Articles | Volume 10, issue 7
https://doi.org/10.5194/gmd-10-2715-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-10-2715-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Coastal Modelling Environment version 1.0: a framework for integrating landform-specific component models in order to simulate decadal to centennial morphological changes on complex coasts
Oxford University Centre for the Environment, South Parks Road,
Oxford, OX1 3QY, UK
British Geological Survey, Keyworth, NG12 5GD, UK
David Favis-Mortlock
Oxford University Centre for the Environment, South Parks Road,
Oxford, OX1 3QY, UK
Mark Dickson
School of Env. University of Auckland, 10 Symonds St, Auckland Private
Bag 92 019, New Zealand
Jim W. Hall
Oxford University Centre for the Environment, South Parks Road,
Oxford, OX1 3QY, UK
Martin D. Hurst
British Geological Survey, Keyworth, NG12 5GD, UK
now at: University of Glasgow, East Quad, Glasgow, G12 8QQ, UK
Mike J. A. Walkden
WSP Parsons Brinckerhoff, Keble House, Southernhay Gardens,
Exeter EX1 1NT, UK
Ian Townend
National Oceanography Centre, Southampton University, SO14 3ZH, UK
Matthew C. Ives
Oxford University Centre for the Environment, South Parks Road,
Oxford, OX1 3QY, UK
Robert J. Nicholls
Faculty of Eng. and the Env. Energy and Climate Change, Southampton
Univ., Southampton, SO17 1BJ, UK
Michael A. Ellis
British Geological Survey, Keyworth, NG12 5GD, UK
Related authors
Andres Payo, Bismarck Jigena Antelo, Martin Hurst, Monica Palaseanu-Lovejoy, Chris Williams, Gareth Jenkins, Kathryn Lee, David Favis-Mortlock, Andrew Barkwith, and Michael A. Ellis
Geosci. Model Dev., 11, 4317–4337, https://doi.org/10.5194/gmd-11-4317-2018, https://doi.org/10.5194/gmd-11-4317-2018, 2018
Short summary
Short summary
We describe a new algorithm that automatically delineates the cliff top and toe of a cliffed coastline from a digital elevation model (DEM). The algorithm builds upon existing methods but is specifically designed to resolve very irregular planform coastlines with many bays and capes, such as parts of the coastline of Great Britain.
Anette Eltner, David Favis-Mortlock, Oliver Grothum, Martin Neumann, Tomas Laburda, and Petr Kavka
EGUsphere, https://doi.org/10.5194/egusphere-2024-2648, https://doi.org/10.5194/egusphere-2024-2648, 2024
Short summary
Short summary
This study develops a new method to improve the calibration and evaluation of models that predict soil erosion by water. By using advanced imaging techniques, we can capture detailed changes of the soil surface over time. This helps improve models that forecast erosion, especially as climate change creates new and unpredictable conditions. Our findings highlight the need for more precise tools to better model erosion of our land and environment in the future.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, Joël J.-M. Hirschi, Robert J. Nicholls, and Nadia Bloemendaal
Nat. Hazards Earth Syst. Sci., 23, 2475–2504, https://doi.org/10.5194/nhess-23-2475-2023, https://doi.org/10.5194/nhess-23-2475-2023, 2023
Short summary
Short summary
We used a novel database of simulated tropical cyclone tracks to explore whether typhoon-induced storm surges present a future flood risk to low-lying coastal communities around the South China Sea. We found that future climate change is likely to change tropical cyclone behaviour to an extent that this increases the severity and frequency of storm surges to Vietnam, southern China, and Thailand. Consequently, coastal flood defences need to be reviewed for resilience against this future hazard.
Jennifer R. Shadrick, Dylan H. Rood, Martin D. Hurst, Matthew D. Piggott, Klaus M. Wilcken, and Alexander J. Seal
Earth Surf. Dynam., 11, 429–450, https://doi.org/10.5194/esurf-11-429-2023, https://doi.org/10.5194/esurf-11-429-2023, 2023
Short summary
Short summary
This study uses a coastal evolution model to interpret cosmogenic beryllium-10 concentrations and topographic data and, in turn, quantify long-term cliff retreat rates for four chalk sites on the south coast of England. By using a process-based model, clear distinctions between intertidal weathering rates have been recognised between chalk and sandstone rock coast sites, advocating the use of process-based models to interpret the long-term behaviour of rock coasts.
Xue Chen, Zeng Zhou, Qiang He, Heyue Zhang, Tjeerd Bouma, Zheng Gong, Ian Townend, and Changkuan Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2022-280, https://doi.org/10.5194/egusphere-2022-280, 2022
Preprint withdrawn
Short summary
Short summary
We carry out a two-year continuous observation in the northern Jiangsu Coast. Our results show that: The distribution of crab burrows was unimodal across the shore in cold seasons, and bimodal in warm seasons. The density of crab burrows was lower in sites with stronger hydrodynamics and lower suspended sediment concentration. The governing factors of crab burrow distribution in cold seasons were organic matter content and soil salinity, while in warm seasons water content also played a role.
Razi Sheikholeslami and Jim W. Hall
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-618, https://doi.org/10.5194/hess-2021-618, 2022
Manuscript not accepted for further review
Short summary
Short summary
In this study, we investigated the spatiotemporal variations in global freshwater nitrogen concentrations using a relatively parsimonious data-driven approach based on random forest method. We used the proposed model to identify several hotspots of nitrogen pollution in 115 major river basins of the world. Furthermore, we found that livestock population, nitrogen fertilizer application, temperature, and precipitation are the most influential predictors of nitrogen pollution of the river systems.
Yizhang Wei, Yining Chen, Jufei Qiu, Zeng Zhou, Peng Yao, Qin Jiang, Zheng Gong, Giovanni Coco, Ian Townend, and Changkuan Zhang
Earth Surf. Dynam., 10, 65–80, https://doi.org/10.5194/esurf-10-65-2022, https://doi.org/10.5194/esurf-10-65-2022, 2022
Short summary
Short summary
The barrier tidal basin is increasingly altered by human activity and sea-level rise. These environmental changes probably lead to the emergence or disappearance of islands, yet the effect of rocky islands on the evolution of tidal basins remains poorly investigated. Using numerical experiments, we explore the evolution of tidal basins under varying numbers and locations of islands. This work provides insights for predicting the response of barrier tidal basins in a changing environment.
Jennifer R. Shadrick, Martin D. Hurst, Matthew D. Piggott, Bethany G. Hebditch, Alexander J. Seal, Klaus M. Wilcken, and Dylan H. Rood
Earth Surf. Dynam., 9, 1505–1529, https://doi.org/10.5194/esurf-9-1505-2021, https://doi.org/10.5194/esurf-9-1505-2021, 2021
Short summary
Short summary
Here we use topographic and 10Be concentration data to optimise a coastal evolution model. Cliff retreat rates are calculated for two UK sites for the past 8000 years and, for the first time, highlight a strong link between the rate of sea level rise and long-term cliff retreat rates. This method enables us to study past cliff response to sea level rise and so to greatly improve forecasts of future responses to accelerations in sea level rise that will result from climate change.
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Piero Lionello, David Barriopedro, Christian Ferrarin, Robert J. Nicholls, Mirko Orlić, Fabio Raicich, Marco Reale, Georg Umgiesser, Michalis Vousdoukas, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, https://doi.org/10.5194/nhess-21-2705-2021, 2021
Short summary
Short summary
In this review we describe the factors leading to the extreme water heights producing the floods of Venice. We discuss the different contributions, their relative importance, and the resulting compound events. We highlight the role of relative sea level rise and the observed past and very likely future increase in extreme water heights, showing that they might be up to 160 % higher at the end of the 21st century than presently.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Piero Lionello, Robert J. Nicholls, Georg Umgiesser, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2633–2641, https://doi.org/10.5194/nhess-21-2633-2021, https://doi.org/10.5194/nhess-21-2633-2021, 2021
Short summary
Short summary
Venice is an iconic place, and a paradigm of huge historical and cultural value is at risk. The threat posed by floods has dramatically increased in recent decades and is expected to continue to grow – and even accelerate – through this century. There is a need to better understand the future evolution of the relative sea level and its extremes and to develop adaptive planning strategies appropriate for present uncertainty, which might not be substantially reduced in the near future.
Paula Camus, Ivan D. Haigh, Ahmed A. Nasr, Thomas Wahl, Stephen E. Darby, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2021–2040, https://doi.org/10.5194/nhess-21-2021-2021, https://doi.org/10.5194/nhess-21-2021-2021, 2021
Short summary
Short summary
In coastal regions, floods can arise through concurrent drivers, such as precipitation, river discharge, storm surge, and waves, which exacerbate the impact. In this study, we identify hotspots of compound flooding along the southern coast of the North Atlantic Ocean and the northern coast of the Mediterranean Sea. This regional assessment can be considered a screening tool for coastal management that provides information about which areas are more predisposed to experience compound flooding.
