As
this impact assessment is conducted against the observations
that were assimilated, improvements from the analysis are
expected and show that the LDAS is working well. From
Fig. 7, this is mostly the case (e.g. in October). As indicated
in Sect. 3.2, the analysis is most efficient during late sum-
mer and autumn. The geographical patterns highlighted in
Sect. 3.1 are also observed with a clear improvement, e.g. in
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Figure 5. Rows from top to bottom represent averaged analysis increments for all months of February, May, August and November over
2000–2012. From left to right, four control variables are illustrated: leaf area index and soil moisture in the second (w2, 1–4 cm), fourth (w4,
10–20 cm) and sixth (w6, 40–60 cm) layer of soil, respectively.

Figure 6. Averaged analysis increments for the whole period 2000–2012. Four control variables are illustrated: (a) leaf area index and soil
moisture in (a) the second (w2, 1–4 cm), (b) fourth (w4, 10–20 cm) and (c) sixth (w6, 40–60 cm) layer of soil.
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Figure 7. RMSD maps between leaf area index from the open loop (analysis) and that from the Copernicus Global Land Service project
GEOV1 index for (a, b) January, (e, f) April, (c, d) July and (g, h) October over 2000–2012.

Figure 8. Probability density function of innovation (observations–open loop in red) and residuals (observations–analysis, in green) for leaf
area index for (a) February, (b) April, (c) June, (d) August, (e) October and (f) December over 2000–2012. Sampling (N ) is reported on each
panel.

the northeastern part of the domain. Analysis improvement
with respect to the observations is also visible in Fig. 7.

Figure 8 illustrates histograms of innovations (in red) and
residuals (in green) of LAI for all months of February, April,
June, August, October and December over 2000–2012. As
expected, the distribution of residuals is more centred on 0
than the distribution of the innovations. A seasonal pattern
can be observed: during the growing phase (and up to June),
both innovations and residuals present a right tail indicating
that the model (and the analysis to a lesser extent) tends to
underestimate LAI. In this period, similarities between in-
novations and residuals suggest that the analysis is not very
efficient. At the end of summer and in autumn, distributions

present a left-tail distribution; LAI is overestimated but this
time the analysis is more efficient. Distributions of SSM
residuals are even more centred on zero than those of in-
novations with no seasonal dependency and smaller differ-
ences (not shown). The common CDF-matching technique
applied to SSM to remove systematic errors is responsible
for this smaller impact, as the LDAS can only correct SSM
short-term variability. Contrary to SSM, the LAI mismatch
between the open loop and the GEOV1 estimates concerns
both magnitude and timing (see for example Fig. 6 in Barbu
et al., 2014).

Figure 9 presents averaged differences over 2000–2012
between the open loop and the analysis for other land sur-
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Figure 9. Averaged analysis impact on land surface variables that are indirectly affected over the period 2000–2012: (a) drainage, (b) runoff,
(c) evapotranspiration and (d) river discharge.

face variables that are indirectly impacted by the assimila-
tion, namely daily cumulated soil drainage flux, supersatu-
ration runoff, evapotranspiration and daily mean river dis-
charge. Although the analysis impact is relatively weak on
those variables (e.g.∼ 1 % on the river discharge represented
over the Danube), geographical patterns are observed. Ar-
eas where positive analysis increments were found for LAI
(Fig. 5) tend to correspond to a decrease in drainage and
runoff (in red in Fig. 9) while evapotranspiration increases
(in blue Fig. 9). Changes in these indirectly impacted land
surface variables are in agreement with the analysis incre-
ment maps (Fig. 6).

