Articles | Volume 9, issue 2
https://doi.org/10.5194/gmd-9-697-2016
https://doi.org/10.5194/gmd-9-697-2016
Model description paper
 | 
18 Feb 2016
Model description paper |  | 18 Feb 2016

ASHEE-1.0: a compressible, equilibrium–Eulerian model for volcanic ash plumes

M. Cerminara, T. Esposti Ongaro, and L. C. Berselli

Related authors

Inundation and evacuation of shoreline populations during landslide-triggered tsunami: An integrated numerical and statistical hazard assessment
Emmie M. Bonilauri, Catherine Aaron, Matteo Cerminara, Raphaël Paris, Tomaso Esposti Ongaro, Benedetta Calusi, Domenico Mangione, and Andrew J. L. Harris
EGUsphere, https://doi.org/10.5194/egusphere-2024-221,https://doi.org/10.5194/egusphere-2024-221, 2024
Short summary
ConvectiveFoam1.0: development and benchmarking of a infinite-Pr number solver
Sara Lenzi, Matteo Cerminara, Mattia de' Michieli Vitturi, Tomaso Esposti Ongaro, and Antonello Provenzale
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-28,https://doi.org/10.5194/gmd-2020-28, 2020
Revised manuscript not accepted

Related subject area

Atmospheric sciences
Diagnosing drivers of PM2.5 simulation biases in China from meteorology, chemical composition, and emission sources using an efficient machine learning method
Shuai Wang, Mengyuan Zhang, Yueqi Gao, Peng Wang, Qingyan Fu, and Hongliang Zhang
Geosci. Model Dev., 17, 3617–3629, https://doi.org/10.5194/gmd-17-3617-2024,https://doi.org/10.5194/gmd-17-3617-2024, 2024
Short summary
Validation and analysis of the Polair3D v1.11 chemical transport model over Quebec
Shoma Yamanouchi, Shayamilla Mahagammulla Gamage, Sara Torbatian, Jad Zalzal, Laura Minet, Audrey Smargiassi, Ying Liu, Ling Liu, Forood Azargoshasbi, Jinwoong Kim, Youngseob Kim, Daniel Yazgi, and Marianne Hatzopoulou
Geosci. Model Dev., 17, 3579–3597, https://doi.org/10.5194/gmd-17-3579-2024,https://doi.org/10.5194/gmd-17-3579-2024, 2024
Short summary
Assimilation of GNSS tropospheric gradients into the Weather Research and Forecasting (WRF) model version 4.4.1
Rohith Thundathil, Florian Zus, Galina Dick, and Jens Wickert
Geosci. Model Dev., 17, 3599–3616, https://doi.org/10.5194/gmd-17-3599-2024,https://doi.org/10.5194/gmd-17-3599-2024, 2024
Short summary
Identifying atmospheric rivers and their poleward latent heat transport with generalizable neural networks: ARCNNv1
Ankur Mahesh, Travis A. O'Brien, Burlen Loring, Abdelrahman Elbashandy, William Boos, and William D. Collins
Geosci. Model Dev., 17, 3533–3557, https://doi.org/10.5194/gmd-17-3533-2024,https://doi.org/10.5194/gmd-17-3533-2024, 2024
Short summary
Assessing acetone for the GISS ModelE2.1 Earth system model
Alexandra Rivera, Kostas Tsigaridis, Gregory Faluvegi, and Drew Shindell
Geosci. Model Dev., 17, 3487–3505, https://doi.org/10.5194/gmd-17-3487-2024,https://doi.org/10.5194/gmd-17-3487-2024, 2024
Short summary

Cited articles

Bagheri, G., Bonadonna, C., Manzella, I., Pontelandolfo, P., and Haas, P.: Dedicated vertical wind tunnel for the study of sedimentation of non-spherical particles., Rev. Sci. Instrum., 84, 054501, https://doi.org/10.1063/1.4805019, 2013.
Balachandar, S.: A scaling analysis for point-particle approaches to turbulent multiphase flows, Int. J. Multiph. Flow, 35, 801–810, https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.013, 2009.
Balachandar, S. and Eaton, J. K.: Turbulent dispersed multiphase flow, Ann. Rev. Fluid Mech., 42, 111–133, https://doi.org/10.1146/annurev.fluid.010908.165243, 2010.
Bardina, J., Ferziger, J. H., and Reynolds, W. C.: Improved Subgrid Scale Models for Large Eddy Simulation, 1980, American Institute of Aeronautics and Astronautics, 13th Fluid and Plasma Dynamics Conference, Snowmass, Pap. No. 80, Colo., 14–16 July, 1980.
Bernardini, M. and Pirozzoli, S.: A general strategy for the optimization of Runge–Kutta schemes for wave propagation phenomena, J. Comput. Phys., 228, 4182–4199, 2009.
Download
Short summary
A new model for gas–particles compressible turbulent dynamics is developed. It is implemented in a fluid dynamic code based on the OpenFOAM libraries. The solver is tested against well known benchmarks, in particular: single and multiphase isotropic turbulence, plume turbulent dynamics and shock tube experiments. These comparisons validate the capability of the solver to capture the desired physics. A volcanic plume is analyzed, focusing on non-equilibrium ash dynamics and mean plume properties.