Daniel Peifer, Cristina Persano, Martin D. Hurst, Paul Bishop, and Derek Fabel
Earth Surf. Dynam., 9, 167–181, https://doi.org/10.5194/esurf-9-167-2021, https://doi.org/10.5194/esurf-9-167-2021, 2021
Short summary
Short summary
Plate tectonics drive the formation of mountain ranges. Yet when tectonic forces cease, mountain ranges persist for hundreds of millions of years, forming major Earth surface features. This work presents denudation rate estimates from one such ancient mountain range that show that denudation is strongly tied to rock type. Resistant rocks denude more slowly despite having much steeper topography, and contrasts in rock type cause increasing relief in the absence of active tectonics.
Leicheng Guo, Chunyan Zhu, Huayang Cai, Zheng Bing Wang, Ian Townend, and Qing He
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-75, https://doi.org/10.5194/hess-2021-75, 2021
Revised manuscript not accepted
Short summary
Short summary
Overtide is a shallow water tidal component and its interaction with astronomical tides induces tidal wave deformation, which is an important process that controls sediment transport. We use a numerical tidal model to examine overtide changes in estuaries under varying river discharges and find spatially nonlinear changes and the threshold of an intermediate river that benefits maximal overtide generation. The findings inform management of sediment transport and flooding risk in estuaries.
Alistair Hendry, Ivan D. Haigh, Robert J. Nicholls, Hugo Winter, Robert Neal, Thomas Wahl, Amélie Joly-Laugel, and Stephen E. Darby
Hydrol. Earth Syst. Sci., 23, 3117–3139, https://doi.org/10.5194/hess-23-3117-2019, https://doi.org/10.5194/hess-23-3117-2019, 2019
Short summary
Short summary
Flooding can arise from multiple sources, including waves, extreme sea levels, rivers, and severe rainfall. When two or more sources combine, the consequences can be greatly multiplied. We find the potential for the joint occurrence of extreme sea levels and river discharge to be greater on the western coast of the UK compared to the eastern coast. This is due to the weather conditions generating each flood source around the UK. These results will help increase our flood forecasting ability.
Athanasios T. Vafeidis, Mark Schuerch, Claudia Wolff, Tom Spencer, Jan L. Merkens, Jochen Hinkel, Daniel Lincke, Sally Brown, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 19, 973–984, https://doi.org/10.5194/nhess-19-973-2019, https://doi.org/10.5194/nhess-19-973-2019, 2019
Short summary
Short summary
This paper evaluates the effect of surge water level reduction due to land surface characteristics when assessing flood impacts at global scales. Our results show that uncertainties due to not accounting for water attenuation are of similar magnitude to the uncertainties regarding the total amount of sea-level rise expected by 2100, thus highlighting the need for better understanding of the spatial and temporal variation of water levels across floodplains.
Boris Gailleton, Simon M. Mudd, Fiona J. Clubb, Daniel Peifer, and Martin D. Hurst
Earth Surf. Dynam., 7, 211–230, https://doi.org/10.5194/esurf-7-211-2019, https://doi.org/10.5194/esurf-7-211-2019, 2019
Short summary
Short summary
The shape of landscapes is influenced by climate changes, faulting or the nature of the rocks under the surface. One of the most sensitive parts of the landscape to these changes is the river system that eventually adapts to such changes by adapting its slope, the most extreme example being a waterfall. We here present an algorithm that extracts changes in river slope over large areas from satellite data with the aim of investigating climatic, tectonic or geologic changes in the landscape.
Keith J. Beven, Susana Almeida, Willy P. Aspinall, Paul D. Bates, Sarka Blazkova, Edoardo Borgomeo, Jim Freer, Katsuichiro Goda, Jim W. Hall, Jeremy C. Phillips, Michael Simpson, Paul J. Smith, David B. Stephenson, Thorsten Wagener, Matt Watson, and Kate L. Wilkins
Nat. Hazards Earth Syst. Sci., 18, 2741–2768, https://doi.org/10.5194/nhess-18-2741-2018, https://doi.org/10.5194/nhess-18-2741-2018, 2018
Short summary
Short summary
This paper discusses how uncertainties resulting from lack of knowledge are considered in a number of different natural hazard areas including floods, landslides and debris flows, dam safety, droughts, earthquakes, tsunamis, volcanic ash clouds and pyroclastic flows, and wind storms. As every analysis is necessarily conditional on the assumptions made about the nature of sources of such uncertainties it is also important to follow the guidelines for good practice suggested in Part 2.
Keith J. Beven, Willy P. Aspinall, Paul D. Bates, Edoardo Borgomeo, Katsuichiro Goda, Jim W. Hall, Trevor Page, Jeremy C. Phillips, Michael Simpson, Paul J. Smith, Thorsten Wagener, and Matt Watson
Nat. Hazards Earth Syst. Sci., 18, 2769–2783, https://doi.org/10.5194/nhess-18-2769-2018, https://doi.org/10.5194/nhess-18-2769-2018, 2018
Short summary
Short summary
Part 1 of this paper discussed the uncertainties arising from gaps in knowledge or limited understanding of the processes involved in different natural hazard areas. These are the epistemic uncertainties that can be difficult to constrain, especially in terms of event or scenario probabilities. A conceptual framework for good practice in dealing with epistemic uncertainties is outlined and implications of applying the principles to natural hazard science are discussed.
Andres Payo, Bismarck Jigena Antelo, Martin Hurst, Monica Palaseanu-Lovejoy, Chris Williams, Gareth Jenkins, Kathryn Lee, David Favis-Mortlock, Andrew Barkwith, and Michael A. Ellis
Geosci. Model Dev., 11, 4317–4337, https://doi.org/10.5194/gmd-11-4317-2018, https://doi.org/10.5194/gmd-11-4317-2018, 2018
Short summary
Short summary
We describe a new algorithm that automatically delineates the cliff top and toe of a cliffed coastline from a digital elevation model (DEM). The algorithm builds upon existing methods but is specifically designed to resolve very irregular planform coastlines with many bays and capes, such as parts of the coastline of Great Britain.
Simon M. Mudd, Fiona J. Clubb, Boris Gailleton, and Martin D. Hurst
Earth Surf. Dynam., 6, 505–523, https://doi.org/10.5194/esurf-6-505-2018, https://doi.org/10.5194/esurf-6-505-2018, 2018
Short summary
Short summary
Rivers can reveal information about erosion rates, tectonics, and climate. In order to make meaningful inferences about these influences, one must be able to compare headwaters to downstream parts of the river network. We describe new methods for normalizing river steepness for drainage area to better understand how rivers record erosion rates in eroding landscapes.
Benoit P. Guillod, Richard G. Jones, Simon J. Dadson, Gemma Coxon, Gianbattista Bussi, James Freer, Alison L. Kay, Neil R. Massey, Sarah N. Sparrow, David C. H. Wallom, Myles R. Allen, and Jim W. Hall
Hydrol. Earth Syst. Sci., 22, 611–634, https://doi.org/10.5194/hess-22-611-2018, https://doi.org/10.5194/hess-22-611-2018, 2018
Short summary
Short summary
Assessing the potential impacts of extreme events such as drought and flood requires large datasets of such events, especially when looking at the most severe and rare events. Using a state-of-the-art climate modelling infrastructure that is simulating large numbers of weather time series on volunteers' computers, we generate such a large dataset for the United Kingdom. The dataset covers the recent past (1900–2006) as well as two future time periods (2030s and 2080s).
Athanasios T. Vafeidis, Mark Schuerch, Claudia Wolff, Tom Spencer, Jan L. Merkens, Jochen Hinkel, Daniel Lincke, Sally Brown, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-199, https://doi.org/10.5194/nhess-2017-199, 2017
Manuscript not accepted for further review
Short summary
Short summary
Global assessments of coastal flooding are based on the assumption that water propagation follows a
bathtubpattern across the floodplain. Using a global model we find that this assumption can lead to overestimation of impacts, with an uncertainty range that can be of equal magnitude to uncertainties related to future sea-level rise. Our results highlight the importance of improving the representation of the spatial/temporal variation of water levels across floodplains of different landcover.
Darren M. Lumbroso, Natalie R. Suckall, Robert J. Nicholls, and Kathleen D. White
Nat. Hazards Earth Syst. Sci., 17, 1357–1373, https://doi.org/10.5194/nhess-17-1357-2017, https://doi.org/10.5194/nhess-17-1357-2017, 2017
Short summary
Short summary
Recent coastal floods in the USA have highlighted a lack of resilience in poor communities. By researching successes from Bangladesh and Cuba, this paper details how lessons from these countries can reduce the vulnerability of less well-off or isolated American citizens to future coastal storm surges. The relevance of the lessons learnt from Cuba and Bangladesh to the USA was assessed. Transferable lessons include the importance of volunteerism and education in developing a “culture of safety”.
