Articles | Volume 10, issue 8
Geosci. Model Dev., 10, 3145–3165, 2017
https://doi.org/10.5194/gmd-10-3145-2017
Geosci. Model Dev., 10, 3145–3165, 2017
https://doi.org/10.5194/gmd-10-3145-2017

Model description paper 28 Aug 2017

Model description paper | 28 Aug 2017

MicroHH 1.0: a computational fluid dynamics code for direct numerical simulation and large-eddy simulation of atmospheric boundary layer flows

Chiel C. van Heerwaarden et al.

Related authors

Development of a large-eddy simulation subgrid model based on artificial neural networks: a case study of turbulent channel flow
Robin Stoffer, Caspar M. van Leeuwen, Damian Podareanu, Valeriu Codreanu, Menno A. Veerman, Martin Janssens, Oscar K. Hartogensis, and Chiel C. van Heerwaarden
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-289,https://doi.org/10.5194/gmd-2020-289, 2020
Preprint under review for GMD
Short summary
Using 3D turbulence-resolving simulations to understand the impact of surface properties on the energy balance of a debris-covered glacier
Pleun N. J. Bonekamp, Chiel C. van Heerwaarden, Jakob F. Steiner, and Walter W. Immerzeel
The Cryosphere, 14, 1611–1632, https://doi.org/10.5194/tc-14-1611-2020,https://doi.org/10.5194/tc-14-1611-2020, 2020
Short summary
Atmospheric boundary layer dynamics from balloon soundings worldwide: CLASS4GL v1.0
Hendrik Wouters, Irina Y. Petrova, Chiel C. van Heerwaarden, Jordi Vilà-Guerau de Arellano, Adriaan J. Teuling, Vicky Meulenberg, Joseph A. Santanello, and Diego G. Miralles
Geosci. Model Dev., 12, 2139–2153, https://doi.org/10.5194/gmd-12-2139-2019,https://doi.org/10.5194/gmd-12-2139-2019, 2019
Short summary
The benefits of spatial resolution increase in global simulations of the hydrological cycle evaluated for the Rhine and Mississippi basins
Imme Benedict, Chiel C. van Heerwaarden, Albrecht H. Weerts, and Wilco Hazeleger
Hydrol. Earth Syst. Sci., 23, 1779–1800, https://doi.org/10.5194/hess-23-1779-2019,https://doi.org/10.5194/hess-23-1779-2019, 2019
Short summary
Regional co-variability of spatial and temporal soil moisture–precipitation coupling in North Africa: an observational perspective
Irina Y. Petrova, Chiel C. van Heerwaarden, Cathy Hohenegger, and Françoise Guichard
Hydrol. Earth Syst. Sci., 22, 3275–3294, https://doi.org/10.5194/hess-22-3275-2018,https://doi.org/10.5194/hess-22-3275-2018, 2018
Short summary

Related subject area

Atmospheric sciences
MLAir (v1.0) – a tool to enable fast and flexible machine learning on air data time series
Lukas Hubert Leufen, Felix Kleinert, and Martin G. Schultz
Geosci. Model Dev., 14, 1553–1574, https://doi.org/10.5194/gmd-14-1553-2021,https://doi.org/10.5194/gmd-14-1553-2021, 2021
Short summary
snowScatt 1.0: consistent model of microphysical and scattering properties of rimed and unrimed snowflakes based on the self-similar Rayleigh–Gans approximation
Davide Ori, Leonie von Terzi, Markus Karrer, and Stefan Kneifel
Geosci. Model Dev., 14, 1511–1531, https://doi.org/10.5194/gmd-14-1511-2021,https://doi.org/10.5194/gmd-14-1511-2021, 2021
Short summary
Effects of spatial resolution on WRF v3.8.1 simulated meteorology over the central Himalaya
Jaydeep Singh, Narendra Singh, Narendra Ojha, Amit Sharma, Andrea Pozzer, Nadimpally Kiran Kumar, Kunjukrishnapillai Rajeev, Sachin S. Gunthe, and V. Rao Kotamarthi
Geosci. Model Dev., 14, 1427–1443, https://doi.org/10.5194/gmd-14-1427-2021,https://doi.org/10.5194/gmd-14-1427-2021, 2021
Short summary
On the suitability of second-order accurate finite-volume solvers for the simulation of atmospheric boundary layer flow
Beatrice Giacomini and Marco G. Giometto
Geosci. Model Dev., 14, 1409–1426, https://doi.org/10.5194/gmd-14-1409-2021,https://doi.org/10.5194/gmd-14-1409-2021, 2021
Short summary
An urban large-eddy-simulation-based dispersion model for marginal grid resolutions: CAIRDIO v1.0
Michael Weger, Oswald Knoth, and Bernd Heinold
Geosci. Model Dev., 14, 1469–1492, https://doi.org/10.5194/gmd-14-1469-2021,https://doi.org/10.5194/gmd-14-1469-2021, 2021
Short summary

Cited articles

Bannon, P. R.: On the anelastic approximation for a compressible atmosphere, J. Atmos. Sci., 53, 3618–3628, 1996.
Beare, R. J., Macvean, M. K., Holtslag, A. A., Cuxart, J., Esau, I., Golaz, J. C., Jimenez, M. A., Khairoutdinov, M., Kosovic, B., Lewellen, D., and Lund, T. S.: An intercomparison of large-eddy simulations of the stable boundary layer, Bound.-Lay. Meteorol., 118, 247–272, 2006.
Betts, A. K.: Non-precipitating cumulus convection and its parameterization, Q. J. Roy. Meteor. Soc., 99, 178–196, 1973.
Boing, S. J.: The interaction of deep convective clouds and their environment, TU Delft, Delft University of Technology, the Netherlands, 2014.
Bou-Zeid, E., Meneveau, C., and Parlange, M.: A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows, Phys. Fluids, 17, 025105, https://doi.org/10.1063/1.1839152, 2005.
Download
Short summary
MicroHH (www.microhh.org) is a new and open-source computational fluid dynamics code for the simulation of turbulent flows in the atmosphere. It is made to simulate atmospheric flows up to the finest detail levels at very high resolution. It has been designed from scratch in C++ in order to use a modern design that allows the code to run on more than 10 000 cores, as well as on a graphical processing unit.