3.4 Evaluation of analysis impact

First, the evaluation of the analysis impact is effectuated over
France using straw cereal GY values from the Agreste French
agricultural statistics portal. Only the département adminis-
trative units corresponding to a high proportion of straw ce-
reals are considered. Yearly maximal above-ground biomass
(Bag) values from the open loop (i.e model) and analysis are
compared to GY over 2000–2010. Yearly-scaled anomalies
from the mean and the SD for observations, open loop and
analysis are used for 45 sites over France as in Dewaele
et al. (2017). Figure 10a and 10b present correlations and
RMSD values, respectively, and Fig. 10c shows time series
for one site illustrating the inter-annual variability. After as-
similation of SSM and LAI, correlation as well as RMSD
between Bag and GY is clearly improved for 43 and 41 sites,
respectively, out of 45 sites showing the added value of the
analysis compared to the open loop. Figure 10c presents Bag
from the open loop (black dashed line) and analysis (black

Figure 10. (a) Correlation values for the above-ground biomass
from the open loop with grain yield estimates from Agreste French
agricultural statistics portal (http://agreste.agriculture.gouv.fr) over
45 sites in France, plotted against correlations between the same
quantities but above-ground biomass from the analysis; (b) same
as (a) for RMSD values; (c) scaled anomaly time series of above-
ground biomass from the open loop (black dashed line), analysis
(black solid line) and grain yield observations (red solid) for one
site in Allier, France (46.09◦ N, 3.21◦ E).
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Figure 11. (a) Hydrograph for the Loire River in France (47.25◦ N, 1.52◦W) representing scaled river dischargeQ (using either observed or
simulated drainage areas), in situ data (blues dots), open loop (green solid line) and analysis (red solid line); (b–d) histograms of efficiency,
correlations and RMSD differences betweenQ from the open loop and the analysis compared to the observations for the 83 stations retained
(see Sect. 2.2.3 on evaluation strategy).

solid line) as well as observed GY (red solid line) scaled
anomaly time series for one site in Allier, France (46.09◦ N,
3.21◦ E). Correlations and RMSD for open loop and analysis
experiments are 0.45 and 0.99, 0.78 and 0.63, respectively.

Over 2000–2010, 48 of 83 gauge stations present Eff val-
ues greater than 0, and 22 gauge stations report Eff greater
than 0.5. As suggested in the previous section, the analy-
sis impact on river discharge is rather small. If the analy-
sis generally leads to an improvement in river discharge rep-
resentation, only 8 stations present an Eff increase greater
than to 0.05 (3 stations report a decrease greater than 0.05).
Eff, R and RMSD histograms of differences are presented
in Fig. 11b, c and d along with a hydro-graph (Fig. 11a)
for the Loire River in France (47.25◦ N, 1.52◦W). Although
the assimilation impact is relatively small, evaluation results
suggest that they are neutral to positive. Analysis impact on
other CTRIP variables (e.g. floodplain fraction and storage,
groundwater height) is rather neutral.

Evapotranspiration from both the open loop and the anal-
ysis are compared to monthly values of GLEAM satellite-
derived estimates over 2000–2012 for vegetated grid points
(> 90 %). As for the river discharge, the assimilation im-
pact on evapotranspiration is small. However, the compar-
ison with the GLEAM satellite-derived estimates is rather
positive, as illustrated in Fig. 12, which represents evapo-
transpiration from the open loop (Fig. 12a), GLEAM esti-
mates (Fig. 12b), the analysis (Fig. 12c) and their differences
(Fig. 12d). Open-loop simulation of evapotranspiration tends
to over-estimate the GLEAM product over most of Europe,
particularly over France, the Iberian Peninsula and north-
ern Africa. Analysis is able to reduce this bias (Fig. 12d).
Figure 14 shows maps of RMSD (Fig. 14a) and correlation
(Fig. 14b) differences: scores between the analysis and the
GLEAM estimates minus scores between the open loop and

the GLEAM estimates. Most of the pixels present negative
values for differences in RMSD (76 % Fig. 14a) indicating
that for those pixels RMSDs from the analysis are smaller
than those from the open loop. Most of the pixels present
positive values for differences in correlations (80 % Fig. 14b
indicating that for those pixels correlations from the analysis
are higher than those from the open loop. It shows the added
value of the analysis when compared to an open loop. Evap-
otranspiration from the open loop and analysis has also been
evaluated using FLUXNET-MTE estimates of evapotranspi-
ration (2000–2011). Results are illustrated by Figs. 12e–h
and 14e, f. They are similar to those obtained using GLEAM
estimates: over the whole domain most of the pixels present
negative values for differences in RMSD (70 %), and most of
the pixels present positive values for differences in correla-
tion (79 %).

