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Abstract. Recently, several Lagrangian microphysical mod-
els have been developed which use a large number of (com-
putational) particles to represent a cloud. In particular, the
collision process leading to coalescence of cloud droplets or
aggregation of ice crystals is implemented differently in var-
ious models. Three existing implementations are reviewed
and extended, and their performance is evaluated by a com-
parison with well-established analytical and bin model solu-
tions. In this first step of rigorous evaluation, box model sim-
ulations, with collection/aggregation being the only process
considered, have been performed for the three well-known
kernels of Golovin, Long and Hall.

Besides numerical parameters, like the time step and the
number of simulation particles (SIPs) used, the details of how
the initial SIP ensemble is created from a prescribed analyt-
ically defined size distribution is crucial for the performance
of the algorithms. Using a constant weight technique, as done
in previous studies, greatly underestimates the quality of the
algorithms. Using better initialisation techniques consider-
ably reduces the number of required SIPs to obtain realistic
results. From the box model results, recommendations for the
collection/aggregation implementation in higher dimensional
model setups are derived. Suitable algorithms are equally rel-
evant to treating the warm rain process and aggregation in
cirrus.

1 Introduction

The collection of cloud droplets and the aggregation of ice
crystals are important processes in liquid and ice clouds. By
changing the size, number and, in the case of ice, the shape
of hydrometeors, collection and aggregation affect the mi-
crophysical behaviour of clouds and thereby their role in the
climate system.

The warm rain process (i.e. the production of precipita-
tion in clouds in the absence of ice) depends essentially on
the collision and subsequent coalescence of cloud droplets.
At its initial stage, however, condensational growth governs
the activation of aerosols and the following growth of cloud
droplets, which might initiate the collection process if they
become sufficiently large. Then, collection produces drizzle
or raindrops, which are able to precipitate from the cloud,
affecting lifetime and organisation of clouds (e.g. Albrecht,
1989; Xue et al., 2008).

In ice clouds, sedimentation, deposition growth and in par-
ticular radiative properties depend on the ice crystals’ habits
(Sölch and Kärcher, 2011, and references therein). Ice aggre-
gates scatter shortwave radiation more strongly than pure ice
crystals of the same mass. Recent simulation results suggest
that contrail cirrus and natural cirrus can be strongly interwo-
ven. In the mixing area, with ice crystals of both origins being
present, a prominent bimodal spectrum occurs and enhances
the probability of collisions (Unterstrasser et al., 2016).

The temporal change of an infinite system of droplets by
collision and subsequent coalescence (or any other particles)
is described by the stochastic collection equation (SCE),
also known as the kinetic collection equation, coagulation
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equation, Smoluchowski or population balance equation (e.g.
Wang et al., 2007). It yields

∂fm(m, t)

∂t
= 1

2

m∫
0

K(m′,m−m′)fm(m
′, t)fm(m−m′, t)dm′

−
∞∫

0

K(m,m′)fm(m, t)fm(m
′, t) dm′, (1)

where fm(m)dm is the number concentration within an in-
finitesimal interval around the mass m. The first term (gain
term) accounts for the coalescence of two smaller droplets
forming a new droplet with mass m; the second term (loss
term) accounts for the coalescence of droplets with mass m
with any other droplets forming a larger droplet. The col-
lection kernel K(m,m′) describes the rate by which col-
lections between a droplet with mass m and a droplet with
mass m′ occur. Due to the symmetry of the collection kernel
(K(m,m′)=K(m′,m)) the first term on the right-hand side
can also be written as

∫ m/2
0 K(m′,m−m′)fm(m

′, t)fm(m−
m′, t) dm′.

For several kernel functions (mostly of polynomial form),
analytic solutions exist for specific initial distributions
(Golovin, 1963; Berry, 1967; Scott, 1968). The Golovin ker-
nel (sum of masses) is given by

K(m,m′)= b (m+m′). (2)

Solutions for more realistic kernels (Long, 1974; Hall, 1980;
Wang et al., 2006) and arbitrary initial distribution can be
obtained with various numerical methods mainly using a
bin representation of the droplet size distribution (Berry and
Reinhardt, 1974; Tzivion et al., 1987; Bott, 1998; Simmel
et al., 2002; Wang et al., 2007). The hydrodynamic kernel is
defined as

K(r,r ′)= π(r + r ′)2 |wsed(r)−wsed(r
′)| Ec(r,r

′), (3)

based on the radius r and the sedimentation velocity wsed.
Parametrisations of the collection efficiency Ec are given,
e.g. by Long (1974) or Hall (1980). In the above formula,
the differential sedimentation is the driver of collections. No
same-size collisions can occur, i.e.K(r,r)= 0. More sophis-
ticated expressions for K(r,r ′) have been derived to include
turbulence enhancement of the collisional growth, which also
allow same-size collisions (K(r,r) > 0) (e.g. Ayala et al.,
2008; Grabowski and Wang, 2013; Chen et al., 2016).

Solving (1) demands simplifications in the representation
of the droplet spectrum for which several numerical models
have been developed. Spectral-bin models (e.g. Khain et al.,
2000) represent the spectrum by dividing it into several in-
tervals (so-called bins). This approach enables the prediction
of the temporal development of the droplet number concen-
tration in each bin by using the method of finite differences
(e.g. Bott, 1998). The accuracy of these models is primarily

determined by the number of used bins (usually on the order
of 100), which makes them computationally challenging and
prohibits their use in day-to-day applications like numerical
weather prediction. Less challenging but less accurate are
cloud microphysical bulk models that compute the tempo-
ral change of integral quantities of the droplet spectrum (e.g.
Kessler, 1969; Khairoutdinov and Kogan, 2000; Seifert and
Beheng, 2001). These are usually equations for the temporal
evolution of bulk mass (so-called one-moment schemes) and
additionally number concentration (two-moment schemes)
or radar reflectivity (three-moment schemes), which describe
the change of the entities of cloud droplets and rain drops
(in the case of warm clouds). The separation radius between
cloud droplets and rain drops depends on the details of the
bulk scheme, but generally cloud droplets (up to 20 to 40µm
in radius) are assumed to have negligible sedimentation fall
velocities, while larger drops, frequently subsumed as rain
drops, have a sufficient sedimentation velocity to cause colli-
sion/coalescence. The interactions of cloud and rain drops
are therefore described in terms of self-collection (coales-
cence of cloud (rain) drops resulting in cloud (rain) drops),
autoconversion (coalescence of cloud droplets resulting in
rain drops) and accretion (collection of cloud droplets by
rain drops). A third alternative for computing cloud micro-
physics has been developed in the recent years: Lagrangian
cloud models (LCMs). These models represent cloud micro-
physics on the basis of individual computational particles
(SIPs). Similar to spectral-bin models, LCMs enable the de-
tailed representation of droplet spectra.

Due to their specific construction, LCMs offer a variety
of advantages in comparison to spectral-bin and bulk cloud
models. Their representation of aerosol activation and subse-
quent diffusional growth closely follows fundamental equa-
tions and therefore avoids the possible perils of parametri-
sations (e.g. Andrejczuk et al., 2008; Hoffmann, 2016). The
same applies for the representation of collection or aggre-
gation, which is based on the interaction of individual SIPs.
Accordingly, LCMs approximate pure stochastic growth (e.g.
Gillespie, 1975), which is the correct description of collec-
tion/aggregation within a limited system of interacting par-
ticles and results in the SCE, which is used as the basis for
spectral-bin and bulk models if the system becomes infinite
(e.g. Bayewitz et al., 1974). Moreover, LCMs do not apply
the finite differences method to compute microphysics. Ac-
cordingly, LCMs are not prone to numerical diffusion and
dispersion, and do not suffer from the numerical broadening
of a droplet spectrum, which can affect spectral-bin cloud
models (Khain et al., 2000). The effect of sedimentation is in-
corporated in a straightforward manner in the transport equa-
tion of the SIPs and avoids numerical artefacts (Wacker and
Seifert, 2001). Finally, LCMs enable new ways of analysis by
the tracking of individual SIPs. They can be used to reveal the
origins of droplets, as well as conditions associated with their
growth (e.g. Hoffmann et al., 2015; Naumann and Seifert,
2016). The largest disadvantage of LCMs, so far, might be
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their relative novelty due to their higher computational de-
mand. Many aspects of this approach have not been validated
adequately and there is potential for future improvements.
For the process of collection/aggregation, this study will of-
fer a first rigorous evaluation of the available numerical ap-
proaches.

To our knowledge, five fully coupled LCMs for warm
clouds exist, which are described in Andrejczuk et al. (2008),
Shima et al. (2009), Riechelmann et al. (2012), Arabas et al.
(2015) and Naumann and Seifert (2015), and have been
extended or applied in various problems (e.g. Andrejczuk
et al., 2010; Arabas and Shima, 2013; Lee et al., 2014;
Hoffmann et al., 2015). For ice clouds, three models exist
(Paoli et al., 2004; Shirgaonkar and Lele, 2006; Sölch and
Kärcher, 2010) which have been applied to natural cirrus
(Sölch and Kärcher, 2011) and, in particular, to contrails
(e.g. Paoli et al., 2013; Unterstrasser, 2014; Unterstrasser
and Görsch, 2014). In the context of ice clouds and warm
clouds, different names are used for processes that are simi-
lar, in particular in terms of their numerical treatment (depo-
sition/sublimation vs. condensation/evaporation, collection
vs. aggregation). Conceptually similar are particle-based ap-
proaches in aerosol physics (Riemer et al., 2009; Maisels
et al., 2004) which account for coagulation of aerosols (DeV-
ille et al., 2011; Kolodko and Sabelfeld, 2003).

So far, no consistent terminology has been used in the lat-
ter publications. Various names have been used for the same
things by various authors. We point out that super droplet,
computational droplet and simulation particle (SIP) all have
the same meaning and refer to several identical real cloud
droplets (or ice crystals) represented by one Lagrangian par-
ticle. The number of real droplets represented in a SIP is
denoted as the weighting factor or multiplicity. Moreover,
Lagrangian approaches in cloud physics have been named
the Lagrangian cloud model (LCM), super droplet method
(SDM) or particle-based method. In this paper, we use the
terms SIP, weighting factor νsim and LCM. Here, droplet
refers to either real droplets or ice crystals. If we say in the
following that “SIP i is larger than SIP j”, this means that the
droplets represented in SIP i are larger than those in SIP j .
Such a statement it is not related to the weighting factor of
the SIPs.

Usually, only the liquid water or the ice of a cloud are de-
scribed with a Lagrangian representation, whereas all other
physical quantities (like velocity, temperature and water
vapour concentration) are described in Eulerian space (see
also discussion in Hoffmann, 2016). SIPs have discrete po-
sitions xp = (xp,yp,zp) within a grid box. The position is
regularly updated, obeying the transport equation ∂xp/∂t =
u. Microphysical processes like sedimentation and droplet
growth are treated individually for each SIP. Interpolation
methods can be used to evaluate the Eulerian fields at the
specific SIP positions. This implicitly assumes that all νsim
droplets of the SIPs are located at the same position. On the
other hand, the droplets of a SIP are assumed to be well-

mixed in the grid box in the LCM treatment of collection
and sometimes condensation. Then, the number concentra-
tion represented by a single SIP, e.g. is given by νsim/1V ,
where 1V is the volume of the grid box.

Lists of used symbols and abbreviation are given in Ta-
bles 1 and 2.

2 Description of the various collection/aggregation
implementations

We use the terminology of Berry (1967), where fln r and
gln r denote the number and mass density function with re-
spect to the logarithm of droplet radius lnr . The relations
gln r(r)=mfln r(r) and flnr(r)= 3mfm(m) hold. The lat-
ter designates the number density function with respect to
mass and obeys the transformation property of distributions:
fy(y)dy = fx(x(y))dx. For consistency with previous stud-
ies, gln r is used for plotting purposes, whereas fm and gm
are more relevant in the following analytical derivations.

The moments of order k of the mass distribution fm
(equivalent to the number density function with respect to
mass) are defined as

λk(t)=
∫
mkfm(m, t)dm. (4)

The low-order moments represent the droplet number con-
centration (DNC= λ0) and the mass concentration (liquid
water content; LWC= λ1). The analogous extensive proper-
ties λk(t) 1V are the total droplet number N , total droplet
massM and radar reflectivity (Z = λ2 1V ). For a given SIP
ensemble, the moments can be computed by

λk,SIP(t)=
(
NSIP∑
i=1

νiµi
k

)/
1V , (5)

where µi is the single droplet mass of SIP i and NSIP is the
number of SIPs inside a grid box. For reasons of consistency
with Wang et al. (2007), we translate the SIP ensemble into a
mass distribution gm in bin representation and then compute
the moments with the formula

λk,BIN(t)=
NBIN∑
i=1

gm(mi, t)(m̃bb,l)
k−1 ln10

3 κ
(6)

(cf. with their Eq. 48).
The initialisation is successful for a given parameter set

if the moments of the SIP ensemble λk,SIP are close to the
analytical values λk,anal. For an exponential distribution (as
used in this study), the probability density function (PDF)
reads as

fm(m)= N
1V m̄

exp
(
−m
m̄

)
; (7)

the moments are given analytically by

λk,anal(t)= (k− 1)! N m̄k/1V, (8)
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Table 1. List of symbols.