Fiona J. Clubb, Simon M. Mudd, David T. Milodowski, Declan A. Valters, Louise J. Slater, Martin D. Hurst, and Ajay B. Limaye
Earth Surf. Dynam., 5, 369–385, https://doi.org/10.5194/esurf-5-369-2017, https://doi.org/10.5194/esurf-5-369-2017, 2017
Short summary
Short summary
Floodplains and fluvial terraces can provide information about current and past river systems, helping to reveal how channels respond to changes in both climate and tectonics. We present a new method of identifying these features objectively from digital elevation models by analysing their slope and elevation compared to the modern river. We test our method in eight field sites, and find that it provides rapid and reliable extraction of floodplains and terraces across a range of landscapes.
Martin D. Hurst, Dylan H. Rood, and Michael A. Ellis
Earth Surf. Dynam., 5, 67–84, https://doi.org/10.5194/esurf-5-67-2017, https://doi.org/10.5194/esurf-5-67-2017, 2017
Short summary
Short summary
Beryllium-10 is a rare isotope that only forms near to the Earth surface, allowing rock surfaces to be dated. In this paper we develop a numerical model for the evolution of shore platforms and associated 10Be concentrations to explore the potential for this method to reveal long-term rates of sea cliff retreat. Tides, sea level, cliffs and beaches all modify how rapidly 10Be accumulates on the shore platform, but there is great potential to measure rates of cliff retreat and platform erosion.
Christopher W. Thomas, A. Brad Murray, Andrew D. Ashton, Martin D. Hurst, Andrew K. A. P. Barkwith, and Michael A. Ellis
Earth Surf. Dynam., 4, 871–884, https://doi.org/10.5194/esurf-4-871-2016, https://doi.org/10.5194/esurf-4-871-2016, 2016
Short summary
Short summary
Complex sandy coastlines, such as capes and spits, are important socio-economically while underpinning and protecting important natural habitats. Although they may protect inshore areas, they are inherently fragile and susceptible to erosion. We have explored how spits and capes might adapt to changing wave climate through modelling. We find that coastlines may not be in equilibrium with current conditions, and past shapes may strongly influence those adapting to new wave climates.
Simon Marius Mudd, Marie-Alice Harel, Martin D. Hurst, Stuart W. D. Grieve, and Shasta M. Marrero
Earth Surf. Dynam., 4, 655–674, https://doi.org/10.5194/esurf-4-655-2016, https://doi.org/10.5194/esurf-4-655-2016, 2016
Short summary
Short summary
Cosmogenic nuclide concentrations are widely used to calculate catchment-averaged denudation rates. Despite their widespread use, there is currently no open source method for calculating such rates, and the methods used to calculate catchment-averaged denudation rates vary widely between studies. Here we present an automated, open-source method for calculating basin averaged denudation rates, which may be used as a stand-alone calculator or as a front end to popular online calculators.
K. J. Beven, W. P. Aspinall, P. D. Bates, E. Borgomeo, K. Goda, J. W. Hall, T. Page, J. C. Phillips, J. T. Rougier, M. Simpson, D. B. Stephenson, P. J. Smith, T. Wagener, and M. Watson
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-3-7333-2015, https://doi.org/10.5194/nhessd-3-7333-2015, 2015
Preprint withdrawn
Short summary
Short summary
Uncertainties in natural hazard risk assessment are generally dominated by the sources arising from lack of knowledge or understanding of the processes involved. This is Part 1 of 2 papers reviewing these epistemic uncertainties that can be difficult to constrain, especially in terms of event or scenario probabilities. It is based on the work of the CREDIBLE research consortium on Risk and Uncertainty in Natural Hazards.
J. Armstrong, R. Wilby, and R. J. Nicholls
Nat. Hazards Earth Syst. Sci., 15, 2511–2524, https://doi.org/10.5194/nhess-15-2511-2015, https://doi.org/10.5194/nhess-15-2511-2015, 2015
Short summary
Short summary
A criterion to categorise climate change adaptation frameworks is presented denoting characteristics of three key frameworks established in the literature: scenario–led, decision-centric and vulnerability–led. Applying the criterion, the usability of frameworks is examined in coastal Suffolk. Results indicate adaptation frameworks established in the literature are not utilised in isolation in everyday practice. In reality, hybrid approaches are utilised to overcome aspects of framework weakness.
A. J. Stevens, D. Clarke, R. J. Nicholls, and M. P. Wadey
Nat. Hazards Earth Syst. Sci., 15, 1215–1229, https://doi.org/10.5194/nhess-15-1215-2015, https://doi.org/10.5194/nhess-15-1215-2015, 2015
Short summary
Short summary
Using census data, historic maps and hydrodynamic modelling, this paper presents a methodology for assessing how the exposure of people to flooding has changed over the last 200 years at the local level in the UK. The method is applied to two case studies at Portsea and Hayling Islands in the UK's Solent region. The analysis shows that for the case studies, population rise has, to date, had a much greater influence on exposure than sea level rise.
M. Attal, S. M. Mudd, M. D. Hurst, B. Weinman, K. Yoo, and M. Naylor
Earth Surf. Dynam., 3, 201–222, https://doi.org/10.5194/esurf-3-201-2015, https://doi.org/10.5194/esurf-3-201-2015, 2015
Short summary
Short summary
Steeper landscapes tend to erode faster. In this study, we also find that sediment produced on steeper landscapes is coarser. Soils are coarser because fragments spend less time in the soil so are less exposed to processes that can break them down. Change in sediment sources impact the sediment transported by rivers: rivers transport sediment up to cobble size in low-slope, soil-mantled areas; they transport much coarser sediment (including boulders supplied from landslides) in the steep areas.
A. Barkwith, M. D. Hurst, C. W. Thomas, M. A. Ellis, P. L. Limber, and A. B. Murray
Earth Surf. Dynam., 2, 233–242, https://doi.org/10.5194/esurf-2-233-2014, https://doi.org/10.5194/esurf-2-233-2014, 2014
M. D. Hurst, M. A. Ellis, K. R. Royse, K. A. Lee, and K. Freeborough
Earth Surf. Dynam., 1, 67–78, https://doi.org/10.5194/esurf-1-67-2013, https://doi.org/10.5194/esurf-1-67-2013, 2013
Related subject area
Climate and Earth system modeling
A rapid-application emissions-to-impacts tool for scenario assessment: Probabilistic Regional Impacts from Model patterns and Emissions (PRIME)
The DOE E3SM version 2.1: overview and assessment of the impacts of parameterized ocean submesoscales
WRF-ELM v1.0: a regional climate model to study land–atmosphere interactions over heterogeneous land use regions
Modeling commercial-scale CO2 storage in the gas hydrate stability zone with PFLOTRAN v6.0
DiuSST: a conceptual model of diurnal warm layers for idealized atmospheric simulations with interactive sea surface temperature
High-Resolution Model Intercomparison Project phase 2 (HighResMIP2) towards CMIP7
T&C-CROP: representing mechanistic crop growth with a terrestrial biosphere model (T&C, v1.5) – model formulation and validation
An updated non-intrusive, multi-scale, and flexible coupling interface in WRF 4.6.0
Monitoring and benchmarking Earth system model simulations with ESMValTool v2.12.0
The Earth Science Box Modeling Toolkit (ESBMTK 0.14.0.11): a Python library for research and teaching
CropSuite v1.0 – a comprehensive open-source crop suitability model considering climate variability for climate impact assessment
ICON ComIn – the ICON Community Interface (ComIn version 0.1.0, with ICON version 2024.01-01)
Using feature importance as an exploratory data analysis tool on Earth system models
A new metrics framework for quantifying and intercomparing atmospheric rivers in observations, reanalyses, and climate models
The real challenges for climate and weather modelling on its way to sustained exascale performance: a case study using ICON (v2.6.6)
Improving the representation of major Indian crops in the Community Land Model version 5.0 (CLM5) using site-scale crop data
Evaluation of CORDEX ERA5-forced NARCliM2.0 regional climate models over Australia using the Weather Research and Forecasting (WRF) model version 4.1.2
Design, evaluation, and future projections of the NARCliM2.0 CORDEX-CMIP6 Australasia regional climate ensemble
Amending the algorithm of aerosol–radiation interactions in WRF-Chem (v4.4)
The very-high-resolution configuration of the EC-Earth global model for HighResMIP
GOSI9: UK Global Ocean and Sea Ice configurations
Decomposition of skill scores for conditional verification: impact of Atlantic Multidecadal Oscillation phases on the predictability of decadal temperature forecasts
Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator (ISO_simulator)
Climate model downscaling in central Asia: a dynamical and a neural network approach
Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled to FESOM2.5 and NEMOv3.4
Subsurface hydrological controls on the short-term effects of hurricanes on nitrate–nitrogen runoff loading: a case study of Hurricane Ida using the Energy Exascale Earth System Model (E3SM) Land Model (v2.1)
CARIB12: a regional Community Earth System Model/Modular Ocean Model 6 configuration of the Caribbean Sea
Architectural insights into and training methodology optimization of Pangu-Weather
Evaluation of global fire simulations in CMIP6 Earth system models
Evaluating downscaled products with expected hydroclimatic co-variances
Software sustainability of global impact models
fair-calibrate v1.4.1: calibration, constraining, and validation of the FaIR simple climate model for reliable future climate projections