As for evapotranspiration, GPP from both the open loop
and the analysis are compared to monthly GPP estimates
from FLUXNET-MTE dataset. Figure 12 illustrates averaged
carbon uptake by GPP over land for 2000–2011 from the
open loop (Fig. 13a), FLUXNET-MTE (Fig. 13b) and the
analysis (Fig. 13c) as well as differences between the anal-
ysis and the model (Fig. 13d). Also, Fig. 14c and d show
RMSD and correlation differences between the open loop
or the analysis and FLUXNET-MTE dataset (analysis mi-
nus open loop). Finally Fig. 15 presents seasonal scores over
the same period (Fig. 15a: RMSD values; Fig. 15b: corre-
lation values). Compared to the FLUXNET-MTE estimates,
the open loop tends to underestimate GPP over the Scandi-
navian countries, the northwestern part of France, the UK
and Ireland, and north of the Caspian Sea, while an overesti-
mation is visible over most of the Iberian peninsula, eastern
Europe and the north-eastern part of the domain (Fig. 14a
and b). From Figs. 14d, e and 15 one may notice that after
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Figure 12. Top row: maps of averaged evapotranspiration taken over 2000–2012 from (a) the model (i.e open loop), (b) the GLEAM
estimates, (c) the analysis and (d) differences between the analysis and model. Bottom row: maps of averaged evapotranspiration taken over
2000–2011 from (a) the model (i.e open loop), (b) FLUXNET-MTE estimates, (c) the analysis and (d) differences between the analysis and
model.

Figure 13. Maps of averaged gross primary production taken over 2000–2011 from (a) the model (i.e open loop), (b) FLUXNET-MTE
estimates, (c) the analysis and (d) differences between the analysis and model.

assimilation of SSM and LAI there is a clear improvement
in the GPP representation for RMSD and correlation with
a systematic seasonal decrease and increase of the scores, re-
spectively. Over the whole domain, 79 and 90 % of the grid
points present better RMSD and correlation values, respec-
tively, after assimilation with respect to the FLUXNET-MTE
estimates of GPP.

4 Discussion

4.1 Towards different data assimilation techniques to
improve the analysis

This study introducing the LDAS-Monde is based on a sim-
plified version of an extended Kalman filter. Although a ver-
sion of an ensemble Kalman filter is available (EnKF,

Evensen, 1994), to date SEKF is the most mature technique
developed for land surface data assimilation within SUR-
FEX. Many studies using SURFEX exposed the strengths
and weaknesses of this technique (Mahfouf et al., 2009; Al-
bergel et al., 2010., Draper et al., 2011; Barbu et al., 2011,
2014; Duerinckx et al., 2015; Fairbairn et al., 2015, 2017).
The SEKF relies on accurate linear assumptions in deriving
the Jacobians. Draper et al. (2009), Duerinckx et al. (2015)
and Fairbairn et al. (2015) pointed out that outliers in Jaco-
bian’s values may occur under specific conditions (e.g. close
to threshold values such as the wilting point and field capac-
ity for soil moisture), possibly leading to instabilities in the
analysis. Those outliers in the Jacobian’s values were, how-
ever, obtained using the force-restore version of the ISBA
LSM with three layers of soil and not with the diffusion
soil scheme: ISBA-Dif. In such configurations they used
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Figure 14. RMSD (a) and correlation (b) differences between analysed (modelled) evapotranspiration and GLEAM estimates over 2000–
2012. Panels (c, d) are similar to (a, b) for carbon mass flux out of the atmosphere due to gross primary production (GPP) from the
analysis (model), and FLUXNET-MTE GPP estimates over 2000–2011. Finally, panels (e, f) are similar to (a, b) for analysed (modelled)
evapotranspiration and FLUXNET-MTE evapotranspiration estimates over 2000–2011.

