Articles | Volume 10, issue 9
https://doi.org/10.5194/gmd-10-3425-2017
https://doi.org/10.5194/gmd-10-3425-2017
Development and technical paper
 | 
19 Sep 2017
Development and technical paper |  | 19 Sep 2017

Analysis of errors introduced by geographic coordinate systems on weather numeric prediction modeling

Yanni Cao, Guido Cervone, Zachary Barkley, Thomas Lauvaux, Aijun Deng, and Alan Taylor

Related authors

Quantifying methane emissions from natural gas production in north-eastern Pennsylvania
Zachary R. Barkley, Thomas Lauvaux, Kenneth J. Davis, Aijun Deng, Natasha L. Miles, Scott J. Richardson, Yanni Cao, Colm Sweeney, Anna Karion, MacKenzie Smith, Eric A. Kort, Stefan Schwietzke, Thomas Murphy, Guido Cervone, Douglas Martins, and Joannes D. Maasakkers
Atmos. Chem. Phys., 17, 13941–13966, https://doi.org/10.5194/acp-17-13941-2017,https://doi.org/10.5194/acp-17-13941-2017, 2017
Short summary

Related subject area

Atmospheric sciences
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025,https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025,https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025,https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025,https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025,https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary

Cited articles

Barkley, Z. R., Lauvaux, T., Davis, K. J., Deng, A., Cao, Y., Sweeney, C., Martins, D., Miles, N. L., Richardson, S. J., Murphy, T., Cervone, G., Karion, A., Schwietzke, S., Smith, M., Kort, E. A., and Maasakkers, J. D.: Quantifying methane emissions from natural gas production in northeastern Pennsylvania, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-200, in review, 2017.
Bugayevskiy, L. M. and Snyder, J.: Map projections: A reference manual, CRC Press, Philadelphia, USA, 1995.
Chen, F. and Dudhia, J.: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity, Mon. Weather Rev., 129, 569–585, 2001.
Cao, Y. and Cervone, G.: WRF processing, available at: https://github.com/yannicao/wrf_reprojection, last access: 22 July 2017.
David, C. H., Gochis, D. J., Maidment, D. R., Yu, W., Yates, D. N., and Yang, Z.-L.: Using NHDPlus as the Land Base for the Noah-distributed Model, Transactions in GIS, 13, 363–377, 2009.
Download
Short summary
This research investigates the role and importance of reprojecting geographic information system layers used by weather numerical models as input by performing sensitivity studies of greenhouse gas transport and dispersion in northeastern Pennsylvania. To bridge the gap between geographic information system data and atmospheric models, this study presents an innovative approach by creating R code to automatically generate model input from geographic data and analyze the model output.
Share