ISOM 1.0: a fully mesoscale-resolving idealized Southern Ocean model and the diversity of multiscale eddy interactions
A computationally lightweight model for ensemble forecasting of environmental hazards: General TAMSAT-ALERT v1.2.1
Introducing the MESMER-M-TPv0.1.0 module: spatially explicit Earth system model emulation for monthly precipitation and temperature
Investigating Carbon and Nitrogen Conservation in Reported CMIP6 Earth System Model Data
The need for carbon-emissions-driven climate projections in CMIP7
Robust handling of extremes in quantile mapping – “Murder your darlings”
A protocol for model intercomparison of impacts of marine cloud brightening climate intervention
An extensible perturbed parameter ensemble for the Community Atmosphere Model version 6
Coupling the regional climate model ICON-CLM v2.6.6 to the Earth system model GCOAST-AHOI v2.0 using OASIS3-MCT v4.0
A fully coupled solid-particle microphysics scheme for stratospheric aerosol injections within the aerosol–chemistry–climate model SOCOL-AERv2
The Tropical Basin Interaction Model Intercomparison Project (TBIMIP)
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Impact of ocean vertical-mixing parameterization on Arctic sea ice and upper-ocean properties using the NEMO-SI3 model
Development and evaluation of a new 4DEnVar-based weakly coupled ocean data assimilation system in E3SMv2
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
PaleoSTeHM v1.0-rc: a modern, scalable spatio-temporal hierarchical modeling framework for paleo-environmental data
From Weather Data to River Runoff: Leveraging Spatiotemporal Convolutional Networks for Comprehensive Discharge Forecasting
Camilla Mathison, Eleanor J. Burke, Gregory Munday, Chris D. Jones, Chris J. Smith, Norman J. Steinert, Andy J. Wiltshire, Chris Huntingford, Eszter Kovacs, Laila K. Gohar, Rebecca M. Varney, and Douglas McNeall
Geosci. Model Dev., 18, 1785–1808, https://doi.org/10.5194/gmd-18-1785-2025, https://doi.org/10.5194/gmd-18-1785-2025, 2025
Short summary
Short summary
We present PRIME (Probabilistic Regional Impacts from Model patterns and Emissions), which is designed to take new emissions scenarios and rapidly provide regional impact information. PRIME allows large ensembles to be run on multi-centennial timescales, including the analysis of many important variables for impact assessments. Our evaluation shows that PRIME reproduces the climate response for known scenarios, providing confidence in using PRIME for novel scenarios.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025, https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary
Short summary
We integrate the E3SM Land Model (ELM) with the WRF model through the Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) Earth System Modeling Framework (ESMF). This framework includes a top-level driver, LILAC, for variable communication between WRF and ELM and ESMF caps for ELM initialization, execution, and finalization. The LILAC–ESMF framework maintains the integrity of the ELM's source code structure and facilitates the transfer of future ELM model developments to WRF-ELM.
Michael Nole, Jonah Bartrand, Fawz Naim, and Glenn Hammond
Geosci. Model Dev., 18, 1413–1425, https://doi.org/10.5194/gmd-18-1413-2025, https://doi.org/10.5194/gmd-18-1413-2025, 2025
Short summary
Short summary
Safe carbon dioxide (CO2) storage is likely to be critical for mitigating some of the most severe effects of climate change. We present a simulation framework for modeling CO2 storage beneath the seafloor, where CO2 can form a solid. This can aid in permanent CO2 storage for long periods of time. Our models show what a commercial-scale CO2 injection would look like in a marine environment. We discuss what would need to be considered when designing a subsea CO2 injection.
Reyk Börner, Jan O. Haerter, and Romain Fiévet
Geosci. Model Dev., 18, 1333–1356, https://doi.org/10.5194/gmd-18-1333-2025, https://doi.org/10.5194/gmd-18-1333-2025, 2025
Short summary
Short summary
The daily cycle of sea surface temperature (SST) impacts clouds above the ocean and could influence the clustering of thunderstorms linked to extreme rainfall and hurricanes. However, daily SST variability is often poorly represented in modeling studies of how clouds cluster. We present a simple, wind-responsive model of upper-ocean temperature for use in atmospheric simulations. Evaluating the model against observations, we show that it performs significantly better than common slab models.
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
Jordi Buckley Paules, Simone Fatichi, Bonnie Warring, and Athanasios Paschalis
Geosci. Model Dev., 18, 1287–1305, https://doi.org/10.5194/gmd-18-1287-2025, https://doi.org/10.5194/gmd-18-1287-2025, 2025
Short summary
Short summary
We present and validate enhancements to the process-based T&C model aimed at improving its representation of crop growth and management practices. The updated model, T&C-CROP, enables applications such as analysing the hydrological and carbon storage impacts of land use transitions (e.g. conversions between crops, forests, and pastures) and optimizing irrigation and fertilization strategies in response to climate change.
Sébastien Masson, Swen Jullien, Eric Maisonnave, David Gill, Guillaume Samson, Mathieu Le Corre, and Lionel Renault
Geosci. Model Dev., 18, 1241–1263, https://doi.org/10.5194/gmd-18-1241-2025, https://doi.org/10.5194/gmd-18-1241-2025, 2025
Short summary
Short summary
This article details a new feature we implemented in the popular regional atmospheric model WRF. This feature allows for data exchange between WRF and any other model (e.g. an ocean model) using the coupling library Ocean–Atmosphere–Sea–Ice–Soil Model Coupling Toolkit (OASIS3-MCT). This coupling interface is designed to be non-intrusive, flexible and modular. It also offers the possibility of taking into account the nested zooms used in WRF or in the models with which it is coupled.
Axel Lauer, Lisa Bock, Birgit Hassler, Patrick Jöckel, Lukas Ruhe, and Manuel Schlund
Geosci. Model Dev., 18, 1169–1188, https://doi.org/10.5194/gmd-18-1169-2025, https://doi.org/10.5194/gmd-18-1169-2025, 2025
Short summary
Short summary
Earth system models are important tools to improve our understanding of current climate and to project climate change. Thus, it is crucial to understand possible shortcomings in the models. New features of the ESMValTool software package allow one to compare and visualize a model's performance with respect to reproducing observations in the context of other climate models in an easy and user-friendly way. We aim to help model developers assess and monitor climate simulations more efficiently.
Ulrich G. Wortmann, Tina Tsan, Mahrukh Niazi, Irene A. Ma, Ruben Navasardyan, Magnus-Roland Marun, Bernardo S. Chede, Jingwen Zhong, and Morgan Wolfe
Geosci. Model Dev., 18, 1155–1167, https://doi.org/10.5194/gmd-18-1155-2025, https://doi.org/10.5194/gmd-18-1155-2025, 2025
Short summary
Short summary
The Earth Science Box Modeling Toolkit (ESBMTK) is a user-friendly Python library that simplifies the creation of models to study earth system processes, such as the carbon cycle and ocean chemistry. It enhances learning by emphasizing concepts over programming and is accessible to students and researchers alike. By automating complex calculations and promoting code clarity, ESBMTK accelerates model development while improving reproducibility and the usability of scientific research.
Florian Zabel, Matthias Knüttel, and Benjamin Poschlod
Geosci. Model Dev., 18, 1067–1087, https://doi.org/10.5194/gmd-18-1067-2025, https://doi.org/10.5194/gmd-18-1067-2025, 2025
Short summary
Short summary
CropSuite is a new open-source crop suitability model. It provides a GUI and a wide range of options, including a spatial downscaling of climate data. We apply CropSuite to 48 staple and opportunity crops at a 1 km spatial resolution in Africa. We find that climate variability significantly impacts suitable areas but also affects optimal sowing dates and multiple cropping potential. The results provide valuable information for climate impact assessments, adaptation, and land-use planning.
Kerstin Hartung, Bastian Kern, Nils-Arne Dreier, Jörn Geisbüsch, Mahnoosh Haghighatnasab, Patrick Jöckel, Astrid Kerkweg, Wilton Jaciel Loch, Florian Prill, and Daniel Rieger
Geosci. Model Dev., 18, 1001–1015, https://doi.org/10.5194/gmd-18-1001-2025, https://doi.org/10.5194/gmd-18-1001-2025, 2025
Short summary
Short summary
The ICOsahedral Non-hydrostatic (ICON) model system Community Interface (ComIn) library supports connecting third-party modules to the ICON model. Third-party modules can range from simple diagnostic Python scripts to full chemistry models. ComIn offers a low barrier for code extensions to ICON, provides multi-language support (Fortran, C/C++, and Python), and reduces the migration effort in response to new ICON releases. This paper presents the ComIn design principles and a range of use cases.
Daniel Ries, Katherine Goode, Kellie McClernon, and Benjamin Hillman
Geosci. Model Dev., 18, 1041–1065, https://doi.org/10.5194/gmd-18-1041-2025, https://doi.org/10.5194/gmd-18-1041-2025, 2025
Short summary
Short summary
Machine learning has advanced research in the climate science domain, but its models are difficult to understand. In order to understand the impacts and consequences of climate interventions such as stratospheric aerosol injection, complex models are often necessary. We use a case study to illustrate how we can understand the inner workings of a complex model. We present this technique as an exploratory tool that can be used to quickly discover and assess relationships in complex climate data.