only one control variable related to soil moisture; the sec-
ond layer of soil was a thick layer representing all the root-
zone (w2−RZ) while the model equivalent was the very thin
top layer (∼ 1 cm). Thus ∂SSMt

∂w2−RZ0 Jacobians, representing the
impact of perturbing w2 (i.e. the whole root-zone) on SSM
(∼ 1 cm) can be quite different compared to those obtained
using the soil diffusion scheme and presented in this study
(e.g. where w2 and SSM representing the same depth; 1–
4 cm). For instance, ∂SSMt

∂w2−RZ0 Jacobians exhibit a rather large
proportion of negative values, as illustrated by Fig. 10 of
Fairbairn et al. (2017) and discussed in Parrens et al. (2014).

Very few negative Jacobian values are obtained with the dif-
fusion soil scheme (as in Fig. 4) over Europe for 2000–2012.
The SEKF is also limited in correcting errors from the at-
mospheric forcing uncertainty making the model too reliant
on the chosen forcing. Alternatively an EnKF, which relies
on the ensemble spread to capture background errors, can
be modified to stochastically capture both model and precip-
itation errors (Maggioni et al., 2012; Carrera et al., 2015).
The use of an EnKF within LDAS-Monde is currently under
investigation at Météo-France. Alternatively, particle filters
could provide a means to capture non-Gaussian errors (e.g.
Moradkhani et al., 2012).
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Figure 15. Seasonal (a) RMSD and (b) correlation values between
the Carbon mass flux out of the atmosphere due to Gross Primary
Production on land from the open loop, analysis and FLUXNET-
MTE estimates over 2000–2011.

The performance of an analysis scheme depends on ap-
propriate statistics for background and observation errors.
Wrongly specified error parameterization may negatively af-
fect the analysis. The main objective of this study was to
present the newly developed LDAS-Monde while the statis-
tics for background and observation errors were obtained
from the literature. Soil moisture observations and back-
ground errors were scaled using the open-loop soil mois-
ture dynamical range. This accounts for texture-based spa-
tial variability in the error and assumes that the soil mois-
ture errors and the dynamic range have a linear relationship.
Time correlations in the errors have also been neglected in
this study, which are likely to occur in reality. It is also pos-
sible to employ an a posteriori diagnostic to estimate obser-
vation errors, such as the statistics of the innovations (ob-
servations minus background) (Andersson, 2003; Mahfouf
et al., 2007). This approach has been successfully applied
by Barbu et al. (2011) in a point-scale experiment to obtain
seasonal error variability; the approach does not provide ob-
jective estimates of the observational errors but assesses the
sub-optimality of the analysis. Future work will investigate
having spatially and temporally variant observations errors,
based on statistical methods already applied to the ESA CCI
SSM dataset such as triple collocation (Dorigo et al., 2015)
or error decomposition (Su et al., 2016).

Having LAI estimates every 10 days while using 24 h as-
similation window may also trigger analysis discrepancies,
as between two LAI assimilations the system relies only on
SSM assimilation. When a large analysis update occurs on
LAI (from the assimilation of LAI), it then tends to go back
towards the model states in the successive days before be-
ing constrained again by the next observations. For instance,
in winter most of the ∂LAIt

∂LAI0 Jacobians are equal (or close)
to zero and therefore the analysis update caused the LAI to
return almost instantaneously to the incorrect LAI minimum
value. This issue could be addressed using longer assimila-
tion windows, from 10 days up to 1 month (e.g. as in Jar-
lan et al., 2008) where different data assimilation techniques

could be used (e.g. variational methods to obtain a best fit be-
tween several observations). An alternative could be to keep
a 1-day assimilation window and use smoothing techniques
(e.g. Munier et al., 2014) to keep the benefit of the analysis
update by propagating the error covariance forward up to the
next available observation.