Symbol Value/unit Meaning

fm, f̃m kg−1 m−3, 1 (normalised) droplet number concentration per mass interval
gm,gln r m−3, kg m−3 droplet mass concentration per mass interval/per logarithmic radius interval
m, m′ kg mass of a single real droplet
mbb kg bin boundaries of the bin grid
m̄= λ1/λ0 =M/N kg mean mass of all droplets
nbin,l 1 droplet number in bin l
r, r ′ m droplet radius
rlb m threshold radius in νrandom,lb-init
rcritmin m lower cut-off radius in singleSIP-init
wsed m s−1 sedimentation velocity
DNC= λ0 m−3 droplet number concentration
Ec 1 collection/aggregation efficiency
K m3 s−1 collection/aggregation kernel
LWC= λ1 kg m−3 droplet mass concentration, liquid water content
Mbin,l kg total droplet mass in bin l
NSIP 1 number of SIPs
NBIN 1 number of bins
αlow,αmed,αhigh 1 parameters of the νrandom-init method
1t s time step
1V m3 grid box volume
η 1 parameter in RMA and singleSIP-init method
κ 1 number of bins per mass decade
λk kgk m−3 moments of the order k
µ kg single droplet mass of a SIP
νcritmax 1 maximum number of droplets represented by a SIP
νcritmin 1 minimum number of droplets represented by a SIP
ν 1 number of droplets represented by a SIP
ξ 1 splitting parameter of AON
χ = µν, χ̃ = χ/M kg, 1 total droplet mass of a SIP
N = λ01V 1 total droplet number
M= λ11V kg total droplet mass
Z = λ2 1V kg2 second moment of droplet mass distribution (radar reflectivity)

Table 2. List of abbreviations.

AON All-or-nothing algorithm AIM Average impact algorithm
DSD Droplet size distribution LCM Lagrangian cloud model
PDF Probability density function RMA Remapping algorithm
OTF Update on the fly RedLim Reduction limiter
SIP Simulation particle

where k! is the factorial of k and m̄=M/N the mean mass
(Rade and Westergren, 2000).

Throughout this study, the initial parameters of the droplet
size distribution (DSD) are DNC0 = 2.97× 108 m−3 and
LWC0 = 10−3 kg m−3 (implying a mean radius of 9.3µm)
as in Wang et al. (2007). The higher moments are λ2,anal =
6.74× 10−15 kg2 m−3 and λ3,anal = 6.81× 10−26 kg3 m−3.

2.1 Initialisation

In our test cases, all microphysical processes except collec-
tion are neglected and an exponential DSD is initialised. In
the results section, we will demonstrate that the outcome of
the various collection algorithms critically depends on how
this initial, analytically defined, continuous DSD is translated
into a discrete ensemble of SIPs. Hence, the SIP initialisation
is described in some detail.
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2.1.1 SingleSIP-init and multiSIP-init

First, the mass distribution is discretized on a logarith-
mic scale. The boundaries of bin l are given by mbb,l =
mlow10l/κ and mbb,l+1, where mlow is the minimum droplet
mass considered. The bin centre is computed using the arith-
metic mean m̄bb,l = 0.5 (mbb,l+1+mbb,l). The bin size is
1mbb,l = (mbb,l+1−mbb,l). The mass increases 10-fold ev-
ery κ bin. Several previous studies used the parameter s with
mbb,l+1/mbb,l = 21/s to characterise the bin resolution. The
parameters s and κ are related via s = κ log10(2)≈ 0.3 κ .

For each bin, the droplet number is approximated by
νb = fm(m̄bb,l) 1mbb,l1V , and one SIP with weighting fac-
tor νsim = νb and droplet mass µsim = m̄bb,l is created if
νb is greater than a lower cut-off threshold νcritmin. No
SIP is created if νb < νcritmin. Moreover, no SIPs are cre-
ated from bins with radius r < rcritmin. We will refer to this
as deterministic singleSIP-init. In its probabilistic version,
the mass µsim is randomly chosen within each bin l and
νsim = fm(µsim) 1mbb,l1V is adapted accordingly. By de-
fault, rcritmin = 0.6 µm and νcritmin = η× νmax, which is de-
termined from the maximal weighting factor within the entire
SIP ensemble νmax and the prescribed ratio of the minimal to
the maximal weighting factor η = 10−9. For larger rcritmin,
it is advantageous to initialise one additional “residual” SIP
that contains the sum of all neglected contributions.

Following Unterstrasser and Sölch (2014, see their Ap-
pendix A), we introduce the multiSIP-init technique. It is
similar to the singleSIP-init technique, except that we addi-
tionally introduce an upper threshold νcritmax. If νb > νcritmax
is fulfilled for a specific bin, then this bin is divided into
κsub = dνb/νcritmaxe sub-bins and a SIP is created for each
sub-bin. The multiSIP-init technique gives a good trade-off
between resolving low concentrations at the DSD tails and
high concentrations of the most abundant droplet masses. By
default, νcritmax = 0.1 νmax.

So far, we introduced initialisation techniques with a strict
lower threshold νcritmin with no SIPs created in bins with
νb < νcritmin. We can relax this condition by introducing –
what we call – a weak threshold. This means that, in such
a low-contribution bin (with νb < νcritmin), we create a SIP
with the probability pcreate = νb/νcritmin and weighting fac-
tor νsim = νcritmin. Having many realisations of initial SIP en-
sembles, the expectation value of the droplet number repre-
sented by such SIPs, νcritmin·pcreate+0·(1−pcreate), equals the
analytically prescribed value νb. Using a strict threshold the
droplet number would be simply 0 in those low-contribution
bins. In a related problem, such a probabilistic approach has
been shown to strongly leverage the sensitivity of ice crystal
nucleation on the numerical parameter νcritmin. This led to a
substantial reduction of the number of SIPs that are required
for converging simulation results (Unterstrasser and Sölch,
2014).

Using the probabilistic version and a weak lower thresh-
old is particularly important if different realisations of SIP

ensembles of the same analytic DSD should be created. The
number of SIPs NSIP depends on κ , νcritmin, νcritmax and the
parameters of the prescribed distribution.

Moreover, the singleSIP-init is used in a hybrid version,
where different κ values are used in specified radius ranges.

Table 3 lists the resulting number of SIPs for the range of
κ values used in simulations with the probabilistic singleSIP-
init and variants of it.

2.1.2 νconst-init and νdraw-init

The accumulated PDF F(m) is given by
∫ m

0 f̃m(m
′)dm′ with

the normalised PDF f̃m = fm/λ0. First, the size NSIP of the
SIP ensemble that should approximate the initial DSD is
specified. For each SIP, its mass µi is reasonably picked by

µi = F−1(rand()), (9)

where rand() generates uniformly distributed random num-
bers ∈ [0,1]. In the case of the νconst-init, the weighting
factors of all SIPs are equally νi = νconst =N /NSIP. This
init method reproduces SIP ensembles similar to the ones in
Shima et al. (2009) or Hoffmann et al. (2015). As a variety of
the νconst-init method, the weighting factors νi in the νdraw-
init method are simply perturbed by νi = 2 rand()νconst.

For the case of an exponential distribution, the following
holds for the SIPs i = 1,NSIP:

µi =−m̄ log(rand()). (10)

In the literature, this approach is known as inverse transform
sampling. A proof of correctness can be found in classical
textbooks, e.g. Devroye (1986, their Sect. II.2).

2.1.3 νrandom-init

The third approach allows specifying the spectrum of weight-
ing factors that should be covered by the SIP ensem-
ble. Similar to the νdraw-init method, the weighting fac-
tors are randomly determined. Whereas the latter method
produced a SIP ensemble with weighting factors uniformly
distributed in ν, the νrandom-init produces weighting fac-
tors uniformly distributed in log(ν) and covering the range
[N 10αlow , N 10αhigh ]. The eventual number of SIPs de-
pends most sensitively on the parameter αhigh, which controls
how big the portion of a single SIP can be.

SIPs with weighting factors νi =
N 10(αlow+(αhigh−αlow)·rand()) are created until

∑NSIP
j=1 νj

exceeds N . The weighting factor of the last SIP is cor-
rected such that

∑NSIP
j=1 νj =N holds. Now, the mass µi

of each SIP is determined by the following technique:
the first SIP represents the smallest droplets and covers
the mass interval [0,m1], whereas the last SIP repre-
sents the largest droplets in the interval [mNSIP−1,∞].
The SIPs i in between cover the adjacent mass intervals
[mi−1,mi]. The boundaries are implicitly determined by
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Table 3. Number of SIPs for the probabilistic singleSIP-init method (and variants like the multiSIP-init) as a function of κ . The given values
are averages over 50 realisations and rounded to the nearest integer. The right-most column lists the figures in which simulation results with
this specific init method are depicted. SUPP refers to the Supplement of this paper.

κ

5 10 20 40 60 100 200 400

Init method NSIP Figure

SingleSIP 24 49 98 197 296 494 988 1976 10, 12, 14, 18
MultiSIP 256 517 775 1295 19
SingleSIP; rcritmin = 1.6µm 74 149 223 372 19
SingleSIP; rcritmin = 3.0µm 58 116 173 228 SUPP
SingleSIP; rcritmin = 5.0µm 45 89 113 221 SUPP
SingleSIP; tinit = 10min 58 114 227 339 565 SUPP
SingleSIP; tinit = 20min 72 142 284 426 709 21
SingleSIP; tinit = 30min 89 176 352 527 878 SUPP

∫ mi
0 fm(m

′)dm′ 1V =∑i
j=1νj . The total mass contained in

each SIP is given by χi =
∫ mi
mi−1

fm(m
′)m′dm′ 1V and the

single droplet mass by µi = χi/νi .
For the case of an exponential distribution, the following

holds for the interval boundaries and the SIPs i = 1,NSIP:

mi =−m̄ log

(
N −∑i

j=1νj

N

)
(11)

and

µi =
(

mi−1− m̄
exp(mi−1/m̄)

− mi − m̄
exp(mi/m̄)

)
N
νi
. (12)

The above formulas, which involve several differences of
similarly valued terms, must be carefully implemented such
that numerical cancellation errors are kept tolerable.

Experimenting with the SIP-init procedure, several op-
timisations have been incorporated. First, the ν spec-
trum is split into two intervals [N 10αlow , N 10αmed ] and
[N 10αmed , N 10αhigh ]. We alternately pick random values
from the two intervals. Without this correction, it happens
that several consecutive SIPs with small weights, and hence
nearly identical droplet masses, are created, which increases
the SIP number without any benefits.

Going through the list of SIPs, the droplet masses increase,
and hence the individual SIPs contain gradually increasing
fractions of the total grid box mass. This can lead to a rather
coarse representation of the right tail of the DSD. Two op-
tions to improve this have been implemented. In the νrandom,rs
option, the νi values are reduced by some factor that in-
creases as

∑i
j=1νj approaches N . In the νrandom,lb option,

ν values are randomly picked up to a certain radius threshold
rlb. Above this threshold, SIPs are created with the singleSIP
method with linearly spaced bins.

2.1.4 Comparison

Figure 1 shows the weighting factors and other properties
of the initial SIP ensemble, which may affect the perfor-
mance of the algorithms. Each column shows one class of
initialisation techniques. For a certain realisation, the first
row shows the weighting factors νi of all SIPs as a func-
tion of their represented droplet radius ri . Each dot shows
the (νi, ri) pair of one SIP. For the singleSIP-init, the dots
are homogeneously distributed along the horizontal axis, as
one SIP is created from each bin (with exponentially increas-
ing bin sizes). The according ν values relate directly to the
prescribed DSD. The higher fm1m, the more droplets are
represented in a SIP. No SIPs smaller than rcritmin = 0.6µm
are initialised and the ν values range over 9 orders of magni-
tude, consistent with η = 10−9. The multiSIP-init introduces
an upper bound of νcritmax = 2.6× 106 for ν. This threshold
is effective over a certain radius range where the SIPs, com-
pared to the singleSIP-init, have lower ν values and are also
more densely distributed along the horizontal axis. For the
νconst-init, all SIPs use ν = νconst, whereas for the νdraw-init
the ν values scatter around this value. For νconst and νdraw,
the ν values are chosen independently of the given DSD con-
trary to the latter techniques. However, for both techniques,
the density of the dots along the r axis is correlated to fm1m.