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis A. O'Brien
Geosci. Model Dev., 18, 961–976, https://doi.org/10.5194/gmd-18-961-2025, https://doi.org/10.5194/gmd-18-961-2025, 2025
Short summary
Short summary
A metrics package designed for easy analysis of atmospheric river (AR) characteristics and statistics is presented. The tool is efficient for diagnosing systematic AR bias in climate models and useful for evaluating new AR characteristics in model simulations. In climate models, landfalling AR precipitation shows dry biases globally, and AR tracks are farther poleward (equatorward) in the North and South Atlantic (South Pacific and Indian Ocean).
Panagiotis Adamidis, Erik Pfister, Hendryk Bockelmann, Dominik Zobel, Jens-Olaf Beismann, and Marek Jacob
Geosci. Model Dev., 18, 905–919, https://doi.org/10.5194/gmd-18-905-2025, https://doi.org/10.5194/gmd-18-905-2025, 2025
Short summary
Short summary
In this paper, we investigated performance indicators of the climate model ICON (ICOsahedral Nonhydrostatic) on different compute architectures to answer the question of how to generate high-resolution climate simulations. Evidently, it is not enough to use more computing units of the conventionally used architectures; higher memory throughput is the most promising approach. More potential can be gained from single-node optimization rather than simply increasing the number of compute nodes.
Kangari Narender Reddy, Somnath Baidya Roy, Sam S. Rabin, Danica L. Lombardozzi, Gudimetla Venkateswara Varma, Ruchira Biswas, and Devavat Chiru Naik
Geosci. Model Dev., 18, 763–785, https://doi.org/10.5194/gmd-18-763-2025, https://doi.org/10.5194/gmd-18-763-2025, 2025
Short summary
Short summary
The study aimed to improve the representation of wheat and rice in a land model for the Indian region. The modified model performed significantly better than the default model in simulating crop phenology, yield, and carbon, water, and energy fluxes compared to observations. The study highlights the need for global land models to use region-specific crop parameters for accurately simulating vegetation processes and land surface processes.
Giovanni Di Virgilio, Fei Ji, Eugene Tam, Jason P. Evans, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Yue Li, and Matthew L. Riley
Geosci. Model Dev., 18, 703–724, https://doi.org/10.5194/gmd-18-703-2025, https://doi.org/10.5194/gmd-18-703-2025, 2025
Short summary
Short summary
We evaluate the skill in simulating the Australian climate of some of the latest generation of regional climate models. We show when and where the models simulate this climate with high skill versus model limitations. We show how new models perform relative to the previous-generation models, assessing how model design features may underlie key performance improvements. This work is of national and international relevance as it can help guide the use and interpretation of climate projections.
Giovanni Di Virgilio, Jason P. Evans, Fei Ji, Eugene Tam, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Stephen White, Yue Li, Moutassem El Rafei, Rishav Goyal, Matthew L. Riley, and Jyothi Lingala
Geosci. Model Dev., 18, 671–702, https://doi.org/10.5194/gmd-18-671-2025, https://doi.org/10.5194/gmd-18-671-2025, 2025
Short summary
Short summary
We introduce new climate models that simulate Australia’s future climate at regional scales, including at an unprecedented resolution of 4 km for 1950–2100. We describe the model design process used to create these new climate models. We show how the new models perform relative to previous-generation models and compare their climate projections. This work is of national and international relevance as it can help guide climate model design and the use and interpretation of climate projections.
Jiawang Feng, Chun Zhao, Qiuyan Du, Zining Yang, and Chen Jin
Geosci. Model Dev., 18, 585–603, https://doi.org/10.5194/gmd-18-585-2025, https://doi.org/10.5194/gmd-18-585-2025, 2025
Short summary
Short summary
In this study, we improved the calculation of how aerosols in the air interact with radiation in WRF-Chem. The original model used a simplified method, but we developed a more accurate approach. We found that this method significantly changes the properties of the estimated aerosols and their effects on radiation, especially for dust aerosols. It also impacts the simulated weather conditions. Our work highlights the importance of correctly representing aerosol–radiation interactions in models.
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev., 18, 461–482, https://doi.org/10.5194/gmd-18-461-2025, https://doi.org/10.5194/gmd-18-461-2025, 2025
Short summary
Short summary
We present the high-resolution model version of the EC-Earth global climate model to contribute to HighResMIP. The combined model resolution is about 10–15 km in both the ocean and atmosphere, which makes it one of the finest ever used to complete historical and scenario simulations. This model is compared with two lower-resolution versions, with a 100 km and a 25 km grid. The three models are compared with observations to study the improvements thanks to the increased resolution.
Catherine Guiavarc'h, David Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
Geosci. Model Dev., 18, 377–403, https://doi.org/10.5194/gmd-18-377-2025, https://doi.org/10.5194/gmd-18-377-2025, 2025
Short summary
Short summary
The Global Ocean and Sea Ice configuration version 9 (GOSI9) is the new UK hierarchy of model configurations based on the Nucleus for European Modelling of the Ocean (NEMO) and available at three resolutions. It will be used for various applications, e.g. weather forecasting and climate prediction. It improves upon the previous version by reducing global temperature and salinity biases and enhancing the representation of Arctic sea ice and the Antarctic Circumpolar Current.
Andy Richling, Jens Grieger, and Henning W. Rust
Geosci. Model Dev., 18, 361–375, https://doi.org/10.5194/gmd-18-361-2025, https://doi.org/10.5194/gmd-18-361-2025, 2025
Short summary
Short summary
The performance of weather and climate prediction systems is variable in time and space. It is of interest how this performance varies in different situations. We provide a decomposition of a skill score (a measure of forecast performance) as a tool for detailed assessment of performance variability to support model development or forecast improvement. The framework is exemplified with decadal forecasts to assess the impact of different ocean states in the North Atlantic on temperature forecast.
Maria R. Russo, Sadie L. Bartholomew, David Hassell, Alex M. Mason, Erica Neininger, A. James Perman, David A. J. Sproson, Duncan Watson-Parris, and Nathan Luke Abraham
Geosci. Model Dev., 18, 181–191, https://doi.org/10.5194/gmd-18-181-2025, https://doi.org/10.5194/gmd-18-181-2025, 2025
Short summary
Short summary
Observational data and modelling capabilities have expanded in recent years, but there are still barriers preventing these two data sources from being used in synergy. Proper comparison requires generating, storing, and handling a large amount of data. This work describes the first step in the development of a new set of software tools, the VISION toolkit, which can enable the easy and efficient integration of observational and model data required for model evaluation.
Bijan Fallah, Masoud Rostami, Emmanuele Russo, Paula Harder, Christoph Menz, Peter Hoffmann, Iulii Didovets, and Fred F. Hattermann
Geosci. Model Dev., 18, 161–180, https://doi.org/10.5194/gmd-18-161-2025, https://doi.org/10.5194/gmd-18-161-2025, 2025
Short summary
Short summary
We tried to contribute to a local climate change impact study in central Asia, a region that is water-scarce and vulnerable to global climate change. We use regional models and machine learning to produce reliable local data from global climate models. We find that regional models show more realistic and detailed changes in heavy precipitation than global climate models. Our work can help assess the future risks of extreme events and plan adaptation strategies in central Asia.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025, https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale") and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev., 18, 19–32, https://doi.org/10.5194/gmd-18-19-2025, https://doi.org/10.5194/gmd-18-19-2025, 2025
Short summary
Short summary
Hurricanes may worsen water quality in the lower Mississippi River basin (LMRB) by increasing nutrient runoff. We found that runoff parameterizations greatly affect nitrate–nitrogen runoff simulated using an Earth system land model. Our simulations predicted increased nitrogen runoff in the LMRB during Hurricane Ida in 2021, albeit less pronounced than the observations, indicating areas for model improvement to better understand and manage nutrient runoff loss during hurricanes in the region.
Giovanni Seijo-Ellis, Donata Giglio, Gustavo Marques, and Frank Bryan
Geosci. Model Dev., 17, 8989–9021, https://doi.org/10.5194/gmd-17-8989-2024, https://doi.org/10.5194/gmd-17-8989-2024, 2024
Short summary
Short summary
A CESM–MOM6 regional configuration of the Caribbean Sea was developed in response to the rising need for high-resolution models for climate impact studies. The configuration is validated for the period 2000–2020 and improves significant errors in a low-resolution model. Oceanic properties are well represented. Patterns of freshwater associated with the Amazon River are well captured, and the mean flows of ocean waters across multiple passages in the Caribbean Sea agree with observations.
Deifilia To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
Geosci. Model Dev., 17, 8873–8884, https://doi.org/10.5194/gmd-17-8873-2024, https://doi.org/10.5194/gmd-17-8873-2024, 2024
Short summary
Short summary
Pangu-Weather is a breakthrough machine learning model in medium-range weather forecasting that considers 3D atmospheric information. We show that using a simpler 2D framework improves robustness, speeds up training, and reduces computational needs by 20 %–30 %. We introduce a training procedure that varies the importance of atmospheric variables over time to speed up training convergence. Decreasing computational demand increases the accessibility of training and working with the model.
