Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.240 IF 5.240
  • IF 5-year value: 5.768 IF 5-year
    5.768
  • CiteScore value: 8.9 CiteScore
    8.9
  • SNIP value: 1.713 SNIP 1.713
  • IPP value: 5.53 IPP 5.53
  • SJR value: 3.18 SJR 3.18
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 51 h5-index 51
Volume 10, issue 4
Geosci. Model Dev., 10, 1817–1833, 2017
https://doi.org/10.5194/gmd-10-1817-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 10, 1817–1833, 2017
https://doi.org/10.5194/gmd-10-1817-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 27 Apr 2017

Development and technical paper | 27 Apr 2017

An aerosol activation metamodel of v1.2.0 of the pyrcel cloud parcel model: development and offline assessment for use in an aerosol–climate model

Daniel Rothenberg and Chien Wang

Related authors

Impacts on cloud radiative effects induced by coexisting aerosols converted from international shipping and maritime DMS emissions
Qinjian Jin, Benjamin S. Grandey, Daniel Rothenberg, Alexander Avramov, and Chien Wang
Atmos. Chem. Phys., 18, 16793–16808, https://doi.org/10.5194/acp-18-16793-2018,https://doi.org/10.5194/acp-18-16793-2018, 2018
Short summary
The Fifth International Workshop on Ice Nucleation phase 2 (FIN-02): laboratory intercomparison of ice nucleation measurements
Paul J. DeMott, Ottmar Möhler, Daniel J. Cziczo, Naruki Hiranuma, Markus D. Petters, Sarah S. Petters, Franco Belosi, Heinz G. Bingemer, Sarah D. Brooks, Carsten Budke, Monika Burkert-Kohn, Kristen N. Collier, Anja Danielczok, Oliver Eppers, Laura Felgitsch, Sarvesh Garimella, Hinrich Grothe, Paul Herenz, Thomas C. J. Hill, Kristina Höhler, Zamin A. Kanji, Alexei Kiselev, Thomas Koop, Thomas B. Kristensen, Konstantin Krüger, Gourihar Kulkarni, Ezra J. T. Levin, Benjamin J. Murray, Alessia Nicosia, Daniel O'Sullivan, Andreas Peckhaus, Michael J. Polen, Hannah C. Price, Naama Reicher, Daniel A. Rothenberg, Yinon Rudich, Gianni Santachiara, Thea Schiebel, Jann Schrod, Teresa M. Seifried, Frank Stratmann, Ryan C. Sullivan, Kaitlyn J. Suski, Miklós Szakáll, Hans P. Taylor, Romy Ullrich, Jesus Vergara-Temprado, Robert Wagner, Thomas F. Whale, Daniel Weber, André Welti, Theodore W. Wilson, Martin J. Wolf, and Jake Zenker
Atmos. Meas. Tech., 11, 6231–6257, https://doi.org/10.5194/amt-11-6231-2018,https://doi.org/10.5194/amt-11-6231-2018, 2018
Short summary
Effective radiative forcing in the aerosol–climate model CAM5.3-MARC-ARG
Benjamin S. Grandey, Daniel Rothenberg, Alexander Avramov, Qinjian Jin, Hsiang-He Lee, Xiaohong Liu, Zheng Lu, Samuel Albani, and Chien Wang
Atmos. Chem. Phys., 18, 15783–15810, https://doi.org/10.5194/acp-18-15783-2018,https://doi.org/10.5194/acp-18-15783-2018, 2018
Short summary
On the representation of aerosol activation and its influence on model-derived estimates of the aerosol indirect effect
Daniel Rothenberg, Alexander Avramov, and Chien Wang
Atmos. Chem. Phys., 18, 7961–7983, https://doi.org/10.5194/acp-18-7961-2018,https://doi.org/10.5194/acp-18-7961-2018, 2018
Short summary
Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers
Sarvesh Garimella, Daniel A. Rothenberg, Martin J. Wolf, Robert O. David, Zamin A. Kanji, Chien Wang, Michael Rösch, and Daniel J. Cziczo
Atmos. Chem. Phys., 17, 10855–10864, https://doi.org/10.5194/acp-17-10855-2017,https://doi.org/10.5194/acp-17-10855-2017, 2017
Short summary