The νrandom-init technique randomly picks ν values which
are distributed over a larger range compared to the νdraw-init.
In fact, they are uniformly distributed in log(ν). The range
of possible ν values can be adjusted and is chosen similar
to the singleSIP/multiSIP by setting αhigh =−2,αmed =−3
and αlow =−7, which are the defaults in all simulations pre-
sented here. The present method is more flexible compared to
the singleSIP approach, as the occurrence of certain ν values
is not limited to a certain radius range. In the singleSIP-init,
the smallest ν values occur only on the left and right tails of
the DSD, whereas in the νrandom approach the smallest ν val-
ues (down to N 10αlow ) can appear over the whole radius
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Figure 1. Characteristics of the various SIP initialisation methods (as given on top of each panel): weighting factors νi(ri) of an initial
SIP ensemble, the mean weighting factors ν̄(r), the occurrence frequency of the νi values and the resulting mass density distributions glnr
are displayed (rows 1 to 4). Row 1 displays data of a single realisation, whereas rows 2 to 4 show averages over 50 SIP ensembles. The
bottom row shows the moments λ0, λ1, λ2 and λ3 normalised by the respective analytical value. Every symbol depicts the value of a single
realisation. The nearly horizontal line connects the mean values over all realisations. In the displayed examples, κ = 10 in the singleSIP-init,
κ = 10, νcritmax ≈ 2.6×106 in the multiSIP-init,NSIP = 80 in the νconst, νdraw-init and (αhigh,αmed,αlow)= (−2,−3,−7) in the νrandom-
inits. In top right panel, the dashed horizontal lines indicate the values of N 10αlow , N 10αmed and N 10αhigh and the dashed vertical line
the threshold radius rlb.

range. The horizontal lines in the top right panel indicate the
values of N 10αlow ,N 10αmed and N 10αhigh and the vertical
line the threshold radius rlb.

The second row shows average ν value of all SIPs in a
certain size bin. All init techniques are probabilistic and the
average is taken over 50 independent realisations of SIP en-
sembles. Not surprisingly, the average ν of the νdraw method
is identical to νconst. Moreover, also for the νrandom-init, the
average ν value is constant over a large radius range. Only in

the right tail do the ν values drop as intended. The third row
shows the occurrence frequency of weighting factors.

To display DSDs represented by a SIP ensemble, a SIP
ensemble must be converted back into a bin representation.
For this, we establish a grid with resolution κplot = 4 and
count each SIP in its respective bin; i.e. SIP i with mbb,l <

µi ≤mbb,l+1 contributes to bin l via Mbin,l =Mbin,l +µiνi
and nbin,l = nbin,l + νi . We note that all displayed DSDs in
this study will use κ = 4, irrespective of the κ value cho-
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sen in the initialisation. The fourth row shows such DSDs
again as an average over 50 SIP ensemble realisations. We
find that any init technique is, in general, successful in pro-
ducing a meaningful SIP ensemble as the “back”-translated
DSD matches the originally prescribed DSD (black). Hence,
the moments λk,SIP match the analytical values λk,anal for
0≤ k ≤ 3, as shown in the fifth row. Nevertheless, for the
νconst- and νdraw-init, the spread between individual realisa-
tions can be large and they deviate substantially from the an-
alytical reference. The singleSIP/multiSIP-init and νrandom-
init, on the other hand, guarantee that each individual reali-
sation is fairly close to the reference. In the results section,
the presented simulations mostly use the probabilistic single-
SIP initialisation. Table 3 lists the number of SIPs for several
init methods and parameter configurations. The right-most
column indicates in which figure the simulations using the
specific init method are displayed.

2.2 Description of hypothetical algorithm

First, we present a hypothetical algorithm for the treatment
of collection/aggregation in an LCM, which would probably
yield excellent results. However, it is prohibitively expensive
in terms of computing power and memory, as NSIP increases
drastically over time until the state is reached where each SIP
represents exactly one real droplet. Nevertheless, the presen-
tation of this algorithm is useful for introducing several con-
cepts which will partly occur in the subsequently described
“real-world” algorithms.

Whereas condensation/deposition and sedimentation may
be computed using interpolated quantities which implicitly
assume that all droplets of a SIP are located at the same point,
the numerical treatment of collection usually assumes that
the droplets of a SIP are spatially uniformly distributed, i.e.
well-mixed within the grid box. An approach, where the ver-
tical SIP position is retained in the collection algorithm and
the process of larger droplets overtaking smaller droplets is
explicitly modelled, is described in Sölch and Kärcher (2010)
and not treated here.

Following Gillespie (1972) and Shima et al. (2009), the
probability Pij that one droplet with mass mi collides with
one droplet with mass mj inside a small volume δV within a
short time interval δt is given by

Pij =Kij δt δV −1, (13)

where Kij =K(mi,mj ).
For SIPs i and j containing νi and νj real droplets in a

grid box with volume 1V , on average, νcoll = Pij νi νj col-
lections between droplets from SIP i and SIP j occur. The
average rate of such i− j collections (i 6= j ) to occur is

∂νcoll(i,j)

∂t
= νi Kij νj1V −1 =: νioij =:Oij . (14)

So-called self-collections, collisions of the droplets belong-
ing to the same SIP (i = j ), are described by

∂νcoll(i, i)

∂t
= 2 ·

(νi
2
Kii

νi

2
1V −1

)
= 1

2
νi Kii νi1V

−1

=: νioii =:Oii, (15)

assuming that the SIP is split into two portions, each contain-
ing one-half of the droplets of the original SIP. The factor of
2 originates from the collections of each half, which have to
be added to gain the total number of self-collections for SIP
i. Accordingly, the diagonal elements of the matrices oij and
Oij differ from the off-diagonal elements by an additional
factor of 0.5. In terms of concentrations (represented by SIPs
in a grid box with volume 1V ), we can write

∂ncoll(i,j)

∂t
=Kij ni nj (16)

for collections between different SIPs and

∂ncoll(i, i)

∂t
= 1

2
Kii ni

2 (17)

for self-collections.
In the hypothetical algorithm, the weighting factor of SIP i

is reduced due to collections with all other SIPs and self-
collections and reads as

∂νi

∂t
=−

NSIP∑
j=1

∂νcoll(i,j)

∂t
=−

NSIP∑
j=1

Oij . (18)

The droplet mass µi in SIP i is unchanged.
For each i− j combination, a new SIP k is generated:

∂νk

∂t
=Oij and µk = µi +µj . (19)

To avoid double counting, only combinations with i ≥ j are
considered.

The rate equations for the weighting factors can be numer-
ically solved by a simple Euler forward step. The weighting
factor of existing SIPs is reduced by

ν1i :=
(
NSIP∑
j=1

Oij

)
1t, (20)

leading to

ν∗i = νi − ν1i , (21)

or, equivalently,

ν∗i = νi
(

1−1t
NSIP∑
j=1

oij

)
. (22)

For new SIPs k, we have

νk = 0+Oij ·1t. (23)
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Per construction, the algorithm is mass conserving subject to
rounding errors.

In each time step, NSIP,add =NSIP (NSIP−1)/2, new SIPs
are produced and the new number of SIPs is NSIP

∗ =NSIP+
NSIP,add. After nt time steps, the number of SIPs would be of
order (NSIP,0)

nt which is not feasible.
In the following subsections, algorithms are presented that

include various approaches to keep the number of SIPs in an
acceptable range.

In the following, the various algorithms are described
and pseudo-code of the implementations is given. For the
sake of readability, the pseudo-code examples show easy-
to-understand implementations. The actual codes of the al-
gorithms are, however, optimised in terms of computational
efficiency. The style conventions for the pseudo-code exam-
ples are as follows: commands of the algorithms are written
in upright font with keywords in boldface. Comments appear
in italic font (explanations are enclosed by {} and headings
of code blocks are in boldface).

2.3 Description of the remapping algorithm (RMA)

First, the remapping algorithm is described, as its concept
follows closely the hypothetical algorithm introduced in the
latter section. RMA is based on ideas of Andrejczuk et al.
(2010). We call their approach the “remapping algorithm”
as NSIP is kept reasonably low by switching between a SIP
representation and a bin representation in every time step. A
temporary bin grid with a predefined κ is established which
stores the total number nbin,∗ and total mass Mbin,∗ of all
contributions belonging to a specific bin. The bin boundaries
are given by mbb,∗.

Instead of creating a new SIP k (with number νk obtained
by Eq. (19) and mass µk = µi +µj ) from each i− j com-
bination, the according contribution is stored on a temporary
bin grid. More explicitly, this means that the droplet num-
ber nbin,l of bin l with mbb,l < µk ≤mbb,l+1 is increased by
νk . Similarly, the total mass Mbin,l of that bin is increased by
µk νk . Similarly, the reduced contributions ν∗i from the exist-
ing SIPs with droplet mass µi are added to their respective
bins.

Figure 2 illustrates how a collection process between two
SIPs is treated in RMA. In this example, νk = 2 droplets
are produced by collections which have a droplet mass of
µk = µi +µj = 15. Instead of creating a new SIP k (as in
the hypothetical algorithm), the contribution k is recorded
in the bin grid. The droplet number n in bin l3 is increased
by νk = 2 and the according total mass Ml3 by νkµk = 30.
The remaining contribution of SIP i falls into bin l1 and nl1
and Ml1 are increased by ν∗i = νi − νk = 2 and µiν∗i = 12,
respectively. The operation for SIP j is analogous.

At the end of each time step, after treating all possible
i− j combinations, a SIP ensemble is created from the bin
data with νi = nbin,l and µi =Mbin,l/nbin,l , which resembles
a deterministic singleSIP-init with the resolution κ .

Optionally, a lower threshold νmin,RMA can be introduced,
such that SIP i is created only if nbin,l > νmin,RMA holds.
However, this may destroy the property of mass conservation
which can be remedied by the following.

We pick up the concept of a weak threshold introduced
earlier and adjust it such that on average the total mass is
conserved (instead of total number as before). We introduce
the threshold Mcritmin = ηλ1. The parameter η is set to 10−8,
which implies that each SIP contains at least a fraction of
10−8 of the total mass in a grid box. If Mbin,l >Mcritmin,
a SIP is created representing νi = nbin,l drops with single
mass µi =Mbin,l/nbin,l . If Mbin,l <Mcritmin, a SIP is cre-
ated with probability pcreate =Mbin,l/Mcritmin. In this case,
the SIP represents νi =Mcritmin/µi droplets with single mass
µi =Mbin,l/nbin,l . Pseudo-code of the algorithm is given in
Algorithm (1).

Time steps typically used in previous collec-
tion/aggregation tests are around 1t = 0.1 to 10s depending
inter alia on the used kernel. From Eq. (22) it follows that
the time step in RMA must satisfy

1t <

NSIP∑
j=1

oij . (24)

Otherwise, negative ν values can occur which would in-
evitably lead to a crash of the simulation. In mature clouds,
the Long and Hall kernels attain large values which required
tiny time steps of 10−4 s and were smaller in the first test
simulations. To be of any practical relevance, RMA had to
be modified in order to be able to run simulations with suit-
able time steps.

Hence, several extensions to RMA allowing larger time
steps are proposed in the following.

1. The default version uses the algorithm as outlined in Al-
gorithm (1) (i.e. nothing is changed). Negative ν∗i values
obtained by Eq. (21) are acceptable, as long as nbin,l ,
from which the SIPs are created at the end of the time
iteration, is non-negative for all l. This means that an
existing SIP i (which falls into bin l) can lose more
droplets (ν1i ) than it actually possesses (νi) as long as
the gain in bin l (from all suitable SIP combinations)
compensates this deficit. We will later see that this ap-
proach works well for the Golovin kernel; however, it
fails for the Long and Hall kernels.

2. Clipping simply ignores bins with negative nbin,l and
does not create SIPs from those bins. This approach de-
stroys the property of mass conservation and is not pur-
sued here.

3. In adaptive time stepping, instead of reducing the gen-
eral time step, only the treatment of SIPs with ν∗i < 0
is subcycled. For each such SIP i, Eq. (21) is iterated
η̃i times with time step 1tSIP =1t/η̃i . Note that even
though the computation of Eq. (21) and Oij involves
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Algorithm 1 Pseudo-code of the Remapping algorithm (RMA); style conventions are explained at the end of Sect. 2.2

1: INIT BLOCK

2: Given: Ensemble of SIPs; Specify: κ,η,1t

3: for l = 1 lmax do {Create temporary bin}

4: mbin,l = min,low10l/κ

5: end for

6: TIME ITERATION

7: while t<Tsim do

8: LOSS BLOCK {Compute reduced bin contribution of existing SIPs}

9: for i = 1 NSIP do

10: Calculate ν∗
i

according to Eq. (22)

11: Select bin l with mbb,l < µi ≤ mbb,l+1

12: nbin,l = nbin,l + ν∗
i

13: Mbin,l = Mbin,l + ν∗
i

· µi

14: end for

15: GAIN BLOCK {Compute bin contribution of coalescing droplets}

16: k = 0

17: for all i < j ≤ NSIP do

18: k = k + 1

19: Compute νk according to Eq. (23)

20: µk = µi + µj

21: Select bin l with mbb,l < µk ≤ mbb,l+1

22: nbin,l = nbin,l + νk

23: Mbin,l = Mbin,l + νk · µk

24: end for

25: CREATE BLOCK {Replace SIPs}

26: Delete all SIPs

27: i = 0

28: for all l with Mbin,l > Mcritmin = ηλ1 do {use Mcritmin as a weak threshold value}

29: i = i + 1

30: Generate SIP i with νnew
i

= nbin,l and µi = Mbin,l/nbin,l

31: end for

32: NSIP = i

33: t = t + 1t

34: end while

35: EXTENSIONS

36: Self-collections for a kernel with K(m,m) 6= 0 can be easily incorporated in the algorithm by changing the condition in line 17 to

i ≤ j ≤ NSIP.

the ν evaluation of all SIPs, only νi is updated in the
subcycling steps and not the whole system of fully cou-
pled equations is solved for a smaller time step. For suf-
ficiently large η̃i , ν∗i,subcycl is positive, as ν1i,subcycl < νi
as desired. Basically, we now assume that all collec-
tions involving SIP i are equally reduced by a factor
of ηi = ν1i,subcycl/ν

1
i compared to the default time step.