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024, https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Short summary
This study provides the first comprehensive assessment of historical fire simulations from 19 Earth system models in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Most models reproduce global totals, spatial patterns, seasonality, and regional historical changes well but fail to simulate the recent decline in global burned area and underestimate the fire response to climate variability. CMIP6 simulations address three critical issues of phase-5 models.
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
Geosci. Model Dev., 17, 8665–8681, https://doi.org/10.5194/gmd-17-8665-2024, https://doi.org/10.5194/gmd-17-8665-2024, 2024
Short summary
Short summary
We evaluate downscaled products by examining locally relevant co-variances during precipitation events. Common statistical downscaling techniques preserve expected co-variances during convective precipitation (a stationary phenomenon). However, they dampen future intensification of frontal precipitation (a non-stationary phenomenon) captured in global climate models and dynamical downscaling. Our study quantifies a ramification of the stationarity assumption underlying statistical downscaling.
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev., 17, 8593–8611, https://doi.org/10.5194/gmd-17-8593-2024, https://doi.org/10.5194/gmd-17-8593-2024, 2024
Short summary
Short summary
Research software is vital for scientific progress but is often developed by scientists with limited skills, time, and funding, leading to challenges in usability and maintenance. Our study across 10 sectors shows strengths in version control, open-source licensing, and documentation while emphasizing the need for containerization and code quality. We recommend workshops; code quality metrics; funding; and following the findable, accessible, interoperable, and reusable (FAIR) standards.
Chris Smith, Donald P. Cummins, Hege-Beate Fredriksen, Zebedee Nicholls, Malte Meinshausen, Myles Allen, Stuart Jenkins, Nicholas Leach, Camilla Mathison, and Antti-Ilari Partanen
Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024, https://doi.org/10.5194/gmd-17-8569-2024, 2024
Short summary
Short summary
Climate projections are only useful if the underlying models that produce them are well calibrated and can reproduce observed climate change. We formalise a software package that calibrates the open-source FaIR simple climate model to full-complexity Earth system models. Observations, including historical warming, and assessments of key climate variables such as that of climate sensitivity are used to constrain the model output.
Jingwei Xie, Xi Wang, Hailong Liu, Pengfei Lin, Jiangfeng Yu, Zipeng Yu, Junlin Wei, and Xiang Han
Geosci. Model Dev., 17, 8469–8493, https://doi.org/10.5194/gmd-17-8469-2024, https://doi.org/10.5194/gmd-17-8469-2024, 2024
Short summary
Short summary
We propose the concept of mesoscale ocean direct numerical simulation (MODNS), which should resolve the first baroclinic deformation radius and ensure the numerical dissipative effects do not directly contaminate the mesoscale motions. It can be a benchmark for testing mesoscale ocean large eddy simulation (MOLES) methods in ocean models. We build an idealized Southern Ocean model using MITgcm to generate a type of MODNS. We also illustrate the diversity of multiscale eddy interactions.
Emily Black, John Ellis, and Ross I. Maidment
Geosci. Model Dev., 17, 8353–8372, https://doi.org/10.5194/gmd-17-8353-2024, https://doi.org/10.5194/gmd-17-8353-2024, 2024
Short summary
Short summary
We present General TAMSAT-ALERT, a computationally lightweight and versatile tool for generating ensemble forecasts from time series data. General TAMSAT-ALERT is capable of combining multiple streams of monitoring and meteorological forecasting data into probabilistic hazard assessments. In this way, it complements existing systems and enhances their utility for actionable hazard assessment.
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleussner
Geosci. Model Dev., 17, 8283–8320, https://doi.org/10.5194/gmd-17-8283-2024, https://doi.org/10.5194/gmd-17-8283-2024, 2024
Short summary
Short summary
Precipitation and temperature are two of the most impact-relevant climatic variables. Yet, projecting future precipitation and temperature data under different emission scenarios relies on complex models that are computationally expensive. In this study, we propose a method that allows us to generate monthly means of local precipitation and temperature at low computational costs. Our modelling framework is particularly useful for all downstream applications of climate model data.
Gang Tang, Zebedee Nicholls, Chris Jones, Thomas Gasser, Alexander Norton, Tilo Ziehn, Alejandro Romero-Prieto, and Malte Meinshausen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3522, https://doi.org/10.5194/egusphere-2024-3522, 2024
Short summary
Short summary
We analyzed carbon and nitrogen mass conservation in data from CMIP6 Earth System Models. Our findings reveal significant discrepancies between flux and pool size data, particularly in nitrogen, where cumulative imbalances can reach hundreds of gigatons. These imbalances appear primarily due to missing or inconsistently reported fluxes – especially for land use and fire emissions. To enhance data quality, we recommend that future climate data protocols address this issue at the reporting stage.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Peter Berg, Thomas Bosshard, Denica Bozhinova, Lars Bärring, Joakim Löw, Carolina Nilsson, Gustav Strandberg, Johan Södling, Johan Thuresson, Renate Wilcke, and Wei Yang
Geosci. Model Dev., 17, 8173–8179, https://doi.org/10.5194/gmd-17-8173-2024, https://doi.org/10.5194/gmd-17-8173-2024, 2024
Short summary
Short summary
When bias adjusting climate model data using quantile mapping, one needs to prescribe what to do at the tails of the distribution, where a larger data range is likely encountered outside of the calibration period. The end result is highly dependent on the method used. We show that, to avoid discontinuities in the time series, one needs to exclude data in the calibration range to also activate the extrapolation functionality in that time period.
Philip J. Rasch, Haruki Hirasawa, Mingxuan Wu, Sarah J. Doherty, Robert Wood, Hailong Wang, Andy Jones, James Haywood, and Hansi Singh
Geosci. Model Dev., 17, 7963–7994, https://doi.org/10.5194/gmd-17-7963-2024, https://doi.org/10.5194/gmd-17-7963-2024, 2024
Short summary
Short summary
We introduce a protocol to compare computer climate simulations to better understand a proposed strategy intended to counter warming and climate impacts from greenhouse gas increases. This slightly changes clouds in six ocean regions to reflect more sunlight and cool the Earth. Example changes in clouds and climate are shown for three climate models. Cloud changes differ between the models, but precipitation and surface temperature changes are similar when their cooling effects are made similar.
Trude Eidhammer, Andrew Gettelman, Katherine Thayer-Calder, Duncan Watson-Parris, Gregory Elsaesser, Hugh Morrison, Marcus van Lier-Walqui, Ci Song, and Daniel McCoy
Geosci. Model Dev., 17, 7835–7853, https://doi.org/10.5194/gmd-17-7835-2024, https://doi.org/10.5194/gmd-17-7835-2024, 2024
Short summary
Short summary
We describe a dataset where 45 parameters related to cloud processes in the Community Earth System Model version 2 (CESM2) Community Atmosphere Model version 6 (CAM6) are perturbed. Three sets of perturbed parameter ensembles (263 members) were created: current climate, preindustrial aerosol loading and future climate with sea surface temperature increased by 4 K.
Ha Thi Minh Ho-Hagemann, Vera Maurer, Stefan Poll, and Irina Fast
Geosci. Model Dev., 17, 7815–7834, https://doi.org/10.5194/gmd-17-7815-2024, https://doi.org/10.5194/gmd-17-7815-2024, 2024
Short summary
Short summary
The regional Earth system model GCOAST-AHOI v2.0 that includes the regional climate model ICON-CLM coupled to the ocean model NEMO and the hydrological discharge model HD via the OASIS3-MCT coupler can be a useful tool for conducting long-term regional climate simulations over the EURO-CORDEX domain. The new OASIS3-MCT coupling interface implemented in ICON-CLM makes it more flexible for coupling to an external ocean model and an external hydrological discharge model.
Sandro Vattioni, Rahel Weber, Aryeh Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
Geosci. Model Dev., 17, 7767–7793, https://doi.org/10.5194/gmd-17-7767-2024, https://doi.org/10.5194/gmd-17-7767-2024, 2024
Short summary
Short summary
We quantified impacts and efficiency of stratospheric solar climate intervention via solid particle injection. Microphysical interactions of solid particles with the sulfur cycle were interactively coupled to the heterogeneous chemistry scheme and the radiative transfer code of an aerosol–chemistry–climate model. Compared to injection of SO2 we only find a stronger cooling efficiency for solid particles when normalizing to the aerosol load but not when normalizing to the injection rate.
