Articles | Volume 10, issue 9
https://doi.org/10.5194/gmd-10-3425-2017
https://doi.org/10.5194/gmd-10-3425-2017
Development and technical paper
 | 
19 Sep 2017
Development and technical paper |  | 19 Sep 2017

Analysis of errors introduced by geographic coordinate systems on weather numeric prediction modeling

Yanni Cao, Guido Cervone, Zachary Barkley, Thomas Lauvaux, Aijun Deng, and Alan Taylor

Related authors

Quantifying methane emissions from natural gas production in north-eastern Pennsylvania
Zachary R. Barkley, Thomas Lauvaux, Kenneth J. Davis, Aijun Deng, Natasha L. Miles, Scott J. Richardson, Yanni Cao, Colm Sweeney, Anna Karion, MacKenzie Smith, Eric A. Kort, Stefan Schwietzke, Thomas Murphy, Guido Cervone, Douglas Martins, and Joannes D. Maasakkers
Atmos. Chem. Phys., 17, 13941–13966, https://doi.org/10.5194/acp-17-13941-2017,https://doi.org/10.5194/acp-17-13941-2017, 2017
Short summary

Related subject area

Atmospheric sciences
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024,https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024,https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024,https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024,https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024,https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary

Cited articles

Barkley, Z. R., Lauvaux, T., Davis, K. J., Deng, A., Cao, Y., Sweeney, C., Martins, D., Miles, N. L., Richardson, S. J., Murphy, T., Cervone, G., Karion, A., Schwietzke, S., Smith, M., Kort, E. A., and Maasakkers, J. D.: Quantifying methane emissions from natural gas production in northeastern Pennsylvania, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-200, in review, 2017.
Bugayevskiy, L. M. and Snyder, J.: Map projections: A reference manual, CRC Press, Philadelphia, USA, 1995.
Chen, F. and Dudhia, J.: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity, Mon. Weather Rev., 129, 569–585, 2001.
Cao, Y. and Cervone, G.: WRF processing, available at: https://github.com/yannicao/wrf_reprojection, last access: 22 July 2017.
David, C. H., Gochis, D. J., Maidment, D. R., Yu, W., Yates, D. N., and Yang, Z.-L.: Using NHDPlus as the Land Base for the Noah-distributed Model, Transactions in GIS, 13, 363–377, 2009.
Download
Short summary
This research investigates the role and importance of reprojecting geographic information system layers used by weather numerical models as input by performing sensitivity studies of greenhouse gas transport and dispersion in northeastern Pennsylvania. To bridge the gap between geographic information system data and atmospheric models, this study presents an innovative approach by creating R code to automatically generate model input from geographic data and analyze the model output.