In the GAIN block of the algorithm (as termed in Al-
gorithm 1), all computations use the default time step
and no subcycling is applied. To be consistent with the

reduction in the LOSS block, Eq. (23) is replaced by
νk = ηiOij 1t .

4. By using the reduction limiter (abbreviated as RedLim),
the effect of an adaptively reduced time step can be
reached with simpler and cheaper means. We introduce
a threshold parameter 0< γ̃ < 1.0 similar to the ap-
proach in Andrejczuk et al. (2012). Again, we focus
on SIPs with ν∗i < 0 and simply set the new weight
of SIP i to ν∗i,RedLim = γ̃ νi . As above, all contribu-
tions involving SIP i have to be rescaled, now with
γi = (νi − ν∗i,RedLim)/ν

1
i .
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Figure 2. Treatment of a collection between two SIPs in the remapping algorithm (RMA), average impact algorithm (AIM) and all-or-nothing
algorithm (AON).

5. Update on the fly (abbreviated as OTF) is another op-
tion that effectively eliminates negative νi values. In this
case, the algorithm is not separated in LOSS and GAIN
blocks. Instead, the i− j combinations are processed
one after another. After each collection process, as ex-
emplified in Fig. 2, the weighting factors νi and νj of
the two involved SIPs are reduced by νk , i.e. the number
of droplets that were collected. Subsequent evaluations
of Eq. (23) then use updated ν values. Compared to the
default version, it now matters in which order the i− j
combinations are processed, e.g. if one deals first with
combinations of the smallest SIPs or of the largest SIPs.

2.4 Description of average impact algorithm (AIM)

The average impact algorithm by Riechelmann et al. (2012)
and further developed in Maronga et al. (2015) predicts the
temporal change of the weighting factor, νi , and the total
mass of all droplets represented by each SIP, χi = νi µi . In
this algorithm, two fundamental interactions of droplets are
considered (see also Fig. 7 in Maronga et al., 2015). First,
the coalescence of two SIPs of different sizes is considered.
It is assumed that the larger SIP collects a certain amount
of the droplets represented by the smaller SIP, which is then
equally distributed among the droplets of the larger SIP. As
a consequence, the total mass and the weighting factor of
the smaller SIP decrease, while the total mass of the larger
SIP increases accordingly. Figure 2 illustrates how a collec-
tion between two SIPs is treated. SIP j is assumed to repre-
sent larger droplets than SIP i, i.e. µj > µi . As in the RMA
example before, we say that νk = 2 droplets are collected.
Then, SIP i loses two droplets to SIP j ; i.e. νi is reduced by
2 and a mass of µiνk is transferred to SIP j where it is dis-
tributed among the existing νj = 8 droplets. Unlike RMA,
where droplets with mass µj +µi = 15 are produced, AIM
predicts a droplet mass of µj +µiνk/νi = 10.5 in SIP j .

Usually, νk/νi � 1, and hence the name “average impact”
is given for this algorithm.

Moreover, same-size collisions are considered in each SIP.
These decrease the weighting factor of each SIP but not its
total mass. Accordingly, the radius of the SIP increases.

Both processes are represented in the following two equa-
tions which are solved for all colliding SIPs (assuming that
µ0 ≤ µ1 ≤ . . .≤ µNSIP ):

dνi
dt
=−Kii 1

2
νiνi

1V
−

NSIP∑
j=i+1

Kijνiνj1V
−1 (25)

and

dχi
dt
=

i−1∑
j=1

µj Kijνiνj1V
−1−µi

NSIP∑
j=i+1

Kijνiνj1V
−1. (26)

The first term on the right-hand side of Eq. (25) describes the
decrease of ν due to same-size collections; the second term
describes the decrease of ν due to collection by larger SIPs.
The first term on the right-hand side of Eq. (26) describes
the gain in total mass due to collections with smaller SIPs,
while the second term describes the loss of total mass due to
collection by larger SIPs.

Using a Euler forward method for time integration, the
above equations read as

νnew
i = νi

(
1−

∑NSIP

j=i oij1t
)

(27)

and

χnew
i = χi

(
1−

∑NSIP

j=i+1
oij1t

)
+
∑i−1

j=1
χjoij1t. (28)

Finally, the single droplet mass µi of each SIP is updated:
µnew
i = χnew

i /νnew
i . Pseudo-code of the algorithm is given in

Algorithm (2).

www.geosci-model-dev.net/10/1521/2017/ Geosci. Model Dev., 10, 1521–1548, 2017



1532 S. Unterstrasser et al.: Collection/aggregation in Lagrangian cloud microphysics

Algorithm 2 Pseudo-code of the average impact algorithm (AIM); style conventions are explained at the end of Sect. 2.2

1: INIT BLOCK + SIP SORTING

2: Given: Ensemble of SIPs; Specify: 1t

3: TIME ITERATION

4: while t<Tsim do

5: {Sort SIPs by droplet mass}

6: Apply (adaptive) sorting algorithm, such that µj ≥ µi for j > i

7: {Compute total mass χi of each SIP}

8: χi = νi µi

9: for i = 1 NSIP do

10: {Compute reduction of weighting factor due to number loss to all larger SIPs}

11: νnew
i

= νi

(
1 − 1t

∑NSIP
j=i+1 oij

)
12: {Compute mass transfer; mass gain from all smaller SIPs and mass loss to all larger SIPs}

13: χnew
i

= χi + 1t
(∑i−1

j=1 χjoij − χi

∑NSIP
j=i+1 oij

)
14: end for

15: νi = νnew
i

16: µi = χnew
i

/νnew
i

17: t = t + 1t

18: end while

19: EXTENSIONS

20: {Self-collections for a kernel with K(m,m) 6= 0 can be incorporated simply by starting the summation in line 11 from j = i (see also

Eq. (27) in the text).}

Figure 3 illustrates how AIM works for an example simu-
lation with the Long kernel and singleSIP-init. The top panel
shows the (ri,νi) evolution of selected SIPs. The black line
shows the initial distribution. Each coloured line connects the
data points that depict the (ri,νi) pair of an individual SIP
every 200s. Clearly, νi of any SIP decreases over time; how-
ever, the decrease is much smaller for the largest SIPs and
becomes zero for the largest SIP. The majority of SIPs start-
ing from the smallest radii show an opposite behaviour, as
their evolution is dominated by a strong νi decrease at nearly
constant ri . In contrast, the evolution of the two largest SIPs
is dominated by a strong ri increase for constant νi . The SIPs
next to the largest SIPs undergo a transition; in the beginning,
they primarily grow in size; towards the end, the decrease of
νi is dominant.

The ratio ϕr is defined as ri(t = 3600s)/ri(t = 0s) and,
analogously, ϕν = νi(t = 3600s)/νi(t = 0s). We find ϕr ≥ 1
and ϕν ≤ 1. The bottom panel of Fig. 3 shows the ratios ϕr
(red curve) and (ϕν)−1 (black curve) for all SIPs of the sim-
ulation. Both ratios are smooth functions of the initial ri ,
which is plotted on the x axis. By construction, the num-
ber of SIPs remains constant over the course of a simulation.
Hence, the number of SIPs per radius or mass interval de-
creases when the DSD broadens over time. In our example,
the SIP resolution becomes coarser, particularly in the large
droplet tail.

Negative values of νnew
i and χnew

i may occur. However,
this case never occurred in our manifold tests of the algo-

rithm. The behaviour appears more benign than in RMA.
Moreover, we found that the algorithm preserved the initial
size sortedness of the SIP ensemble. However, for an arbi-
trary kernel function and initial SIP ensemble, this is not
guaranteed, and we recommend to use adaptive sorting algo-
rithms that benefit from partially presorted data sets (Estivill-
Castro and Wood, 1992). Adaptive sorting is also advanta-
geous when AIM is employed in real world applications,
where sedimentation, advection and condensation changes
the SIP ensemble in each individual grid box.

2.5 Description of the all-or-nothing algorithm (AON)

The all-or-nothing algorithm (AON) is based on the ideas
of Sölch and Kärcher (2010) and Shima et al. (2009). Fig-
ure 2 illustrates how a collection between two SIPs is treated.
SIP i is assumed to represent fewer droplets than SIP j , i.e.
νi < νj . Each real droplet in SIP i collects one real droplet
from SIP j . Hence, SIP i contains νi = 4 droplets, now with
mass µi +µj = 15. SIP j now contains νj − νi = 8− 4= 4
droplets with mass µj = 9. Following Eq. (23), only νk = 2
pairs of droplets would, however, merge in reality. The idea
behind this probabilistic AON is that such a collection event
is realised only under certain circumstances in the model,
namely such that the expectation values of collection events
in the model and in the real world are the same. This is
achieved if a collection event occurs with probability

pcrit = νk/νi (29)
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Figure 3. Top: (ri ,νi ) evolution of selected SIPs for AIM. The
black line shows the initial distribution. Each coloured line con-
nects the data points that depict the (ri ,νi ) pair of an individ-
ual SIP every 200s. Bottom: the ratios ϕr and ϕν are defined
as ri(t = 3600s)/ri(t = 0s) and νi(t = 3600s)/νi(t = 0s). ϕr (red
curve) and (ϕν)−1 (black curve) for all SIPs are shown as a func-
tion of their initial radius ri(t = 0s). An example simulation with
Long kernel, singleSIP-init, 1t = 10s, κ = 40 and NSIP = 197 is
displayed.

in the model. Then, the average number of collections in the
model,

ν̄k = pcritνi = (νk/νi)νi, (30)

is equal to νk as in the real world. A collection event be-
tween two SIPs occurs if pcrit >rand(). The function rand()
provides uniformly distributed random numbers ∈ [0,1]. No-
ticeably, no operation on a specific SIP pair is performed if
pcrit <rand().

The treatment of the special case νk/νi > 1 needs some
clarification. This case is regularly encountered when the
singleSIP-init is used, where SIPs with large droplets and
small νi collect small droplets from a SIP with large νj .
The large difference in droplet masses µ led to large kernel
values and high νk with νi < νk < νj . In addition, the case
of νk being even larger than νj is not considered, as it oc-
curs only with unrealistically large time steps. If pcrit > 1,
we allow multiple collections, as each droplet in SIP i is al-
lowed to collect more than one droplet from SIP j . In to-
tal, SIP i collects νk droplets from SIP j and distributes
them on νi droplets. A total mass of νkµj is transferred
from SIP j to SIP i and the droplet mass in SIPs i becomes
µnew
i = (νi µi + νk µj )/νi . The number of droplets in SIP j

is reduced by νk and νnew
j = νj−νk . Keeping with the exam-

ple in Fig. 2 and assuming νk = 5, each of the νi = 4 droplets
would collect νk/νi = 1.25 droplets. The properties of SIP i
and SIP j are then νi = 4, µi = 17.25, νj = 3 and µj = 9.

Another special case appears if both SIPs have the same
weighting factor which regularly occurs when the νconst-init
is used. After a collection event, SIP j would carry νj −νi =
0 droplets, whereas SIP i would still represent νi droplets. In
this case, half of the droplets from SIP i coalesce with half
of the droplets from SIP j and vice versa. Accordingly, both
SIPs carry νnew

j = νnew
i = 0.5× νi droplets with mass µi +

µj . Without this correction, zero-ν SIPs would accumulate
over time and reduce the effective number of SIPs, causing a
poorer sampling. Instead of this equal splitting, one can also
assign unequal shares ξ νi and (1−ξ)νi to the two SIPs (with
ξ being some random number).

Moreover, self-collections can be considered for kernels
with Kii > 0. If 2 pcrit >rand(), self-collections occur be-
tween the droplets in a SIP (note the factor of 2 due to sym-
metry reasons). Then, every two droplets within a SIP coa-
lesce, implying νi = νi/2 and µi = 2 µi .

So far, we explained how a single i− j combination is
treated in AON. In every time step, the full algorithm simply
checks each i−j combination for a possible collection event.
To avoid double counting, only combinations with i < j and
self-collections with i = j are considered. Pseudo-code of
the algorithm is given in Algorithm (3). The SIP properties
are updated on the fly. If a certain SIP is involved in a col-
lection event in the model and changes its properties, all sub-
sequent combinations with this SIP take into account the up-
dated SIP properties. Similar to the update-on-the-fly version
of RMA, results may depend on the order in which the i− j
combinations are processed.

For most i− j combinations, pcrit is small, and usually
only a limited number of collection events occurs in the
model; AON may suffer from an insufficient sampling of the
droplet space. Actual collections are a rare event in this algo-
rithm. In our standard setup,< 1% of all possible collections
occur in the model until rain is initiated by very few lucky
SIPs (similar to lucky drops; e.g. Kostinski and Shaw, 2005).
Indeed, Shima et al. (2009) reported convergence of AON
only for tremendously many SIPs (on the order of 105 to 106

in a box). We will later see that convergence is possible with
as few as O(102) SIPs if the SIPs are suitably initialised.
Hence, it will be demonstrated that AON is a viable option in
2-D/3-D cloud simulations, as already implied in Arabas and
Shima (2013).