Related subject area

Atmospheric Sciences
Three-dimensional normal mode functions: open-access tools for their computation in isobaric coordinates (p-3DNMF.v1)
Carlos A. F. Marques, Martinho Marta-Almeida, and José M. Castanheira
Geosci. Model Dev., 13, 2763–2781, https://doi.org/10.5194/gmd-13-2763-2020,https://doi.org/10.5194/gmd-13-2763-2020, 2020
Short summary
Optimizing a dynamic fossil fuel CO2 emission model with CTDAS (CarbonTracker Data Assimilation Shell, v1.0) for an urban area using atmospheric observations of CO2, CO, NOx, and SO2
Ingrid Super, Hugo A. C. Denier van der Gon, Michiel K. van der Molen, Stijn N. C. Dellaert, and Wouter Peters
Geosci. Model Dev., 13, 2695–2721, https://doi.org/10.5194/gmd-13-2695-2020,https://doi.org/10.5194/gmd-13-2695-2020, 2020
Short summary
H2SO4–H2O binary and H2SO4–H2O–NH3 ternary homogeneous and ion-mediated nucleation: lookup tables version 1.0 for 3-D modeling application
Fangqun Yu, Alexey B. Nadykto, Gan Luo, and Jason Herb
Geosci. Model Dev., 13, 2663–2670, https://doi.org/10.5194/gmd-13-2663-2020,https://doi.org/10.5194/gmd-13-2663-2020, 2020
Short summary
Simulated wind farm wake sensitivity to configuration choices in the Weather Research and Forecasting model version 3.8.1
Jessica M. Tomaszewski and Julie K. Lundquist
Geosci. Model Dev., 13, 2645–2662, https://doi.org/10.5194/gmd-13-2645-2020,https://doi.org/10.5194/gmd-13-2645-2020, 2020
Short summary
RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting
Georgy Ayzel, Tobias Scheffer, and Maik Heistermann
Geosci. Model Dev., 13, 2631–2644, https://doi.org/10.5194/gmd-13-2631-2020,https://doi.org/10.5194/gmd-13-2631-2020, 2020
Short summary

Cited articles

Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation 2. Multiple aerosol types, J. Geophys. Res., 105, 6837, https://doi.org/10.1029/1999JD901161, 2000.
Abdul-Razzak, H. and Ghan, S. J.: Parameterization of the influence of organic surfactants on aerosol activation, J. Geophys. Res.-Atmos., 109, D3, https://doi.org/10.1029/2003JD004043, 2004.
Adams, B. M., Ebeida, M. S., Eldred, M. S., Jakeman, J. D., Swiler, L. P., Stephens, J. A., Vigil, D. M., Wildey, T. M., Bohnhoff, W. J., Dalbey, K. R., Eddy, J. P., Hu, K. T., Bauman, L. E., and Hough, P. D.: DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.0 User's Manual, Tech. rep., Sandia National Laboratories, Albuquerque, New Mexico, 2014.
Albani, S., Mahowald, N. M., Perry, A. T., Scanza, R. A., Zender, C. S., Heavens, N. G., Maggi, V., Kok, J. F., and Otto-Bliesner, B. L.: Improved dust representation in the Community Atmosphere Model, J. Adv. Model. Earth Sys., 6, 541–570, https://doi.org/10.1002/2013MS000279, 2014.
Barahona, D. and Nenes, A.: Parameterization of cloud droplet formation in large-scale models: Including effects of entrainment, J. Geophys. Res., 112, D16206, https://doi.org/10.1029/2007JD008473, 2007.
Publications Copernicus
Download
Short summary
Climate models include descriptions of how cloud droplets form from particles in the atmosphere. We have developed an efficient parameterization of this process by building an emulator of a detailed model, which can accurately predict cloud droplet number concentrations and potentially include additional physics and chemistry. We further show that using different parameterizations could influence droplet number estimates in global models and their aerosol indirect effect on climate.
Climate models include descriptions of how cloud droplets form from particles in the atmosphere....
Citation