Articles | Volume 10, issue 4
Geosci. Model Dev., 10, 1521–1548, 2017
https://doi.org/10.5194/gmd-10-1521-2017

Special issue: Particle-based methods for simulating atmospheric aerosol...

Geosci. Model Dev., 10, 1521–1548, 2017
https://doi.org/10.5194/gmd-10-1521-2017

Model evaluation paper 13 Apr 2017

Model evaluation paper | 13 Apr 2017

Collection/aggregation algorithms in Lagrangian cloud microphysical models: rigorous evaluation in box model simulations

Simon Unterstrasser et al.

Related authors

Box model trajectory studies of contrail formation using a particle-based cloud microphysics scheme
Andreas Bier, Simon Unterstrasser, and Xavier Vancassel
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-361,https://doi.org/10.5194/acp-2021-361, 2021
Preprint under review for ACP
Short summary
On numerical broadening of particle size spectra: a condensational growth study using PyMPDATA 1.0
Michael Olesik, Sylwester Arabas, Jakub Banaśkiewicz, Piotr Bartman, Manuel Baumgartner, and Simon Unterstrasser
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-404,https://doi.org/10.5194/gmd-2020-404, 2021
Preprint under review for GMD
Collisional growth in a particle-based cloud microphysical model: insights from column model simulations using LCM1D (v1.0)
Simon Unterstrasser, Fabian Hoffmann, and Marion Lerch
Geosci. Model Dev., 13, 5119–5145, https://doi.org/10.5194/gmd-13-5119-2020,https://doi.org/10.5194/gmd-13-5119-2020, 2020
Short summary
Contrails and their impact on shortwave radiation and photovoltaic power production – a regional model study
Simon Gruber, Simon Unterstrasser, Jan Bechtold, Heike Vogel, Martin Jung, Henry Pak, and Bernhard Vogel
Atmos. Chem. Phys., 18, 6393–6411, https://doi.org/10.5194/acp-18-6393-2018,https://doi.org/10.5194/acp-18-6393-2018, 2018
Short summary
Properties of young contrails – a parametrisation based on large-eddy simulations
Simon Unterstrasser
Atmos. Chem. Phys., 16, 2059–2082, https://doi.org/10.5194/acp-16-2059-2016,https://doi.org/10.5194/acp-16-2059-2016, 2016
Short summary

Related subject area

Atmospheric sciences
Efficient ensemble generation for uncertain correlated parameters in atmospheric chemical models: a case study for biogenic emissions from EURAD-IM version 5
Annika Vogel and Hendrik Elbern
Geosci. Model Dev., 14, 5583–5605, https://doi.org/10.5194/gmd-14-5583-2021,https://doi.org/10.5194/gmd-14-5583-2021, 2021
Short summary
Position correction in dust storm forecasting using LOTOS-EUROS v2.1: grid-distorted data assimilation v1.0
Jianbing Jin, Arjo Segers, Hai Xiang Lin, Bas Henzing, Xiaohui Wang, Arnold Heemink, and Hong Liao
Geosci. Model Dev., 14, 5607–5622, https://doi.org/10.5194/gmd-14-5607-2021,https://doi.org/10.5194/gmd-14-5607-2021, 2021
Short summary
Atmosphere–ocean–aerosol–chemistry–climate model SOCOLv4.0: description and evaluation
Timofei Sukhodolov, Tatiana Egorova, Andrea Stenke, William T. Ball, Christina Brodowsky, Gabriel Chiodo, Aryeh Feinberg, Marina Friedel, Arseniy Karagodin-Doyennel, Thomas Peter, Jan Sedlacek, Sandro Vattioni, and Eugene Rozanov
Geosci. Model Dev., 14, 5525–5560, https://doi.org/10.5194/gmd-14-5525-2021,https://doi.org/10.5194/gmd-14-5525-2021, 2021
Short summary
Harmonized Emissions Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS models
Haipeng Lin, Daniel J. Jacob, Elizabeth W. Lundgren, Melissa P. Sulprizio, Christoph A. Keller, Thibaud M. Fritz, Sebastian D. Eastham, Louisa K. Emmons, Patrick C. Campbell, Barry Baker, Rick D. Saylor, and Raffaele Montuoro
Geosci. Model Dev., 14, 5487–5506, https://doi.org/10.5194/gmd-14-5487-2021,https://doi.org/10.5194/gmd-14-5487-2021, 2021
Short summary
Mesoscale nesting interface of the PALM model system 6.0
Eckhard Kadasch, Matthias Sühring, Tobias Gronemeier, and Siegfried Raasch
Geosci. Model Dev., 14, 5435–5465, https://doi.org/10.5194/gmd-14-5435-2021,https://doi.org/10.5194/gmd-14-5435-2021, 2021
Short summary

Cited articles

Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989.
Andrejczuk, M., Reisner, J. M., Henson, B., Dubey, M. K., and Jeffery, C. A.: The potential impacts of pollution on a nondrizzling stratus deck: Does aerosol number matter more than type?, J. Geophys. Res., 113, D19204, https://doi.org/10.1029/2007JD009445, 2008.
Andrejczuk, M., Grabowski, W. W., Reisner, J., and Gadian, A.: Cloud-aerosol interactions for boundary layer stratocumulus in the Lagrangian cloud model, J. Geophys. Res., 115, D22214, https://doi.org/10.1029/2010JD014248, 2010.
Andrejczuk, M., Gadian, A., and Blyth, A.: Stratocumulus over SouthEast Pacific: Idealized 2D simulations with the Lagrangian Cloud Model, ArXiv e-prints, 1211.0193v1 [physics.ao-ph], 2012.
Arabas, S. and Shima, S.-I.: Large-Eddy Simulations of Trade Wind Cumuli Using Particle-Based Microphysics with Monte Carlo Coalescence, J. Atmos. Sci., 70, 2768–2777, https://doi.org/10.1175/JAS-D-12-0295.1, 2013.
Download
Short summary
In the last decade, several Lagrangian microphysical models (LCMs) have been developed which use a large number of (computational) particles to represent a cloud. In particular, the collision process leading to coalescence of cloud droplets or aggregation of ice crystals is implemented differently in various models. Three existing implementations are reviewed and extended, and their performance is evaluated by a comparison with well established analytical and bin model solutions.