As for AIM in Fig. 3, Fig. 4 (top) shows the (ri,νi) evo-
lution of selected SIPs for AON. The picture looks more
chaotic than for AIM, as each individual SIP has its own in-
dependent history due to the probabilistic nature of AON.
For the initially smallest SIP, only νi changes for most of the
time, as only collections occur where the partner SIPs have
smaller weighting factors ν. Towards the end, the still very
small SIP is at least once involved in a collection with a very
large SIP that has a larger ν. Hence, ri of this SIP increases
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Algorithm 3 Pseudo-code of the all-or-nothing algorithm (AON); style conventions are explained at the end of Sect. 2.2; rand()

generates uniformly distributed random numbers ∈ [0,1].
1: INIT BLOCK

2: Given: Ensemble of SIPs; Specify: 1t

3: TIME ITERATION

4: while t<Tsim do

5: {Check each i − j -combination for a possible collection event}

6: for all i < j ≤ NSIP do

7: Compute νk according to Eq. (19)

8: νnew = min(νi ,νj )

9: pcrit = νk/νnew

10: {Update SIP properties on the fly}

11: if pcrit > 1 then

12: MULTIPLE COLLECTION

13: {can occur when νi and νj differ strongly and be regarded as special case; see text for further explanation}

14: assume νi < νj , otherwise swap i and j in the following lines

15: {pcrit > 1 is equivalent to νk > νi}

16: {transfer νk droplets with µj from SIP j to SIP i, allow multiple collections in SIP i, i.e. one droplet of SIP i

collects more than one droplet of SIP j .}

17: SIP i collects νk droplets from SIP j and distributes them on νi droplets: µi = (νi µi + νk µj )/νi

18: SIP j loses νk droplets to SIP i: νj = νj − νk

19: else if pcrit >rand() then

20: RANDOM SINGLE COLLECTION

21: assume νi < νj , otherwise swap i and j in the following lines

22: {transfer νi droplets with µj from SIP j to SIP i}

23: SIP i collects νi droplets from SIP j : µi = µi + µj

24: SIP j loses νi droplets to SIP i: νj = νj − νi

25: end if

26: end for

27: t = t + 1t

28: end while

29: EXTENSIONS

30: {Self-collections for a kernel with K(m,m) 6= 0 can be treated in the following way: }

31: {Insert the following loop before line 6 or after line 26.}

32: for i = 1 NSIP do

33: pcrit = νk/νi

34: if 2 pcrit >rand() then

35: {every two (identical) droplets coalesce}

36: νi = νi/2

37: µi = 2 µi

38: end if

39: end for

substantially. In contrast to the smallest SIP, other initially
small SIPs i with similar properties are never part of a col-
lection with νi < νj . Hence, their radii ri remain small over
the total period, and νi is the only property that changes. The
bottom panel summarises the overall changes in νi (black)
and ri (red) for all SIPs of the simulation. Unlike AIM, where
only the initially largest SIPs grow, SIPs from both ends of

the spectrum grow in AON. Those SIPs have small ν values
in common, and in each collection their mass is updated to
mi +mj . The SIPs with initially large ν values lie in the ra-
dius range [2µm,15µm] and keep their initial radii (at least
in the singleSIP-init used here). The reductions in νi scatter
around ∼ 103 for most SIPs and fall off to 1 for the largest
SIPs.
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Figure 4. The same as Fig. 3 but for AON.

For the generation of the random numbers, the well-proven
(L’Ecuyer and Simard, 2007) Mersenne Twister algorithm by
Matsumoto and Nishimura (1998) is used. AON simulations
may be accelerated if random numbers are computed once
a priori. However, this requires saving millions of random
numbers for every realisation. An AON simulation with 1000
time steps and 200 SIPs, for instance, implies 200× 100 po-
tential collections during 1 time step and in total 2×107 ran-
dom numbers. Using random numbers with a smaller cycle
length deteriorated the simulation results in several tests and
is not recommended.

The current implementation differs slightly from the ver-
sion in Shima et al. (2009). Due to an unfavourable SIP ini-
tialisation similar to the νconst technique, Shima et al. (2009)
deal with large NSIP values in their simulations, where it be-
comes prohibitive to evaluate all NSIP(NSIP− 1) SIP com-
binations. Hence, they resort to bNSIP/2c randomly picked
i− j combinations, where each SIP appears exactly in one
pair (if NSIP is odd, one SIP is ignored). As only a sub-
set of all possible combinations are numerically evaluated,
the extent of collisions is underestimated. To compensate
for this, the probability pcrit is upscaled with a scaling fac-
torNSIP(NSIP−1)/(2 bNSIP/2c) to guarantee an expectation
value as desired.

Moreover, in Shima’s formulation, the weighting factors
are considered to be integer numbers. In contrast, we use real
numbers ν which can even attain values below 1.0. This has
several computational advantages: (1) better sampling of the
DSD, in particular at the tails, (2) simpler AON implemen-
tation with fewer arithmetic and rounding operations and (3)

more flexibility, e.g. SIP splitting with real-valued ξ in the
case of identical weighting factors.

The study of Sölch and Kärcher (2010) makes use of the
vertical position of the SIPs and explicitly calculates whether
or not a larger droplet overtakes a smaller droplet within a
time step. This approach will be thoroughly analysed in a
follow-up study.

In RMA and AIM, SIPs with negative weights may be gen-
erated depending, e.g. on the condition 1t

∑NSIP
j=1 oij > 1 in

RMA. By construction, this cannot happen in AON and the
latter condition implies that

∑NSIP
j=1pcrit,ij of SIP i is greater

than unity. Then, this SIP is likely to be involved in several
collections (for j with pcrit,ij < 1) or is involved in one or
several multiple collections (for j with pcrit,ij > 1).

3 Box model results

In this section, box model simulations of the three algorithms
introduced in the latter section are presented, starting with the
results of RMA, then those of AIM and finally AON. The re-
sults of each algorithm are tested for three different collection
kernels (Golovin, Long and Hall). As default, probabilistic
SIP initialisation methods are used. For each parameter set-
ting, simulations are performed for 50 different realisations.
Simulations with the Golovin kernel are compared against
the analytical solution given by Golovin (1963). Consistent
with many previous studies, we choose b = 1.5m3 kg−1 s−1.
Simulations with the Long and Hall kernels are compared
against high-resolution benchmark simulations obtained by
the spectral-bin model approaches of Wang et al. (2007)
and Bott (1998). The volume of the box is assumed to be
1V = 1m3.

In all simulations, collision/coalescence is the only pro-
cess considered in order to enable a rigorous evaluation of
the algorithms. The evaluation is based on the comparison of
mass density distributions and the temporal development of
the zeroth, second and third moments of the droplet distribu-
tions. The first moment is not shown since the mass is con-
served in all algorithms per construction. The Supplement
contains a large collection of figures that systematically re-
port all sensitivity tests that have been performed. The be-
haviour of the second and third moments is similar, and the
λ3 evolution is shown only in the Supplement. Later, it will
be mentioned that Hall kernel simulations are not as chal-
lenging as Long kernel simulations from a numerical point of
view. Hence, simulation with the Hall kernel are only shortly
discussed in the paper and figures are shown in the Supple-
ment.

3.1 Performance of RMA

Figure 5 compares DSDs of RMA and the analytical refer-
ence solution for the Golovin kernel. Each panel displays
DSDs from t = 0 to 60min every 10min. The upper left
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Figure 5. Mass density distributions obtained by RMA for the
Golovin kernel from t = 0 to 60min every 10min (from black to
cyan; see legend). The dotted curves show the reference solution;
the solid curves show the RMA simulation results (ensemble aver-
ages over 50 realisations). The parameter settings are singleSIP-init
with weak threshold η = 10−8, κ = 60 and 1t = 1s. The follow-
ing versions of RMA are depicted (clockwise from top left): regular
version, version with the reduction limiter, version with update on
the fly (OTFl and OTFs) (starting with combinations of the largest
or smallest droplets, respectively).

panel shows an excellent agreement of RMA with the ref-
erence solution and proves at least a correct implementation.
Figure 6 compares the temporal evolution of the moments.
Moreover, the first row shows the number of SIPs used in
RMA. Except for the case with a very coarse grid (κ = 5)
with fewer than 40 SIPs in the end, the regular RMA results
shown in the left column agree perfectly with the reference
solution irrespective of the chosen κ (≥ 10) and minimum
weak threshold η ranging from 10−5 to 10−8. The number of
non-zero bins increases as the DSD broadens over time. In
the last step of the time iteration, SIPs are created from such
bins. Hence, their number increases over time. Using a strict
threshold, the total mass is not conserved; the larger η is, the
more mass is lost (see the Supplement). Hence, using a weak
threshold or some other measure (e.g. creation of a residual
SIP containing contributions of all neglected bins) to avoid
this is highly recommended.

Next, RMA simulations with the Long kernel are dis-
cussed. As already mentioned, the default RMA version
would require tiny time steps which would rule out RMA
from any practical application. Both approaches introduced
before, update on the fly (OTF) and reduction limiter
(RedLim), succeed in eliminating negative νi values and in
finishing the simulation within a reasonable time. However,
the results are not as desired. Figure 7 shows the DSDs for a
simulation with the reduction limiter γ̃ = 0.1, weak thresh-
old η = 10−8, κ = 20 and1t = 0.1s. Whereas the algorithm
is capable of realistically reducing the number of the smaller

Figure 6. SIP number and moments λ0 and λ2 as a function of time
obtained by RMA for the Golovin kernel. The black diamonds show
the reference solution. The curves depict the RMA results (ensem-
ble averages over 50 realisations). The default settings are proba-
bilistic singleSIP-init with weak threshold η and 1t = 1s. Left col-
umn: regular RMA version for various κ values (see legend in the
middle) and threshold η = 10−8, 10−7, 10−6 or 10−5 (solid, dot-
ted, dashed, dash-dotted; shown only for κ = 40). Middle column:
the same as in the left column but for the RedLim version. Right col-
umn: the version with update on the fly (solid lines show OTFs and
dotted lines show OTFl). The colours define κ as in the two other
columns, but only the cases of κ = 10 and 60 cases are shown.

droplets, strong oscillations appear in the intermediate ra-
dius range [100µm,200µm] (see right panel). If we average
over 50 realisations (as usually, left panel) or use a coarse
grain visualisation (as usually with κplot = 4, middle panel),
the oscillations are smoothed out (or masked). Nevertheless,
the formation of the rain mode is impeded; probably the
mass flux across the problematic radius range is too slow,
which is a direct consequence of applying the reduction lim-
iter (mostly SIPs in this part of the spectrum obtain negative
weights and have to be corrected).

We tested the algorithm for many parameter set-
tings varying all of the aforementioned parameters: 1t ∈
[0.01s,1s],κ ∈ [5,100], γ̃ ∈ [0,1] and η ∈ [10−15,10−5].
Figure 8 shows the evolution of the zeroth and second mo-
ments for various 1t values (at κ = 10, left column) and
κ values (at 1t = 0.1s right column). Obviously, the sim-
ulation results are nearly insensitive to the bin resolution (as
long as κ ≥ 10); however, the higher moment does not come
close to the reference value. The effect of a 1t variation is
more substantial. Decreasing 1t , the total droplet numbers
become smaller and the λ2 values become larger, both lead-
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Figure 7. Mass density distributions obtained by RMA for the Long
kernel from t = 0 to 60min every 10min (from black to cyan; see
legend). The dotted curves show the reference solution; the solid
curves show the simulation results of RMA with the reduction lim-
iter (γ̃ = 0.1), weak threshold η = 10−8, 1t = 0.1s and κ = 40.
The left panel shows the average over 50 realisations and the middle
panel one specific realisation. For both, the bin resolution of the vi-
sualisation is by default κplot = 4. The right panel shows again the
specific realisation (only t = 20 and 40min) but for κplot = κ .

ing to a better agreement. Despite using already a very small
time step of 0.01s in the end (we will later see that AIM and
AON produce reasonable results for 1t = 10s), the agree-
ment with the reference solution is still not perfect.

Hence, our RMA implementation is not capable of pro-
ducing reasonable results for the Long kernel. It is not clear
whether the oscillations are inherent to the original RMA or
caused by the introduction of the Reduction Limiter. The lat-
ter might introduce discontinuities which could trigger insta-
bilities.

At least, the Golovin RMA simulations with the reduction
limiter do not show any signs of instability and agree well
with the reference. However, this is not surprising. Clearly,
the RedLim correction is only performed for SIPs, where
negative weights are predicted. In Golovin simulations, this
happens less frequently than in Long simulations. Only, in
the very end, the abundance of the largest droplets is underes-
timated (see top right panel in Fig. 5) and the increase of the
higher moment levels off slightly (middle column of Fig. 6).
Basically, the application of the RedLim correction, which
rescales ν1i , can be interpreted as an artificial reduction of
the time increment (see Eq. 20) and hence slows down the
growth of all corrected SIPs.