Ingo Richter, Ping Chang, Gokhan Danabasoglu, Dietmar Dommenget, Guillaume Gastineau, Aixue Hu, Takahito Kataoka, Noel Keenlyside, Fred Kucharski, Yuko Okumura, Wonsun Park, Malte Stuecker, Andrea Taschetto, Chunzai Wang, Stephen Yeager, and Sang-Wook Yeh
EGUsphere, https://doi.org/10.5194/egusphere-2024-3110, https://doi.org/10.5194/egusphere-2024-3110, 2024
Short summary
Short summary
The tropical ocean basins influence each other through multiple pathways and mechanisms, here referred to as tropical basin interaction (TBI). Many researchers have examined TBI using comprehensive climate models, but have obtained conflicting results. This may be partly due to differences in experiment protocols, and partly due to systematic model errors. TBIMIP aims to address this problem by designing a set of TBI experiments that will be performed by multiple models.
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024, https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary
Short summary
In this paper we describe the development of the future operational cycle 49R1 of the IFS-COMPO system, used for operational forecasts of atmospheric composition in the CAMS project, and focus on the implementation of the thermodynamical model EQSAM4Clim version 12. The implementation of EQSAM4Clim significantly improves the simulated secondary inorganic aerosol surface concentration. The new aerosol and precipitation acidity diagnostics showed good agreement against observational datasets.
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev., 17, 7629–7643, https://doi.org/10.5194/gmd-17-7629-2024, https://doi.org/10.5194/gmd-17-7629-2024, 2024
Short summary
Short summary
This paper introduces the AtsMOS workflow, a new tool for improving weather forecasts in mountainous areas. By combining advanced statistical techniques with local weather data, AtsMOS can provide more accurate predictions of weather conditions. Using data from Mount Everest as an example, AtsMOS has shown promise in better forecasting hazardous weather conditions, making it a valuable tool for communities in mountainous regions and beyond.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024, https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Short summary
We study the parameters of the turbulent-kinetic-energy mixed-layer-penetration scheme in the NEMO model with regard to sea-ice-covered regions of the Arctic Ocean. This evaluation reveals the impact of these parameters on mixed-layer depth, sea surface temperature and salinity, and ocean stratification. Our findings demonstrate significant impacts on sea ice thickness and sea ice concentration, emphasizing the need for accurately representing ocean mixing to understand Arctic climate dynamics.
Pengfei Shi, L. Ruby Leung, and Bin Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-183, https://doi.org/10.5194/gmd-2024-183, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Improving climate predictions has significant socio-economic impacts. In this study, we developed and applied a weakly coupled ocean data assimilation (WCODA) system to a coupled climate model. The WCODA system improves simulations of ocean temperature and salinity across many global regions. It also enhances the simulation of interannual precipitation and temperature variability over the southern US. This system is to support future predictability studies.
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024, https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
Short summary
In this study, we improved a climate model by adding the representation of water use sectors such as domestic, industry, and agriculture. This new feature helps us understand how water is used and supplied in various areas. We tested our model from 1971 to 2010 and found that it accurately identifies areas with water scarcity. By modelling the competition between sectors when water availability is limited, the model helps estimate the intensity and extent of individual sectors' water shortages.
Yucheng Lin, Robert E. Kopp, Alexander Reedy, Matteo Turilli, Shantenu Jha, and Erica L. Ashe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2183, https://doi.org/10.5194/egusphere-2024-2183, 2024
Short summary
Short summary
PaleoSTeHM v1.0-rc is a state-of-the-art framework designed to reconstruct past environmental conditions using geological data. Built on modern machine learning techniques, it efficiently handles the sparse and noisy nature of paleo records, allowing scientists to make accurate and scalable inferences about past environmental change. By using flexible statistical models, PaleoSTeHM separates different sources of uncertainty, improving the precision of historical climate reconstructions.
Florian Börgel, Sven Karsten, Karoline Rummel, and Ulf Gräwe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2685, https://doi.org/10.5194/egusphere-2024-2685, 2024
Short summary
Short summary
Forecasting river runoff, crucial for managing water resources and understanding climate impacts, can be challenging. This study introduces a new method using Convolutional Long Short-Term Memory (ConvLSTM) networks, a machine learning model that processes spatial and temporal data. Focusing on the Baltic Sea region, our model uses weather data as input to predict daily river runoff for 97 rivers.
Cited articles
Ashton, A. D. and Murray, A. B.: High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes, J. Geophys. Res.-Earth, 111, F04011, https://doi.org/10.1029/2005JF000422, 2006.
Ashton, A., Murray, A. B., and Arnoult, O.: Formation of coastline features by large-scale instabilities induced by high-angle waves, Nature, 414, 296–300, 2001.
Brown, S., Nicholls, R. J., Hanson, S., Brundrit, G., Dearing, J. A., Dickson, M. E., Gallop, S. L., Gao, S., Haigh, I. D., Hinkel, J., Jimenez, J. A., Klein, R. J. T., Kron, W., Lazar, A. N., Neves, C. F., Newton, A., Pattiaratachi, C., Payo, A., Pye, K., Sanchez-Arcilla, A., Siddall, M., Shareef, A., Tompkins, E. L., Vafeidis, A. T., van Maanen, B., Ward, P. J., and Woodroffe, C. D.: Shifting perspectives on coastal impacts and adaptation, Nature Climate Change, 4, 752–755, https://doi.org/10.1038/nclimate2344, 2014.
Carpenter, N. E., Dickson, M. E., Walkden, M., Nicholls, R. J., and Powrie, W.: Lithological controls on soft cliff planshape evolution under high and low sediment availability, Earth Surf. Proc. Land., 40, 840–852, https://doi.org/10.1002/esp.3675, 2015.
Courant, R., Friedrichs, K., and Lewy, H.: On the Partial Difference Equations of Mathematical Physics, IBM J., 11, 215–234, 1967.
Cowell, P., Roy, P., and Jones, R.: Simulation of large-scale coastal change using a morphological behaviour model, Mar. Geol., 126, 45–61, 1995.
Cowell, P. J., Stive, M. J., Niedoroda, A. W., de Vriend, H. J., Swift, D. J., Kaminsky, G. M., and Capobianco, M.: The coastal-tract (part 1): a conceptual approach to aggregated modeling of low-order coastal change, J. Coastal. Res., 19, 812–827, 2003.
Daly, C. J., Winter, C., and Bryan, K. R.: On the morphological development of embayed beaches, Geomorphology, 248, 252–263, https://doi.org/10.1016/j.geomorph.2015.07.040, 2015.
Dean, R. G.: Equilibrium beach profiles: characteristics and applications, J. Coastal Res., 7, 53–84, 1991.
Dearing, J. A., Richmond, N., Plater, A. J., Wolf, J., Prandle, D., and Coulthard, T. J.: Modelling approaches for coastal simulation based on cellular automata: the need and potential, Philos. T. R. Soc. A, 364, 1051–1071, 2006.
Densmore, A. L., Ellis, M. A., and Anderson, R. S.: Landsliding and the evolution of normal-fault-bounded mountains, J. Geophys. Res.-Solid, 103, 15203–15219, 1998.
de Swart, H. and Zimmerman, J.: Morphodynamics of tidal inlet systems, Annu. Rev. Fluid Mech., 41, 203–229, 2009.
de Vriend, H. J., Zyserman, J., Nicholson, J., Roelvink, J. A., Péchon, P., and Southgate, H. N.: Medium-term 2-DH coastal area modelling, Coast. Eng., 21, 193–224, https://doi.org/10.1016/0378-3839(93)90050-I, 1993.
Ells, K. and Murray, A. B.: Long-term, non-local coastline responses to local shoreline stabilization, Geophys. Res. Lett., 39, L19401, https://doi.org/10.1029/2012GL052627, 2012.
Fagherazzi, S. and Overeem, I.: Models of deltaic and inner continental shelf landform evolution, Annu. Rev. Earth Pl. Sc., 35, 685–715, 2007.
Favis-Mortlock, D.: 1.14 Systems and complexity in geomorphology, in: Treatise on Geomorphology, edited by: Shroder, J. F., 257–270, Academic Press, San Diego, CA, USA, https://doi.org/10.1016/B978-0-12-374739-6.00014-2, 2013a.
Favis-Mortlock, D.: Automata models, Environmental Modelling: Finding Simplicity in Complexity, edited by: Wainwright, J. and Mulligan, M., Wiley, Chichester, ISBN 978-0-470-74911-1, 45 pp., 2013b.
Fenton, J. D. and McKee, W.: On calculating the lengths of water waves, Coast. Eng., 14, 499–513, 1990.
French, J., Burningham, H., Thornhill, G., Whitehouse, R., and Nicholls, R. J.: Conceptualising and mapping coupled estuary, coast and inner shelf sediment systems, Geomorphology, 256, 17–35, https://doi.org/10.1016/j.geomorph.2015.10.006, 2016a.
French, J., Payo, A., Murray, B., Orford, J., Eliot, M., and Cowell, P.: Appropriate complexity for the prediction of coastal and estuarine geomorphic behaviour at decadal to centennial scales, Geomorphology, 256, 3–16, https://doi.org/10.1016/j.geomorph.2015.10.005, 2016b.
Friedrichs, C. T. and Perry, J. E.: Tidal salt marsh morphodynamics: a synthesis, J. Coastal Res., 27, 7–37, 2001.
