Articles | Volume 10, issue 1
Geosci. Model Dev., 10, 169–188, 2017
https://doi.org/10.5194/gmd-10-169-2017

Special issue: BACCHUS – Impact of Biogenic versus Anthropogenic emissions...

Geosci. Model Dev., 10, 169–188, 2017
https://doi.org/10.5194/gmd-10-169-2017

Model description paper 13 Jan 2017

Model description paper | 13 Jan 2017

UCLALES–SALSA v1.0: a large-eddy model with interactive sectional microphysics for aerosol, clouds and precipitation

Juha Tonttila et al.

Related authors

Parameterising cloud base updraft velocity of marine stratocumuli
Jaakko Ahola, Tomi Raatikainen, Muzaffer Ege Alper, Jukka-Pekka Keskinen, Harri Kokkola, Antti Kukkurainen, Antti Lipponen, Jia Liu, Kalle Nordling, Antti-Ilari Partanen, Sami Romakkaniemi, Petri Räisänen, Juha Tonttila, and Hannele Korhonen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-757,https://doi.org/10.5194/acp-2021-757, 2021
Preprint under review for ACP
Short summary
The effect of marine ice nucleating particles on mixed-phase clouds
Tomi Raatikainen, Marje Prank, Jaakko Ahola, Harri Kokkola, Juha Tonttila, and Sami Romakkaniemi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-537,https://doi.org/10.5194/acp-2021-537, 2021
Revised manuscript under review for ACP
Short summary
The effect of black carbon on aerosol-boundary layer feedback: Potential implications for Beijing haze episodes
Jessica Slater, Hugh Coe, Gordon McFiggans, Juha Tonttila, and Sami Romakkaniemi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-139,https://doi.org/10.5194/acp-2021-139, 2021
Revised manuscript accepted for ACP
Short summary
Precipitation enhancement in stratocumulus clouds through airborne seeding: sensitivity analysis by UCLALES-SALSA
Juha Tonttila, Ali Afzalifar, Harri Kokkola, Tomi Raatikainen, Hannele Korhonen, and Sami Romakkaniemi
Atmos. Chem. Phys., 21, 1035–1048, https://doi.org/10.5194/acp-21-1035-2021,https://doi.org/10.5194/acp-21-1035-2021, 2021
Short summary
Using a coupled large-eddy simulation–aerosol radiation model to investigate urban haze: sensitivity to aerosol loading and meteorological conditions
Jessica Slater, Juha Tonttila, Gordon McFiggans, Paul Connolly, Sami Romakkaniemi, Thomas Kühn, and Hugh Coe
Atmos. Chem. Phys., 20, 11893–11906, https://doi.org/10.5194/acp-20-11893-2020,https://doi.org/10.5194/acp-20-11893-2020, 2020
Short summary

Related subject area

Atmospheric sciences
Development of aerosol optical properties for improving the MESSy photolysis module in the GEM-MACH v2.4 air quality model and application for calculating photolysis rates in a biomass burning plume
Mahtab Majdzadeh, Craig A. Stroud, Christopher Sioris, Paul A. Makar, Ayodeji Akingunola, Chris McLinden, Xiaoyi Zhao, Michael D. Moran, Ihab Abboud, and Jack Chen
Geosci. Model Dev., 15, 219–249, https://doi.org/10.5194/gmd-15-219-2022,https://doi.org/10.5194/gmd-15-219-2022, 2022
Short summary
The sensitivity of simulated aerosol climatic impact to domain size using regional model (WRF-Chem v3.6)
Xiaodong Wang, Chun Zhao, Mingyue Xu, Qiuyan Du, Jianqiu Zheng, Yun Bi, Shengfu Lin, and Yali Luo
Geosci. Model Dev., 15, 199–218, https://doi.org/10.5194/gmd-15-199-2022,https://doi.org/10.5194/gmd-15-199-2022, 2022
Short summary
WOMBAT v1.0: a fully Bayesian global flux-inversion framework
Andrew Zammit-Mangion, Michael Bertolacci, Jenny Fisher, Ann Stavert, Matthew Rigby, Yi Cao, and Noel Cressie
Geosci. Model Dev., 15, 45–73, https://doi.org/10.5194/gmd-15-45-2022,https://doi.org/10.5194/gmd-15-45-2022, 2022
Short summary
Analysis of the MODIS above-cloud aerosol retrieval algorithm using MCARS
Galina Wind, Arlindo M. da Silva, Kerry G. Meyer, Steven Platnick, and Peter M. Norris
Geosci. Model Dev., 15, 1–14, https://doi.org/10.5194/gmd-15-1-2022,https://doi.org/10.5194/gmd-15-1-2022, 2022
Short summary
How well can inverse analyses of high-resolution satellite data resolve heterogeneous methane fluxes? Observing system simulation experiments with the GEOS-Chem adjoint model (v35)
Xueying Yu, Dylan B. Millet, and Daven K. Henze
Geosci. Model Dev., 14, 7775–7793, https://doi.org/10.5194/gmd-14-7775-2021,https://doi.org/10.5194/gmd-14-7775-2021, 2021
Short summary

Cited articles

Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation 3. Sectional representation, J. Geophys. Res., 107, 4026, https://doi.org/10.1029/2001JD000483, 2002.
Ács, R., Mihailović, D. T., and Rajković, B.: A coupled soil moisture and surface temperature prediction model, J. Appl. Meteorol., 30, 812–822, 1991.
Andrejczuk, M., Grabowski, W. W., Reisner, J., and Gadian, A.: Cloud-aerosol interactions for boundary layer stratocumulus in the Largrangian Cloud Model, J. Geophys. Res., 115, D22214, https://doi.org/10.1029/2010JD014248, 2010.
Bergman, T., Kerminen, V.-M., Korhonen, H., Lehtinen, K. J., Makkonen, R., Arola, A., Mielonen, T., Romakkaniemi, S., Kulmala, M., and Kokkola, H.: Evaluation of the sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-climate model, Geosci. Model Dev., 5, 845–868, https://doi.org/10.5194/gmd-5-845-2012, 2012.
Download
Short summary
Novel techniques for modelling the aerosol–cloud interactions are implemented in a cloud-resolving model. The new methods improve the representation of the poorly constrained effects of cloud processing, precipitation and the wet removal of particles on the aerosol population and the associated feedbacks. The detailed representation of these processes yields more realistic simulation of the evolution of boundary layer clouds and fogs, as compared to results obtained using more simple methods.