4.2 Can better use of the observations improve the
analysis?

4.2.1 Towards a better use of GEOV1 leaf area index

SURFEX_v8.0 does not use any crop-specific parameteri-
zation, which would be required to simulate the crop grain
yield formation. In addition, the simulations of photosynthe-
sis and vegetation growth do not take into account certain
factors impacting the long-term agricultural production (e.g.
changes in agricultural practices, diseases, pests, crop mi-
gration, the grain formation and crop cultivars). However,
previous studies (Calvet et al., 2012; Canal et al., 2014)
showed that agricultural statistics such as grain yields can
be used to benchmark SURFEX development in representing
the above-ground biomass inter-annual variability. A strong
positive impact from the assimilation of SSM and LAI on the
representation of above-ground biomass inter-annual vari-
ability has been highlighted in this study. The impact on
river discharge representation is only small (Sect. 3.3). Im-
provements are, however, expected from a better represen-
tation in the model of vegetation parameters such as LAI
(e.g. Szczypta et al., 2014). Although the analysis is effi-
cient in correcting LAI, high RMSD values remain, partic-
ularly during the senescence phase when SURFEX–CTRIP
over-estimates LAI over a large part of Europe. RMSD and
correlations with GEOV1 and SURFEX–CTRIP still expose
a strong seasonal dependency after the analysis (red line
in Fig. 2) which is mainly attributed to model errors. The
GEOV1 estimates have been shown to exhibit some realistic
environmental features that are not, or are poorly, simulated
by the model (Fairbairn et al., 2017). Therefore, it was de-
cided not to rescale the GEOV1 estimates to the model cli-
matology.

Figure 2 also suggests that the minimum LAI values used
as model parameters (see Sect. 2.1.1) should be revisited
because such large differences are not desirable, particu-
larly when the vegetation is dormant. Another caveat of this
study is the use of a single LAI value for all vegetation
types that are represented in SURFEX–CTRIP. As detailed
in Barbu et al. (2014), the Kalman gain is calculated for
each individual vegetation type (patch). The analysis incre-
ment is added to the background for each patch, produc-
ing a patch-dependent analysis update. The patch depen-
dence is introduced in the Kalman gain via the Jacobian
elements. The possibility of having LAI estimates for each
type of vegetation is under investigation and has the capac-
ity of overcoming the two above-mentioned weaknesses. Re-
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cently, the GEOV1 LAI data have been disaggregated fol-
lowing a Kalman filtering technique developed by Carrer
et al. (2014). This enables the LAI signal for each patch to be
separated within the pixel, which provides a dynamic patch-
dependent estimate of the assimilated LAI within the pixel
(Munier et al., 2017). From the individual estimates over
1999–2015, minimum LAI values have also been used to up-
date the model parameterization. Preliminary results from as-
similating disaggregated LAI time series and using new LAI
minimum values (not shown) suggest better representation of
vegetation variables such as LAI and above-ground biomass
as well as an enhanced representation of river discharge com-
pared to an open-loop simulation using the former LAI min-
imum values. Better performances from the assimilation of
disaggregated LAI are also expected on the representation of
evapotranspiration.