Gregersen, J. B., Gijsbers, P. J. A., Westen, S. J. P., and Blind, M.: OpenMI: the essential concepts and their implications for legacy software, Adv. Geosci., 4, 37–44, https://doi.org/10.5194/adgeo-4-37-2005, 2005.
Hall, J. W., Brown, S., Nicholls, R. J., Pidgeon, N. F., and Watson, R. T.: Proportionate adaptation, Nat. Clim. Change, 2, 833–834, https://doi.org/10.1038/nclimate1749, 2012.
Hallermeier, R. J.: Uses for a calculated limit depth to beach erosion, Coastal Engineering Proceedings, 1, 1493–1512, 1978.
Hanson, H. and Kraus, N. C.: Long-term evolution of a long-term evolution model, J. Coastal Res., 59, 118–129, 2011.
Hanson, H., Aarninkhof, S., Capobianco, M., Jimenez, J., Larson, M., R. Nicholls, Plant, N., Southgate, H., Steetzel, H., and Stive, M.: Modelling of coastal evolution on yearly to decadal time scales, J. Coastal Res., 19, 790–811, 2003.
Hurst, M. D., Barkwith, A., Ellis, M. A., Thomas, C. W., and Murray, A. B.: Exploring the sensitivities of crenulate bay shorelines to wave climates using a new vector-based one-line model, J. Geophys. Res.-Earth, 120, 2586–2608, https://doi.org/10.1002/2015JF003704, 2015.
Hutton, E. W., Piper, M. D., Peckham, S. D., Overeem, I., Kettner, A. J., and Syvitski, J. P.: Building sustainable software – the CSDMS approach, arXiv preprint, https://arxiv.org/abs/1407.4106, 2014.
Kaergaard, K. and Fredsoe, J.: A numerical shoreline model for shorelines with large curvature, Coast. Eng., 74, 19–32, https://doi.org/10.1016/j.coastaleng.2012.11.011, 2013.
Kamphuis, J.: On understanding scale effect in coastal mobile bed models, Physical Modelling in Coastal Engineerin, in: Physical Modelling in Coastal Engineering, 141–162, 1985.
Kamphuis, J.: Recession rate of glacial till bluffs, J. Waterw. Port C.-ASCE, 113, 60–73, 1987.
Kobayashi, N.: Coastal sediment transport modeling for engineering applications, J. Waterw. Port C.-ASCE, 142, 03116001, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000347, 2016.
Le Hir, P., Cayocca, F., and Waeles, B.: Dynamics of sand and mud mixtures: a multiprocess-based modelling strategy, Cont. Shelf Res., 31, S135–S149, 2011.
Moore, R. and Hughes, A.: Integrated environmental modelling: achieving the vision, Geol. Soc. S. P., 408, SP408, https://doi.org/10.1144/SP408.12, 2016.
Murray, A. B.: Reducing model complexity for explanation and prediction, Geomorphology, 90, 178–191, https://doi.org/10.1016/j.geomorph.2006.10.020, 2007.
Murray, A. B.: Contrasting the goals, strategies, and predictions associated with simplified numerical models and detailed simulations, in: Prediction in Geomorphology, American Geophysical Union, Washington, DC, 151–165, https://doi.org/10.1029/135GM11, 2013.
Murray, A. B., Coco, G., and Goldstein, E. B.: Cause and effect in geomorphic systems: complex systems perspectives, Geomorphology, 214, 1–9, https://doi.org/10.1016/j.geomorph.2014.03.001, 2014.
Murray, A. B., Gopalakrishnan, S., McNamara, D. E., and Smith, M. D.: Progress in coupling models of human and coastal landscape change, Comput. Geosci., 53, 30–38, https://doi.org/10.1016/j.cageo.2011.10.010, 2013.
Nicholls, R. J., Bradbury, A., Burningham, H., Dix, J., Ellis, M., French, J., Hall, J. W., Karunarathna, H. U., Lawn, J., and Pan, S.: iCOASST – integrating coastal sediment systems, Coastal Engineering Proceedings, 1, 100, https://doi.org/10.9753, 2012.
Payo, A., Hall, J., Dickson, M., and Walkden, M. A.: Feedback structure of cliff and shore platform morphodynamics, J. Coast. Conserv., 19, 847–859, https://doi.org/10.1007/s11852-014-0342-z, 2015.
Payo, A., Hall, J. W., Favis-Mortlock, D., and Ives, M.: A multi-landform numerical framework for modelling large scale coastal morphodynamics, The Proceedings of Coastal Sediments 2015, World Scientific Publishing Co. Pte. Ltd., 11–15 May, 2015 San Diego, CA, USA, 2015.
Peckham, S. D., Hutton, E. W. H., and Norris, B.: A component-based approach to integrated modeling in the geosciences: the design of CSDMS, Comput. Geosci., 53, 3–12, https://doi.org/10.1016/j.cageo.2012.04.002, 2013.
Ranasinghe, R., Swinkels, C., Luijendijk, A., Roelvink, D., Bosboom, J., M. Stive, and Walstra, D.: Morphodynamic upscaling with the MORFAC approach: dependencies and sensitivities, Coast. Eng., 58, 806–811, 2011.
Raper, J. and Livingstone, D.: Development of a geomorphological spatial model using object-oriented design, Int. J. Geogr. Inf. Syst., 9, 359–383, https://doi.org/10.1080/02693799508902044, 1995.
Rossington, S. K., Nicholls, R. J., Stive, M. J. F., and Wang, Z. B.: Estuary schematisation in behaviour-oriented modelling, Mar. Geol., 281, 27–34, https://doi.org/10.1016/j.margeo.2011.01.005, 2011.
Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. E.: Object-oriented modeling and design, Prentice-Hall Englewood Cliffs, NJ, USA, Englewood Cliffs, NJ, Prentice-Hall, 1991.
Savitzky, A. and Golay, M. J.: Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem., 36, 1627–1639, 1964.
Schumm, S. A. and Lichty, R. W.: Time, space, and causality in geomorphology, Am. J. Sci., 263, 110–119, 1965.
Sedgewick, R.: Algorithms in C, Part 5, Graph Algorithms, 3rd edn. Addison-Wesley, Reading, MA, USA, 2002.
Stive, M. J. F., Ruol, P., Capobianco, M., and Buijsman, M.: Behaviour oriented model for the evaluation of long-term lagoon-coastal dynamic interaction along the Po River Delta, Coastal Dynamics – Proceedings of the International Conference, American Society Civil Engineers, Plymouth, UK, June 1997, 903–912, 1997.
Sutherland, J., Townend, I. H., Harpham, Q. K., and Pearce, G. R.: From integration to fusion: the challenges ahead, Geol. Soc. Spec. Publ., 408 pp., https://doi.org/10.1144/sp408.6, 2014.
Terwindt, J. H. J. and Battjes, J. A.: Research on large-scale coastal behaviour, International Coastal Engineering Conference, Delft, 1975–1983, 1990.
Townend, I., Wang, Z. B., Stive, M., and Zhou, Z.: Development and extension of an aggregated scale model: Part 1 – background to ASMITA, China Ocean Eng., 30, 483–504, 2016.
Valvo, L. M., Murray, A. B., and Ashton, A.: How does underlying geology affect coastline change? An initial modeling investigation, J. Geophys. Res.-Earth, 111, F02025, https://doi.org/10.1029/2005JF000340, 2006.
Van Goor, M. A., Zitman, T. J., Wang, Z. B., and Stive, M. J. F.: Impact of sea-level rise on the morphological equilibrium state of tidal inlets, Mar. Geol., 202, 211–227, https://doi.org/10.1016/S0025-3227(03)00262-7, 2003.
van Rijn, L. C.: Longshore sand transport, Coastal Engineering Conference, American sociecty of Civil Engineers, Cardiff, Wales, 2, 2439–2451, 2002.
Walkden, M. and Dickson, M.: Equilibrium erosion of soft rock shores with a shallow or absent beach under increased sea level rise, Mar. Geol., 251, 75–84, https://doi.org/10.1016/j.margeo.2008.02.003, 2008.
Walkden, M. J. and Hall, J. W.: A mesoscale predictive model of the evolution and management of a soft-rock coast, J. Coastal Res., 27, 529–543, https://doi.org/10.2112/JCOASTRES-D-10-00099.1, 2011.
Werner, B.: Modeling landforms as self-organized, hierarchical dynamical systems, Geoph. Monog. Series, 135, 133–150, 2003.
Woodroffe, C. D.: Coasts: form, process and evolution, 1st Edn., Cambridge University Press, Cambridge University Press, Cambridge, 2002.
Short summary
CoastalME is a generic modelling environment to simulate coastal landscape evolution on spatial scales of kms to tens of kms, over decadal to centennial timescales. The novelty is that it simulates coastal morphology evolution as a set of dynamically linked raster and geometrical objects. Geometrical objects are derived from the raster structure providing a library of coastal elements (e.g. shoreline) that are conventionally used for modelling coastal behaviour on the timescales of interest.
CoastalME is a generic modelling environment to simulate coastal landscape evolution on spatial...