Another RMA variant uses update on the fly, which also
effectively eliminates negative weights. Such Golovin RMA
simulations can be close to the reference; however, the results
depend on the order in which the SIP combinations are pro-
cessed. If collections between the smallest SIPs are treated
first within each time iteration (OTFs), then the growth of the
largest droplets is too slow (see bottom left panel in Fig. 5).
Starting the processing with collections between the largest
SIPs (OTFl), the DSDs are as desired (see bottom right panel
in Fig. 5) and the moments agree perfectly with the refer-
ence if κ is sufficiently large (see right column of Fig. 6).
The update on the fly has the strongest impact on those SIPs
where the regular version would predict negative weights.

Figure 8. SIP number and moments λ0 and λ2 as a function of
time obtained by RMA for the Long kernel. The black diamonds
show the reference solution. The curves depict the RMA results (en-
semble averages over 50 realisations). The default settings are the
RedLim version with γ̃ = 0.1, singleSIP-init with weak threshold
η = 10−8, κ = 10,1t = 1s and rcritmin = 5.0µm. The left column
shows a variation of 1t (see legend), the right one a variation of κ
(see legend).

With OTF, the weights of such SIPs strongly decrease dur-
ing one time iteration, and hence the continuous evaluations
of the Oij values depend on the order in which the SIP com-
binations are processed.

Long kernel simulations with OTFl yield results qualita-
tively similar to the RedLim version (see the Supplement)
and spurious oscillations still appear in the DSDs.

Note that the Golovin simulations used rcritmin = 1.6µm,
whereas the Long simulations used rcritmin = 5.0µm (note
the truncated left tail in the DSDs in Fig. 7). A higher
rcritmin value reduces the SIP number and the computational
effort and made simulations with small time steps possible.
The simulated λ values are insensitive to the choice of rcritmin
(see the Supplement).

We conclude that, for time steps feasible in operational
terms, none of the tested RMA implementations are capable
of producing reasonable results with the Long kernel. An-
drejczuk et al. (2010) introduced and evaluated RMA and
applied it in a simulation of boundary layer stratocumulus.
Our findings are seemingly in conflict with the conclusions
of their evaluation exercises. What both studies have in com-
mon is a similar trend for a κ variation. In their Fig. 13, sim-
ulations for κ ranging roughly from 4 to 30 are depicted. The
simulations with many bins show oscillations, whereas the
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Figure 9. Mass density distributions obtained by AIM for the
Golovin kernel from t = 0 to 60min every 10min (from black to
cyan; see legend). The dotted curves show the reference solution;
the solid curves show the AIM simulation results (ensemble aver-
ages over 50 realisations). The parameter settings are probabilistic
singleSIP-init with weak threshold η = 10−9, 1t = 1s and κ = 40
(left) or κ = 200 (right).

coarsest simulation has no oscillations but is clearly far from
the real solution (largest droplets around 40µm compared to
500µm in the reference simulation). In their Fig. 14, they pre-
sented a detailed sensitivity test only for a κ = 4 simulation,
which downplays the severity of the oscillation issue. More-
over, their simulations ran up to 2000s compared to 3600s
in this study and many other studies (e.g. Bott, 1998; Wang
et al., 2007). Hence, they missed the regime where the effect
of the oscillations is strongest. Despite our extensive tests,
we cannot exclude that in Andrejczuk et al. (2010) an RMA
implementation was used where oscillations were less cum-
bersome; however, the study missed to demonstrate this for
a conclusive test case and we have come to the conclusion
that the evaluation exercises were incomplete and not suited
to reveal the deficiencies faced here.

RMA simulations with the Hall kernel are similarly cor-
rupted by oscillations and do not produce useful simulations
either (not shown).

3.2 Performance of AIM

Figure 9 displays DSDs obtained by AIM for the Golovin
kernel. Compared to the reference, the droplets pile up at
too-small radii and the algorithm is not capable of reproduc-
ing the continuous shift to larger sizes, even if a fine grid
with κ = 200 (right) instead of κ = 40 (left) is used. For both
κ values, the increase of the higher moments proceeds at a
rate that is too low (see Fig. 10), whereas the decrease in
droplet number matches the analytical evolution. AIM is a
very robust algorithm in the sense that the results are fairly
insensitive to most numerical parameter variations as demon-
strated for κ and 1t in the left column of Fig. 10. Most sim-
ulations converge to – what we call – the best AIM solu-
tion, which is, however, not identical to the correct solution.
The results deteriorate slightly if the initial SIP ensemble is

Figure 10. Moments λ0 and λ2 as a function of time obtained by
AIM for the Golovin kernel. The black diamonds show the reference
solution. The curves depict the AIM results (averages over 50 real-
isations). The default settings are probabilistic singleSIP-init with
weak threshold η = 10−9, κ = 40 and 1t = 1s. Left column: de-
fault simulation (red), larger time step (1t = 10s, blue) and more
SIPs (κ = 200, brown). Right column: νconst-init (red) and νdraw-
init (blue) with NSIP = 160. In all panels, the curves are on top of
each other.

generated with the νconst-init or νdraw-init instead of with the
singleSIP-init (right column of Fig. 10).

The algorithm performs, in general, better for the Long
and Hall kernels, as is detailed in the following. Figure 11
displays DSDs obtained by AIM for the Long kernel. Gen-
erally, the results are in good agreement with the reference
solution, as long as the SIP ensemble is initialised with the
singleSIP-init method (left and middle column). Towards the
end of the simulated period (magenta and cyan lines), the re-
moval of small droplets is a bit underestimated and too many
small droplets are present. For t = 30 and 40min, the large
droplet mode is too weak, as not enough large droplets have
formed. At that stage, the droplets grow rapidly by collec-
tion and the AIM results lag behind. Although the offset is
less than 5 min, it might become crucial in simulations of
short-lived clouds. Also, the evolution of the moments (see
Fig. 12) confirms this, as the onset of the rapid changes
at around t = 30min is only slightly retarded if parameters
are suitably chosen. Towards the end, the AIM results get
again very close to the reference solution. The left column
of Fig. 12 shows the dependence on the time step. For time
steps 1t ≤ 20s, all results are similar to the best AIM solu-
tion which is close to the reference. Time steps of 50s and
more do not produce good enough results. Moreover, AIM
is fairly insensitive to the choice of κ , rcritmin and νcritmin.
Simulations with κ ranging from 10 to 100 yield similar re-
sults (see middle column). Only, for a very coarse resolu-
tion (κ = 5) with 25 SIPs, the decrease in droplet number
is too small. Increasing the lower cut-off radius rcritmin from
0.6µm to 5µm, the r < 5µm part of the DSD is represented
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Figure 11. Mass density distributions obtained by AIM for the Long
kernel from t = 0 to 60min every 10min (from black to cyan; see
legend). The dotted curves show the reference solution; the solid
curves show the AIM simulation results (ensemble averages over
50 realisations). The default settings are probabilistic singleSIP-init
with weak threshold η = 10−9, κ = 40, 1t = 1s (left panel); 1t
increased to 20s (middle panel); νconst-init technique with NSIP =
160 (right panel).

by a single SIP and NSIP is reduced by 60% (see Table 3).
The predicted moments are unaffected by this variation (see
the Supplement). Those small-ri SIPs are not relevant for the
AIM performance. They simply carry too-small fractions of
the total grid box mass to be important. Their status will not
change over time, as already illustrated in Fig. 3. Similarly, a
variation of νcritmin or the switch to a strict threshold νcritmin
has no effect (see the Supplement).

Now we draw the attention to the importance of the SIP-
init method. The right panel of Fig. 11 shows the DSDs when
the SIPs are initialised with the νconst-init method. The al-
gorithm completely fails and no droplets larger than 70µm
occur after 60 min. Consequently, the moments are far off
from the reference solution (solid lines in the right column
of Fig. 12). Switching to the νdraw-init method (dotted lines)
or using many more SIPs (up to 1600) improves the results,
yet they are still useless. This clearly demonstrates how cru-
cial the initial characteristics of the SIP ensemble are. By
initialising the SIPs with an appropriate technique like the
singleSIP-init, useful results are obtained with as few as 50
SIPs. Using the νconst-init or νdraw-init, on the other hand,
solutions are still useless, even though the number of SIPs
and the computation time are factors of 30 and 900 higher,
respectively.

The νrandom simulations give another example of the im-
portance of the init method. Even though both techniques,
νrandom,rs (dashed line) and νrandom,lb (dash-dotted line), are
similar in design and differ only in the creation of the largest
SIPs (see Fig. 1), the outcome of the simulations is quite dif-
ferent. For the νrandom,lb-init, the solution matches the best
AIM solution, whereas for νrandom,rs the moment λ2 stag-
nates at a level that is too low. The latter test pinpoints the
main weakness of AIM, which is also reflected in its name
(average impact). The initial weighting factors of those ini-
tially largest SIPs (in relation to ν of the remaining SIPs)
controls how strong this growth is and how the large droplet
mode emerges.

Figure 12. Moments λ0 and λ2 as a function of time obtained
by AIM for the Long kernel. The black diamonds show the ref-
erence solution. The curves depict the AIM results (averages over
50 realisations). The default settings are probabilistic singleSIP-init
with weak threshold η = 10−9, κ = 40 and 1t = 10s. The left col-
umn shows a variation of 1t (see legend) and the middle column
a variation of κ (see legend). The right column displays simula-
tions with various initialisation techniques: the νconst-init (solid)
and νdraw-init (dotted) with variousNSIP values (see legend) as well
as the νrandom,rs-init (green dashed) and νrandom,lb-init (green dash-
dotted).

All quantities shown in Figs. 10 and 12 are averages over
50 realisations of the initial SIP ensemble. All individual re-
alisations yield basically identical simulation results, and it
would have been sufficient to carry out and display simula-
tions of a single realisation.

Next, simulations with the Hall kernel are shortly dis-
cussed (figures are only shown in the Supplement). Com-
pared to the Long simulations, the reference solution reveals
that small droplets are much more abundant, as the collec-
tion of small droplets proceeds at a lower rate. This makes
the simulation less challenging from a numerical point of
view and AIM DSDs come closer to the reference than in the
Long simulations. Consequently, the AIM moments agree
very well with the reference. For 1t ≤ 20s and κ ≥ 20, all
solutions are similar to the best AIM solution.

3.3 Performance of AON

Figure 13 shows the AON results for the Golovin kernel.
An excellent agreement with the reference solution is found,
which proves at least the correct implementation of AON.
Switching to a version without multiple collections (i.e. SIP i
collects at most νi droplets in every time step) does not affect
the solution, as cases with pcrit > 1⇔ νk > νi occur rarely.
The AON moments closely follow the reference solution,
even when the time step is increased from 1 to 10 s or fewer
SIPs are used by decreasing κ from 40 to 10 (left column of
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Figure 13. Mass density distributions obtained by AON for the
Golovin kernel from t = 0 to 60min every 10min (from black to
cyan; see legend). The dotted curves show the reference solution;
the solid curves show the AON simulation results (ensemble av-
erages over 50 realisations). The default settings are probabilistic
singleSIP-init with weak threshold η = 10−9, κ = 40 and 1t = 1s.
The left panel shows results of the regular algorithm and the right
panel those of a version disregarding multiple collections.

Figure 14. Moments λ0 and λ2 as a function of time obtained by
AON for the Golovin kernel. The black diamonds show the refer-
ence solution. The curves depict the AON results (averages over
50 realisations). The default settings are probabilistic singleSIP-
init with weak threshold η = 10−9, κ = 40 and 1t = 1s. Left col-
umn: default simulation (red), larger time step (1t = 20 s, blue) and
fewer SIPs (κ = 10, brown). Right column: νconst-init (brown) and
νdraw-init (blue).

Fig. 14). Unlike AIM, AON is successful, even when the ini-
tial SIP ensemble is created with the νconst-init or νdraw-init
(right column of Fig. 14).

Figure 15 displays DSDs of an AON simulation for the
Long kernel. The simulations exhibit large differences be-
tween individual realisations which deserve a closer inspec-
tion. The top row shows DSDs of two specific realisations.
The ∗ symbol depicts the g value for each bin. Those sym-
bols are connected by default. An interruption of the con-
necting line indicates one or more empty bins (g = 0) where
no SIPs exist in this specific radius interval. This occurs fre-
quently due to the broadening of the DSD. The solutions are

Figure 15. Mass density distributions obtained by AON for the
Long kernel from t = 0 to 60min every 10min (from black to cyan;
see legend). The dotted curves show the reference solution; the solid
curves show the AON simulation results. The top row shows two
specific realisations (each ∗ symbol depicts a non-zero g value).
Rows 2 and 3 show averages over 50 and 500 realisations: the left
column uses the same format as all DSD plots before. The right
column depicts the final DSD at t = 60min together for each bin;
the interquartile range is determined and depicted by diamonds and
a dashed bar. If there is only one (or no) diamond(s) in a bin, the
25th (and the 75th) percentile(s) is (are) too small to be visible. The
settings are probabilistic singleSIP-init with η = 10−9, κ = 40 and
1t = 20s.

full of spikes and irregularly over- and undershoot the ref-
erence solution, particularly in the large droplet mode. The
small droplet mode is underestimated in the first realisation
and overestimated in the second realisation, for instance. The
advantages of AON become apparent when the DSDs are av-
eraged over many realisations, as shown in rows 2 and 3.
Then, the DSDs come close to the reference solution (left
column) and the interquartile range indicates the broad en-
velope the individual realisations span around the reference
solution (right column). Whereas the average over 50 reali-
sations still has some fluctuations (row 2), the average over
500 realisations produces a smooth solution (row 3).

