Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.240 IF 5.240
  • IF 5-year value: 5.768 IF 5-year
    5.768
  • CiteScore value: 8.9 CiteScore
    8.9
  • SNIP value: 1.713 SNIP 1.713
  • IPP value: 5.53 IPP 5.53
  • SJR value: 3.18 SJR 3.18
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 51 h5-index 51
Volume 10, issue 4
Geosci. Model Dev., 10, 1817–1833, 2017
https://doi.org/10.5194/gmd-10-1817-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 10, 1817–1833, 2017
https://doi.org/10.5194/gmd-10-1817-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 27 Apr 2017

Development and technical paper | 27 Apr 2017

An aerosol activation metamodel of v1.2.0 of the pyrcel cloud parcel model: development and offline assessment for use in an aerosol–climate model

Daniel Rothenberg and Chien Wang

Viewed

Total article views: 1,522 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
902 531 89 1,522 132 115 115
  • HTML: 902
  • PDF: 531
  • XML: 89
  • Total: 1,522
  • Supplement: 132
  • BibTeX: 115
  • EndNote: 115
Views and downloads (calculated since 28 Oct 2016)
Cumulative views and downloads (calculated since 28 Oct 2016)

Viewed (geographical distribution)

Total article views: 1,458 (including HTML, PDF, and XML) Thereof 1,443 with geography defined and 15 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

Latest update: 12 Aug 2020
Publications Copernicus
Download
Short summary
Climate models include descriptions of how cloud droplets form from particles in the atmosphere. We have developed an efficient parameterization of this process by building an emulator of a detailed model, which can accurately predict cloud droplet number concentrations and potentially include additional physics and chemistry. We further show that using different parameterizations could influence droplet number estimates in global models and their aerosol indirect effect on climate.
Climate models include descriptions of how cloud droplets form from particles in the atmosphere....
Citation