Articles | Volume 10, issue 1
https://doi.org/10.5194/gmd-10-169-2017
https://doi.org/10.5194/gmd-10-169-2017
Model description paper
 | 
13 Jan 2017
Model description paper |  | 13 Jan 2017

UCLALES–SALSA v1.0: a large-eddy model with interactive sectional microphysics for aerosol, clouds and precipitation

Juha Tonttila, Zubair Maalick, Tomi Raatikainen, Harri Kokkola, Thomas Kühn, and Sami Romakkaniemi

Related authors

How horizontal transport and turbulent mixing impact aerosol particle and precursor concentrations at a background site in the UAE
Jutta Kesti, Ewan J. O'Connor, Anne Hirsikko, John Backman, Maria Filioglou, Anu-Maija Sundström, Juha Tonttila, Heikki Lihavainen, Hannele Korhonen, and Eija Asmi
Atmos. Chem. Phys., 24, 9369–9386, https://doi.org/10.5194/acp-24-9369-2024,https://doi.org/10.5194/acp-24-9369-2024, 2024
Short summary
Comparing the simulated influence of biomass burning plumes on low-level clouds over the southeastern Atlantic under varying smoke conditions
Alejandro Baró Pérez, Michael S. Diamond, Frida A.-M. Bender, Abhay Devasthale, Matthias Schwarz, Julien Savre, Juha Tonttila, Harri Kokkola, Hyunho Lee, David Painemal, and Annica M. L. Ekman
Atmos. Chem. Phys., 24, 4591–4610, https://doi.org/10.5194/acp-24-4591-2024,https://doi.org/10.5194/acp-24-4591-2024, 2024
Short summary
Technical note: Emulation of a large-eddy simulator for stratocumulus clouds in a general circulation model
Kalle Nordling, Jukka-Pekka Keskinen, Sami Romakkaniemi, Harri Kokkola, Petri Räisänen, Antti Lipponen, Antti-Ilari Partanen, Jaakko Ahola, Juha Tonttila, Muzaffer Ege Alper, Hannele Korhonen, and Tomi Raatikainen
Atmos. Chem. Phys., 24, 869–890, https://doi.org/10.5194/acp-24-869-2024,https://doi.org/10.5194/acp-24-869-2024, 2024
Short summary
Aerosol–stratocumulus interactions: towards a better process understanding using closures between observations and large eddy simulations
Silvia M. Calderón, Juha Tonttila, Angela Buchholz, Jorma Joutsensaari, Mika Komppula, Ari Leskinen, Liqing Hao, Dmitri Moisseev, Iida Pullinen, Petri Tiitta, Jian Xu, Annele Virtanen, Harri Kokkola, and Sami Romakkaniemi
Atmos. Chem. Phys., 22, 12417–12441, https://doi.org/10.5194/acp-22-12417-2022,https://doi.org/10.5194/acp-22-12417-2022, 2022
Short summary
Impacts of marine organic emissions on low-level stratiform clouds – a large eddy simulator study
Marje Prank, Juha Tonttila, Jaakko Ahola, Harri Kokkola, Thomas Kühn, Sami Romakkaniemi, and Tomi Raatikainen
Atmos. Chem. Phys., 22, 10971–10992, https://doi.org/10.5194/acp-22-10971-2022,https://doi.org/10.5194/acp-22-10971-2022, 2022
Short summary

Related subject area

Atmospheric sciences
HTAP3 Fires: towards a multi-model, multi-pollutant study of fire impacts
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Steve R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christoph Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Y. T. Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev., 18, 3265–3309, https://doi.org/10.5194/gmd-18-3265-2025,https://doi.org/10.5194/gmd-18-3265-2025, 2025
Short summary
Pochva: a new hydro-thermal process model in soil, snow, and vegetation for application in atmosphere numerical models
Oxana Drofa
Geosci. Model Dev., 18, 3175–3209, https://doi.org/10.5194/gmd-18-3175-2025,https://doi.org/10.5194/gmd-18-3175-2025, 2025
Short summary
ClimKern v1.2: a new Python package and kernel repository for calculating radiative feedbacks
Tyler P. Janoski, Ivan Mitevski, Ryan J. Kramer, Michael Previdi, and Lorenzo M. Polvani
Geosci. Model Dev., 18, 3065–3079, https://doi.org/10.5194/gmd-18-3065-2025,https://doi.org/10.5194/gmd-18-3065-2025, 2025
Short summary
Accounting for effects of coagulation and model uncertainties in particle number concentration estimates based on measurements from sampling lines – a Bayesian inversion approach with SLIC v1.0
Matti Niskanen, Aku Seppänen, Henri Oikarinen, Miska Olin, Panu Karjalainen, Santtu Mikkonen, and Kari Lehtinen
Geosci. Model Dev., 18, 2983–3001, https://doi.org/10.5194/gmd-18-2983-2025,https://doi.org/10.5194/gmd-18-2983-2025, 2025
Short summary
Top-down CO emission estimates using TROPOMI CO data in the TM5-4DVAR (r1258) inverse modeling suit
Johann Rasmus Nüß, Nikos Daskalakis, Fabian Günther Piwowarczyk, Angelos Gkouvousis, Oliver Schneising, Michael Buchwitz, Maria Kanakidou, Maarten C. Krol, and Mihalis Vrekoussis
Geosci. Model Dev., 18, 2861–2890, https://doi.org/10.5194/gmd-18-2861-2025,https://doi.org/10.5194/gmd-18-2861-2025, 2025
Short summary

Cited articles

Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation 3. Sectional representation, J. Geophys. Res., 107, 4026, https://doi.org/10.1029/2001JD000483, 2002.
Ács, R., Mihailović, D. T., and Rajković, B.: A coupled soil moisture and surface temperature prediction model, J. Appl. Meteorol., 30, 812–822, 1991.
Andrejczuk, M., Grabowski, W. W., Reisner, J., and Gadian, A.: Cloud-aerosol interactions for boundary layer stratocumulus in the Largrangian Cloud Model, J. Geophys. Res., 115, D22214, https://doi.org/10.1029/2010JD014248, 2010.
Bergman, T., Kerminen, V.-M., Korhonen, H., Lehtinen, K. J., Makkonen, R., Arola, A., Mielonen, T., Romakkaniemi, S., Kulmala, M., and Kokkola, H.: Evaluation of the sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-climate model, Geosci. Model Dev., 5, 845–868, https://doi.org/10.5194/gmd-5-845-2012, 2012.
Download
Short summary
Novel techniques for modelling the aerosol–cloud interactions are implemented in a cloud-resolving model. The new methods improve the representation of the poorly constrained effects of cloud processing, precipitation and the wet removal of particles on the aerosol population and the associated feedbacks. The detailed representation of these processes yields more realistic simulation of the evolution of boundary layer clouds and fogs, as compared to results obtained using more simple methods.
Share