4.2.2 Towards a better use of microwave satellite
observations for soil moisture

ESA CCI SM is based on multiple microwave sources from
space, namely passive radiometer brightness temperature
(Tb) observations and active radar backscatter (σo) observa-
tions. As they are both indirectly related to soil moisture, re-
trieval methods making use of, for example, radiative trans-
fer model (for Tb, Kerr et al., 2012) or change-detection ap-
proaches (for σo, Wagner et al., 1999) are usually required to
transform Tb and σo into soil moisture values that can be as-
similated in LSMs. Despite the proven record of assimilating
retrieved soil moisture from point scale to regional and con-
tinental scale (e.g. Albergel et al., 2010; Draper et al., 2012;
Matgen et al., 2012; De Rosnay et al., 2013; Barbu et al.,
2014; Wanders et al., 2014; Ridler et al., 2014), there is an
increasing tendency towards the direct assimilation of Tb and
σo observations (De Lannoy et al., 2013; Han et al., 2014;
Lievens et al., 2015, 2016). Retrieval methods usually make
use of land surface parameters and auxiliary information,
such as vegetation, texture and temperature, possibly prov-
ing inconsistencies with specific model simulations (which
also include these parameters but potentially from differ-
ent sources). Also, if retrievals and model simulations rely
on similar types of auxiliary information, their errors may
be cross-correlated, potentially degrading the system perfor-
mance (De Lannoy and Reichle, 2016). The direct assimila-
tion of Tb and σo observations requires that the LSM is cou-
pled to a radiative transfer model that serves as a forward
operator for predicting σo and/or Tb. It has the advantage of
allowing for consistent parameters and auxiliary inputs be-
tween the model simulations and the radiative transfer model,
avoiding cross-correlated errors. The development of a for-
ward operator for σo from active microwave instruments is
under way at Météo-France; it will allow vegetation effects
to be accounted for in the signal using the vegetation infor-
mation content of σo.

5 Conclusions

This study provides an assessment of the LDAS-Monde im-
plementation to increase monitoring accuracy for land sur-
face variables over the Europe–Mediterranean area. Satellite-
derived surface soil moisture and leaf area index are assimi-
lated over 2000–2012 in the CO2-responsive and multilayer
diffusion scheme version of the ISBA land surface model
coupled with the CTRIP hydrological system. Joint assim-
ilation of leaf area index and surface soil moisture has been
shown to efficiently improve the representation of above-
ground biomass, gross primary production and evapotranspi-
ration, while having a neutral to positive impact on river dis-
charge. To our knowledge, LDAS-Monde is the only system
able to sequentially assimilate vegetation products together
with soil moisture observations. LDAS-Monde permits an ef-
ficient monitoring of various land surface variables and has
a powerful potential in monitoring extreme events such as
agricultural droughts on a global scale.

The analysis of the extended Kalman filter observation op-
erator Jacobians permitted identification of both seasonal and
soil depth effects of the assimilation on ISBA. A clear added
value of the assimilation has been highlighted based on agri-
cultural statistics over France, and evapotranspiration and
gross primary production observation-based estimates over
the whole domain. More analysis impact could, however, be
expected on variables such as river discharge. Studies fo-
cusing on a better use of the observations along with other
data assimilation techniques such as the ensemble Kalman
filter are currently under way. Recent studies discussed in
the previous section suggest that the direct assimilation of
microwave observations of Tb and σo instead of level 2 or
3 soil moisture products could leads to better results. The
development of a forward operator for σo from active mi-
crowave instruments is under way. The long-term confronta-
tion of model and observations on continental scale prior to
the assimilation has also highlighted parameterisation issues
such as the minimum leaf area index values used as threshold
when the vegetation is dormant. The GEOV1 leaf area index
estimates permit new thresholds to be set up for the different
vegetation patches used in ISBA thanks to the development
of a disaggregated product resulting in new leaf area index
estimates, different for each patch. The assimilation of this
new product is also promising.

Code availability. LDAS-Monde is a part of the ISBA land surface
model and is available as open source via the surface modelling plat-
form called SURFEX. SURFEX can be downloaded freely at http:
//www.umr-cnrm.fr/surfex/ using a CECILL-C Licence (a French
equivalent to the L-GPL licence; http://www.cecill.info/licences/
Licence_CeCILL-C_V1-en.txt). It is updated at a relatively low fre-
quency (every 3 to 6 months). If more frequent updates are needed,
or if what is required is not in Open-SURFEX (DrHOOK, FA/LFI
formats, GAUSSIAN grid), you are invited to follow the procedure
to get a SVN account and to access real-time modifications of the
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code (see the instructions at the first link). The developments pre-
sented in this study stemmed on SURFEX version 8.0 and are now
part of the version 8.1 (revision number 4621).
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