There are two sources that are potentially responsible for
the large ensemble spread: the probabilistic SIP initialisation
and the probabilistic AON approach. In a sensitivity test, 50
realisations are computed, all using the same SIP initiali-
sation obtained by a deterministic singleSIP-init. Figure 16
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Figure 16. Moments λ0 and λ2 as a function of time obtained by
AON for the Long kernel. Each realisation was initialised with a
different SIP ensemble (probabilistic singleSIP, red) or all realisa-
tions started with the same SIP ensemble (deterministic singleSIP,
blue). In both cases, the curves show an average over 50 realisations
with the vertical bars indicating the interquartile range. The crosses
show the minimum and maximum values and the circle the median
value. The parameter settings are 1t = 20 and κ = 40.

compares those simulations to regular simulations with dif-
fering SIP initialisations. In both cases, we find a substantial
ensemble spread. Starting with identical SIP initialisations,
the spread in terms of interquartile range is, however, some-
what smaller, suggesting that both sources contribute to the
ensemble spread.

Figure 17 shows AON results with 50 realisations and
probabilistic initialisation which gives a good trade-off be-
tween computational cost and representativeness. Clearly,
AON DSDs are less smooth than those of AIM. Column 1
shows a default simulation with singleSIP-init and shows
very good agreement with the reference solution. By dis-
enabling multiple collections (column 2), far too few small
droplets become collected and their abundance is substan-
tially overestimated. As a consequence, the mass transfer
from small to large droplets is slowed down, and the large
droplet mode is underestimated. Using the νconst-init, the
large droplet mode is not well-matched and results are again
useless.

Figure 18 shows the temporal evolution of moments λ0
and λ2 for a large variety of sensitivity tests. Column 1 shows
a variation of1t for the singleSIP-init. The larger the1t that
is chosen, the more often combinations with pcrit > 1 occur
and the more crucial it becomes to consider multiple collec-
tions. Even for the smallest time step considered, the version

Figure 17. Mass density distributions obtained by AON for the
Long kernel from t = 0 to 60min every 10min (from black to cyan;
see legend). The dotted curves show the reference solution; the solid
curves show the AON simulation results (ensemble averages over
50 realisations). The default settings are probabilistic singleSIP-init
with weak threshold η = 10−9, κ = 40 and 1t = 1s. The left panel
shows results of the regular algorithm, the middle panel shows those
of a version disregarding multiple collections at 1t = 10s and the
right panel shows results for νconst-init with NSIP = 160.

without multiple collections does not collect enough small
droplets and hence overestimates droplet number. With the
regular AON version considering multiple collections, rea-
sonable results are obtained for time steps 1t ≤ 20s. Col-
umn 2 shows a variation of κ for singleSIP-init. Whereas the
higher moments perfectly match the reference, the droplet
number shows a non-negligible dependence on κ . For κ <
100, droplet number decrease is faster, the finer the resolution
is. For κ ≥ 100, a variation of κ has no effect; hence, conver-
gence is reached. However, those simulations underestimate
the droplet number. Best results are obtained for an interme-
diate resolution of κ = 40. Using the multiSIP-init, the simu-
lations show the same undesired behaviour (see left panel of
Fig. 19). Hence, increasing the SIP concentration in the mid-
dle part of the initial DSD has no positive effect despite using
around 160% more SIPs (see NSIP values listed in the figure
legend). In another experiment, a hybrid singleSIP-init was
used. Below r = 16µm, SIPs are initialised as usually with
the prescribed κ . Above this radius, a high resolution with
κ = 100 is always used irrespective of the chosen κ . Clearly,
more SIPs are initialised with this hybrid version relative to
the original version (see NSIP values listed in the figure leg-
end). The middle panel of Fig. 19 shows the droplet number
evolution for the original singleSIP-init and the new hybrid
version. The sensitivity to κ is basically suppressed when the
hybrid version is used. This implies that AON is more or less
insensitive to the resolution in radius range r < 16µm; how-
ever, it is sensitive to the SIP resolution in the right tail. For
example, the κ = 5 simulation with the hybrid version and
87 SIPs performs better than the κ = 20 simulation with the
regular init and 98 SIPs.

In the conventional version, SIPs are initialised down to
a radius of 0.6µm (as can be seen in the top left panel of
Fig. 1). Another variation of the singleSIP-init is shown in
the right panel of Fig. 19 where this lower cut-off radius is
raised to 1.6µm and around 25% fewer SIPs are used to de-
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Figure 18. Moments λ0 and λ2 as a function of time obtained by
AON for the Long kernel. The black diamonds show the reference
solution. The curves depict the AON results (averages over 50 re-
alisations). The default settings are probabilistic singleSIP-init with
weak threshold η = 10−9, κ = 40 and 1t = 10s. The left column
shows a variation of 1t (see legend) for the regular AON version
(solid) and for a version disregarding multiple collections (dotted,
only cases with1t ≤ 20s are displayed). The middle column shows
a variation of κ (see legend). The right column displays simula-
tions with various initialisation techniques: the νconst-init (solid)
and νdraw-init (dotted) with variousNSIP values (see legend) as well
as the νrandom,rs-init (green dashed) and νrandom,lb-init (green dash-
dotted).

scribe the DSD. The simulation results are basically iden-
tical to the conventional init version and suggest that those
initially small-ri , small-νi SIPs are not relevant for the per-
formance of AON.

Further tests with the singleSIP-init include a variation of
the threshold parameter η and a switch from weak thresh-
olds to strict thresholds. Moreover, we investigated the im-
plications of update on the fly of the SIP properties. The
singleSIP-init produces an initially radius-sorted SIP ensem-
ble, and looping over the i−j combinations in the algorithm
starts with combinations of the smallest droplets, which may
introduce a bias. We reversed the order (i.e. started with
largest droplet combinations) or randomly rearranged the or-
der of the SIP combinations. None of those variations had
a significant effect on the ensemble-averaged results (see
the Supplement). The latter insensitivity is in contrast to the
RMA behaviour. The reason for this is the comparably small
number of SIP combinations that actually result in collec-
tions, as well as probabilistic determination of these combi-
nations. This prevents any pronounced bias due to size sort-
ing. Moreover, AON does not preserve the size sortedness of
the SIP list (cf. Fig. 4).

Finally, the AON performance for other SIP initialisations
is discussed (right column of Fig. 18). As already demon-
strated in Fig. 17, AON is not able to produce a realistic

Figure 19. Droplet number as a function of time obtained by AON
for the Long kernel. The black symbols show the moments of the
reference solution. In each panel, the dotted curves depict the re-
sults with the regular singleSIP-init as already shown in column
2 of Fig. 18. The solid curves depict results with a modified ini-
tialisation: the right panel shows results with the multiSIP-init, the
middle column with the hybrid init and the right column with the
singleSIP-init with rcritmin = 1.6µm. Each panel shows results for
various κ values (see corresponding legend). The hybrid version
uses κ = 100 for radii above 15µm and κ as labelled for radii below
15µm. The multiSIP-init and hybrid version use more SIPs than the
regular singleSIP-init. An rcritmin increase leads to aNSIP reduction
(see listed NSIP values in the plots for a comparison).

large droplet mode if a moderate number of SIPs are ini-
tialised with the νconst technique. Hence, the higher moments
are underestimated and droplet number is overestimated. By
increasing the number of SIPs up to 1600, the solutions get
closer to the reference, yet the agreement is still not satisfac-
tory. The performance for the νdraw-init is similar. Keeping in
mind the previous sensitivity studies (hybrid singleSIP-init,
multiSIP-init), it is apparent that the νconst-init and νdraw-init
suffer from an undersampling of the initially largest droplets.
Due to its simplicity, using constant weights for initialisation
has been a common approach in previous 3-D LCM cloud
simulations (Shima et al., 2009; Hoffmann et al., 2015).
Hence, we tested AON extensions aiming at a better perfor-
mance for such equal weight initialisations.

Let us consider the possible weighting factors the SIPs
can attain in the course of a simulation. In the beginning,
all SIPs have ν = νinit. After a collection event, for both in-
volved SIPs ν = νinit/2. If such a ν = νinit/2-SIP collects
a ν = νinit-SIP, both SIPs carry νinit/2 droplets. Subsequent
collections can generate SIPs with weighting factors νinit/4,
3 νinit/4 and so on. It may be advantageous if AON gener-
ates a broader spectrum of possible ν values and produces
SIPs with smaller weights more efficiently. So far, the equal
splitting approach with ξ = 0.5 in a collection event of two
equal-ν SIPs has been used. In sensitivity tests, a random
number for ξ is drawn in each collection event, either from
a uniform distribution ξ ∈ [0,1] or from a log-uniform dis-
tribution ξ ∈ [10−10,100]. Enhancing the spread of ν val-
ues, more collection events occur in the algorithm, as pcrit
is larger when small-ν SIPs are involved. Once most SIPs
were part of a collection event, the first option with ξ ∈ [0,1]
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produces a distribution of ν values that is similar to the ini-
tial ν distribution of the νdraw-init technique and further equal
weights combinations are unlikely to occur. Hence, the new
version does not improve the simulation results, as the out-
come for the νdraw-init and the standard νconst-init are sim-
ilar (see the Supplement). Other variations produce smaller
weights with ξ = 10−10 rand() or ξ = 10−10 rand()2 , yet with-
out any noticeable improvement in the simulation results (see
the Supplement).

To complete the analysis for the Long kernel, the right col-
umn of Fig. 18 shows simulation results for νrandom,lb and
νrandom,rs. In short, AON can cope with those initialisations
and produces useful results.

As already noted in the AIM section, Hall simulations are
not as challenging as Long simulations from a numerical
point of view. As the collection of small droplets proceeds at
a lower rate for the Hall kernel, disenabling multiple collec-
tions in the AON simulations does not deteriorate the results
as much as in the Long simulations (see the Supplement).
Besides this, simulations with the Hall kernel led to similar
conclusions as for the Long simulations and are therefore not
discussed in more detail.

4 Discussion

The presented box model simulations can be regarded as a
first evaluation step of collection/aggregation algorithms in
LCMs. The final goal is the evaluation in (multidimensional)
applications of LCMs with full microphysics. In order to iso-
late the effect of collection, other microphysical processes
like droplet formation and diffusional droplet growth have
been switched off, and all box model simulations started with
a prescribed SIP ensemble following a specific exponential
distribution. In Sect. 4.1, the performance of the different al-
gorithms is compared and we summarise the findings from
Sect. 3. Section 4.2 discusses implications of our results and
provides further insights.

4.1 Summarising comparison of the algorithms’
performance

The initialisation techniques for the SIP population genera-
tion are mostly probabilistic and, by default, each simulation
was performed for 50 different realisations. For RMA and
AIM, we found the ensemble spread to be small; hence, a
single realisation is as good as the ensemble mean. AON is
inherently probabilistic, and we highlighted the substantial
ensemble spread. Reasonable results are only obtained only
by averaging over many realisations. One may argue that this
precludes the usage of AON in real-world applications, as
it is not feasible to run 50 realisations in each grid box of
a 2-D/3-D model simulation. However, we are not that pes-
simistic. In such simulations, many grid boxes have similar
atmospheric conditions and averaging will occur across such

grid boxes. We made a similar experience in simulations of
contrail cirrus, where we tested theNSIP sensitivity of the de-
position/sublimation process (see Sect. 3.1 in Unterstrasser
and Sölch, 2014). We found that very few SIPs per grid box
sufficed to reach convergence, even though the few SIPs in
a single grid box could not realistically represent a smooth
DSD, and reasonable DSDs could only be obtained by aver-
aging over several grid boxes.

RMA simulations for the Long kernel require around a fac-
tor of 1000 smaller time steps than the respective AON and
AIM simulations (1t = 0.01s versus 10s). Using the Long
kernel, rapid collection growth occurs in a certain size range.
In RMA, this puts a strong constraint on the time step (see
Eq. 24). In AON, the inclusion of multiple collections allows
simulating the rapid growth without the need to reduce the
time step. Without multiple collections, the AON require-
ments on 1t would be similar to RMA. AIM seems to be
unaffected by rapid collections resulting in negative weight-
ing factors as observed in RMA. The reason for this might
originate from AIM’s typical behaviour. If large, and there-
fore most effectively collecting, SIPs are produced at all, they
will exhibit very small weighting factors. This property re-
duces the potentially hazardous impact of multiple collec-
tions at larger time steps in the tested setups. However, this
might not be a universal feature of AIM.

If the initial SIP ensemble is created with the singleSIP-
init, 50 to 100 SIPs are needed for convergence in any of the
three algorithms. This value is similar to the number of bins
used in traditional algorithms for spectral-bin models (Bott,
1998; Wang et al., 2007).

For a given NSIP, the number of floating point operations
performed in one time iteration is roughly similar for all three
algorithms but depends ultimately on details of the imple-
mentations. The RMA RedLim variant is, e.g. more demand-
ing than its OTF counterpart. In AON, the generation of the
random numbers needs a non-negligible share of the comput-
ing time.

The time complexity of all presented algorithms is
O(N2

SIP), as computations are carried out for all pairwise
combinations of SIPs. A linear sampling approach, as intro-
duced by Shima et al. (2009), which processes only NSIP/2
SIP pairs, has complexity O(NSIP) and can be applied in
RMA or AON. However, more SIPs may be required to reach
convergence, and in full microphysical models this may slow
down the calculation of all other microphysical processes
(which have usually linear time complexity).

All in all, the time step 1t , which controls the number of
iterations, is the most critical parameter for the computing
time.

4.2 Implications and further insights

In this section, we provide further insight and discuss the im-
plications from the box model tests. Since our results have
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been gained with typical assumptions for warm clouds, we
discuss their representativeness for ice clouds.

The evaluation of different initialisation methods showed
that the performance of the collection/aggregation ap-
proaches depends essentially on the way the SIPs are ini-
tialised, a problem which is inherently absent in spectral-
bin models. Their initialisation resembles the singleSIP tech-
nique used here; i.e. the number concentration (the weight-
ing factor) within a bin (for a certain mass range represented
by one SIP) is directly prescribed. However, LCMs exhibit
a larger variety of how an initial droplet spectrum can be
translated into the SIP space. The study showed that the sin-
gleSIP is advantageous for the correct representation of the
collisional growth, since they initialise large SIPs with small
weighting factors, which are responsible for the strongest ra-
dius growth. On the other hand, the νconst initialisation tech-
nique, in which all SIPs have the same weighting factor ini-
tially, as it is done in many current (multidimensional) appli-
cations of LCMs, significantly impedes the correct represen-
tation of collisional growth.

In this idealised study, we were able to control (to a cer-
tain extent) the representation of droplet spectra by vari-
ous initialisation methods. In more-dimensional simulations
with full microphysics, however, this is not straightforward
nor has it been intended. So far, convergence tests in real-
world LCM applications simply included variations of the
SIP number and have not focused on more detailed char-
acteristics of the SIP ensemble (i.e. the properties that have
been discussed in Fig. 1). Droplet formation and diffusional
droplet growth, which usually create the spectrum from
which collisions are triggered, should be implemented such
that good SIP ensembles are generated or evolve before col-
lection becomes important. Here, “good” refers to a SIP en-
semble for which the collection/aggregation algorithm per-
forms well. For instance, the basic idea of the νrandom initiali-
sation technique (weighting factors are uniformly distributed
in log(ν)) might also improve multidimensional simulations.

Generally, the performance of the algorithms is better
when the SIP ensemble features a broad range of weight-
ing factors. One viable option to achieve this is the introduc-
tion of a SIP splitting technique (Unterstrasser and Sölch,
2014). How this may improve the performance of the collec-
tion/aggregation algorithms is outlined next.

Mass fractions represented by individual SIPs, χ̃i , are
analysed. χ̃i is defined as χi/M; i.e. the total droplet mass
in a SIP χi is normalised by the total mass within the grid
box M. Figure 20 shows the initial χ̃i values of all SIPs
as a function of their initial radius ri . Results are shown
for AIM and AON with the singleSIP-init method and two
bin resolutions κ = 20 and 100. This corresponds to 99 and
493 SIPs for the specific realisation depicted here. The two
rows show the same data using a logarithmic (top row) or
linear y scale (bottom). The log-scale version highlights that
χ̃i values spread over many orders of magnitudes. Mainly,
the parameter νcritmin controls the minimum value of χi . The

Figure 20. Normalised SIP mass χ̃i as a function of the initial
SIP radius ri . χ̃i is defined as = χi/M= (νiµi)/M; i.e. the to-
tal droplet mass in a SIP is normalised by the total mass within the
grid box. χ̃init denotes χ̃i of the initial SIP ensemble. χ̃max denotes
the maximum χ̃i value each SIP attains over the course of a simu-
lation. The left and right panels show AIM/AON simulations with
κ = 20 or 100 (see legend). Both algorithms use the singleSIP-init
and 1t = 10s. The plots show results from a single realisation.

heaviest SIPs carry initially up to 6.5% (κ = 20) or 1.2%
(κ = 100) of the total massM (see bottom row). Clearly, the
values of the κ = 20 simulation are larger, as the total mass is
distributed over fewer SIPs. For each SIP, χ̃i is tracked over
time and the maximum value, χ̃i,max(t), is recorded (red and
brown curves in the graphs). Characteristically of AIM, only
the largest SIPs grow substantially and collect mass from
other SIPs. Hence, only χi of those SIPs increases. In ad-
dition, this also illustrates that the χi values of the smallest
SIPs are so small that all those SIPs can be merged into a
single SIP without changing the AIM outcome (see rcritmin
variation before). Using the fine resolution (κ = 100), heavy
SIPs (i.e. those with largest χ̃i) carry up to 10% of the total
grid box mass at some point in time. In the κ = 20 simu-
lation, this ratio can be higher than 50%, meaning that one
specific SIP accumulated more than 50% of the total grid box
mass at some time. Hence, the grid box mass is distributed
fairly unevenly over the SIP ensemble. Astonishingly, this
has no effect on the performance of AIM as the predicted
λk,SIP values for both AIM simulations are basically identi-
cal (see middle column of Fig. 12). In AON simulations, we
similarly find that the grid box mass is unevenly distributed
over the SIP ensemble. Different from AIM, many initially
small SIPs and a few initially medium-sized SIPs also carry
a relevant portion of the grid box mass at some time. The
algorithms may converge better if those heavy SIPs are split
into several SIPs during the simulation.

In all simulations so far, the mean radius of the initial
DSD was 9.3µm. Then, the abundance of droplets larger than
around 10µm drops strongly, which poses a challenge to rep-
resenting this part of the droplet spectrum in SIP space. In
a sensitivity test, we start with more “mature” DSDs. The
simulations are initialised with the reference solution from
Wang et al. (2007) after tinit = 10, 20 or 30 min (cf. red, green
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Figure 21. Moments λ0 and λ2 as a function of time obtained for
the Long kernel by AIM (left) and AON (right). The black symbols
depict the moments of the reference solution. The simulations are
initialised with Wang’s solution after 20 min (solid lines) using the
singleSIP-init with various κ values (see legend). The default AON
and AIM simulations initialised at t = 0, which have been shown
before in Figs. 12 and 18, are depicted by dotted lines.

and blue solid curves in previous plots of mass density dis-
tributions) using the singleSIP-init. Figure 21 shows λ0 and
λ2 of the DSD for AIM and AON for tinit = 20min and the
default tinit = 0min (cases tinit = 10 and 30min are shown
in the Supplement). The initial DSD is broader for a later
initialisation time, and hence more SIPs are initialised for a
given κ (see Table 3 for the resulting NSIP values). This im-
plies in particular that the spectrum above 10–20µm is sam-
pled with more SIPs. For both algorithms, the simulation re-
sults are close to the reference solution. Compared to the de-
fault tinit = 0 case, a much weaker κ dependence of the AON-
predicted droplet number is apparent, and the AIM results do
not lag behind. Even though this sensitivity test cannot be
repeated for other init methods (as they require an analytical
description of the initial DSD), the singleSIP-init simulations
already indicate that the SIP initialisation is not as crucial
when a later initialisation time is chosen and that our default
setup with a narrow DSD may overrate the importance of the
SIP initialisation. What are the implications of this for sim-
ulations with full microphysics? Clearly, the tinit = 20 and
30min case oversimplify the problem, as such DSDs cannot
be produced by diffusional growth only. The tinit = 10min
DSD, on the other hand, is still close to the tinit = 0min DSD
and may be produced by diffusional growth. RMA simula-
tions with non-zero tinit again show spurious oscillations and
fail to predict the higher moments correctly (see the Supple-
ment).

In multidimensional models, collection/aggregation might
be further influenced by the movement of SIPs due to
sedimentation or flow dynamics. For instance, sedimenta-
tion removes the largest SIPs with the potentially smallest
weighting factors, while turbulent mixing may add SIPs with

their initial weighting factor into matured grid boxes, where
collection has already decreased the weighting factors of
the older SIPs. Indeed, the additional variability in more-
dimensional simulations might compensate for the missing
variability in the weighting factors usually present in simula-
tions using the νconst initialisation technique.

It is not clear which findings of our evaluation efforts are
the most relevant aspects that control the performance of col-
lection/aggregation algorithms in more complex LCM sim-
ulations. Nevertheless, the idealised box simulations are an
essential prerequisite towards more comprehensive evalua-
tions, as they disclosed the potential importance of the SIP
initialisation (an aspect that is inherently absent in spectral-
bin models). All in all, we can state that the behaviour of La-
grangian collection algorithms in more complex simulations
demands further investigation. Nevertheless, we have already
learned a lot from the box model simulations. A summary
will be given in the concluding section.

Besides the academic Golovin kernel, our simulations
used the hydrodynamic kernel with collection efficiencies
that are usually employed for warm clouds (Long and Hall).
We found that Hall simulations are not as challenging as
Long simulations from a numerical point of view. For ice
clouds, usually a constant aggregation efficiency Ea (the
analogon to collection efficiency Ec) is chosen, partly due
to the lack of better estimates (Connolly et al., 2012). AON
simulations with Ea = 0.2 indicated that using a constant ef-
ficiency makes the computational problem less challenging;
e.g. we find a smaller sensitivity to κ compared to the Long
simulations shown in Fig. 18 (see the Supplement). Hence,
the presented algorithms can be equally employed for aggre-
gation. Certainly, the assumption of spherical particles used
here is overly simplistic for ice clouds, in particular if ag-
gregates form. However, including mass–area relationships
(e.g. Mitchell, 1996; Schmitt and Heymsfield, 2010) in the
kernel expression and using parametrisations of ice crystal
fall speed (e.g. Heymsfield and Westbrook, 2010) should not
change the nature of the problem.

5 Conclusions

In the recent past, Lagrangian cloud models (LCMs), which
use a large number of simulation particles (SIPs, also called
super droplets in the literature) to represent a cloud, have
been developed and become more and more popular. Each
SIP represents a certain number of real droplets; this num-
ber is termed the weighting factor (or multiplicity) of a SIP.
In particular, the collision process leading to coalescence of
cloud droplets or aggregation of ice crystals is implemented
differently in the various models described in the literature.
The present study evaluates the performance of three differ-
ent collection algorithms in a box model framework. All mi-
crophysical processes except collection/aggregation are ne-
glected, and an exponential droplet mass distribution is used
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for initialisation. The box model simulation results are com-
pared to analytical solutions (in the case of the Golovin ker-
nel) and to a reference solution obtained from a spectral-bin
model approach by Wang et al. (2007) (in the case of the
Long or Hall kernels).

LCMs exhibit a large variety of how an initial droplet spec-
trum can be translated into the SIP space and various initial-
isation methods are thoroughly explained. The performance
of the algorithms depends crucially on details of the SIP ini-
tialisation and various characteristics of the initialised SIP
ensemble (an issue that is inherently absent in spectral-bin
models and has not been paid much attention in previous
LCM studies).

The remapping algorithm (RMA, based on the ideas of
Andrejczuk et al., 2010) produces perfect solutions in sim-
ulations with the Golovin kernel; however, it shows a poor
performance when we switch to the Long kernel. Spu-
rious oscillations occur in the intermediate radius range
[100µm,200µm]which impedes the development of a realis-
tic rain mode. Only for unfeasibly small time steps of 0.01s,
the simulation results get close to the reference solution. The
evaluation exercises presented in Andrejczuk et al. (2010)
were not suited to reveal these shortcomings or downplay
their severity. Based on our extensive tests, we cannot rec-
ommend the algorithm at its present state for further LCM
applications, unless some mechanism to eliminate those os-
cillations is developed.

The average impact algorithm (AIM, based on the ideas
of Riechelmann et al., 2012) can produce very good results;
however, it appears to be inflexible inasmuch as only the ini-
tially largest SIPs are allowed to grow in radius space. The
performance depends on details of the SIP initialisation much
more than, e.g. on the time step or the SIP number.

The probabilistic all-or-nothing algorithm (AON, based on
the ideas of Shima et al., 2009; Sölch and Kärcher, 2010)
yields the best results and is the only algorithm that can cope
with all tested kernels. Unlike AIM, in AON it is not prede-
termined which SIPs will eventually contribute to the large
droplet mode. By design, any SIP can become significant at
some point, and the algorithm can cope with SIP initialisa-
tions that guarantee a broad spectrum of weighting factors. If
an equal weight initialisation is used, a tremendous number
of SIPs are necessary for AON convergence, as reported by
Shima et al. (2009).

Many current (multidimensional) applications of LCMs
use such SIP ensembles with a narrow spectrum of weight-
ing factors causing a poor performance of the collec-
tion/aggregation algorithms. This should be clearly avoided
in order to have collection/aggregation algorithms to work
properly and/or efficiently. The time step and the bin res-
olution κ (used in the singleSIP-init) have values similar
to those used in traditional spectral-bin models, and hence
the computational efforts of both approaches for the col-
lection/aggregation treatment are in the same range. The
presented box model simulations are a first step towards a

rigourous evaluation of collection/aggregation algorithms in
more complex LCM applications (multidimensional domain,
full microphysics).

Code availability. The programming language IDL was used to
perform the simulations and produce the plots. The source code can
be obtained from the first author. Pseudo-code of the algorithms is
given in the text.
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