Model description paper
07 Dec 2016
Model description paper
| 07 Dec 2016
Terrestrial ecosystem process model Biome-BGCMuSo v4.0: summary of improvements and new modeling possibilities
Dóra Hidy et al.
Related authors
Dóra Hidy, Zoltán Barcza, Roland Hollós, Laura Dobor, Tamás Ács, Dóra Zacháry, Tibor Filep, László Pásztor, Dóra Incze, Márton Dencső, Eszter Tóth, Katarína Merganičová, Peter Thornton, Steven Running, and Nándor Fodor
Geosci. Model Dev., 15, 2157–2181, https://doi.org/10.5194/gmd-15-2157-2022, https://doi.org/10.5194/gmd-15-2157-2022, 2022
Short summary
Short summary
Biogeochemical models used by the scientific community can support society in the quantification of the expected environmental impacts caused by global climate change. The Biome-BGCMuSo v6.2 biogeochemical model has been created by implementing a lot of developments related to soil hydrology as well as the soil carbon and nitrogen cycle and by integrating crop model components. Detailed descriptions of developments with case studies are presented in this paper.
Xiaojuan Yang, Peter Thornton, Daniel Ricciuto, Yilong Wang, and Forrest Hoffman
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-130, https://doi.org/10.5194/bg-2022-130, 2022
Preprint under review for BG
Short summary
Short summary
We evaluated the performance of a land surface model (ELMv1-CNP) that includes both nitrogen (N) and phosphorus (P) limitation on carbon cycle processes. We show that ELMv1-CNP produces realistic estimates of present-day carbon pools and fluxes. We show that global C sources and sinks are significantly affected by P limitation. Our study suggests that introduction of P limitation in land surface models likely have substantial consequences for projections of future carbon uptake.
Dóra Hidy, Zoltán Barcza, Roland Hollós, Laura Dobor, Tamás Ács, Dóra Zacháry, Tibor Filep, László Pásztor, Dóra Incze, Márton Dencső, Eszter Tóth, Katarína Merganičová, Peter Thornton, Steven Running, and Nándor Fodor
Geosci. Model Dev., 15, 2157–2181, https://doi.org/10.5194/gmd-15-2157-2022, https://doi.org/10.5194/gmd-15-2157-2022, 2022
Short summary
Short summary
Biogeochemical models used by the scientific community can support society in the quantification of the expected environmental impacts caused by global climate change. The Biome-BGCMuSo v6.2 biogeochemical model has been created by implementing a lot of developments related to soil hydrology as well as the soil carbon and nitrogen cycle and by integrating crop model components. Detailed descriptions of developments with case studies are presented in this paper.
László Haszpra, Zoltán Barcza, Zita Ferenczi, Anikó Kern, and Natascha Kljun
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-39, https://doi.org/10.5194/amt-2022-39, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
A novel approach is used for the determination of greenhouse gas (GHG) emissions of rural small settlements, which may significantly differ from those of urban regions and have hardly been studied yet. Among others, it turned out that wintertime nitrous oxide emission is significantly underestimated in the official emission inventories. Given the large number of such settlements, the underestimation may also distort the national total emission values reported to the international databases.
Xinhua Zhou, Tian Gao, Eugene S. Takle, Xiaojie Zhen, Andrew E. Suyker, Tala Awada, Jane Okalebo, and Jiaojun Zhu
Atmos. Meas. Tech., 15, 95–115, https://doi.org/10.5194/amt-15-95-2022, https://doi.org/10.5194/amt-15-95-2022, 2022
Short summary
Short summary
Air temperature from sonic temperature and air moisture has been used without an exact equation. We present an exact equation of such air temperature for closed-path eddy-covariance flux measurements. Air temperature from this equation is equivalent to sonic temperature in its accuracy and frequency response. It is a choice for advanced flux topics because, with it, thermodynamic variables in the flux measurements can be temporally synchronized and spatially matched at measurement scales.
Daniel M. Ricciuto, Xiaojuan Yang, Dali Wang, and Peter E. Thornton
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-163, https://doi.org/10.5194/bg-2021-163, 2021
Revised manuscript has not been submitted
Short summary
Short summary
This paper uses a novel approach to quantify the impacts of the choice of decomposition model on carbon and nitrogen cycling. We compare the models to experimental data that examined litter decomposition over five different biomes. Despite widely differing assumptions, the models produce similar patterns of decomposition when nutrients are limiting. This differs from past analyses that did not consider the impacts of changing environmental conditions or nutrients.
László Haszpra and Ernő Prácser
Atmos. Meas. Tech., 14, 3561–3571, https://doi.org/10.5194/amt-14-3561-2021, https://doi.org/10.5194/amt-14-3561-2021, 2021
Short summary
Short summary
Most of the tall-tower greenhouse gas observatories apply a single gas analyzer for the sequential sampling of several intakes along the tower. The non-continuous sampling at each intake introduces excess uncertainty to the calculated hourly-average concentrations used in several applications. Based on real-world measurements, the paper systematically assesses this type of uncertainty.
Shamil Maksyutov, Tomohiro Oda, Makoto Saito, Rajesh Janardanan, Dmitry Belikov, Johannes W. Kaiser, Ruslan Zhuravlev, Alexander Ganshin, Vinu K. Valsala, Arlyn Andrews, Lukasz Chmura, Edward Dlugokencky, László Haszpra, Ray L. Langenfelds, Toshinobu Machida, Takakiyo Nakazawa, Michel Ramonet, Colm Sweeney, and Douglas Worthy
Atmos. Chem. Phys., 21, 1245–1266, https://doi.org/10.5194/acp-21-1245-2021, https://doi.org/10.5194/acp-21-1245-2021, 2021
Short summary
Short summary
In order to improve the top-down estimation of the anthropogenic greenhouse gas emissions, a high-resolution inverse modelling technique was developed for applications to global transport modelling of carbon dioxide and other greenhouse gases. A coupled Eulerian–Lagrangian transport model and its adjoint are combined with surface fluxes at 0.1° resolution to provide high-resolution forward simulation and inverse modelling of surface fluxes accounting for signals from emission hot spots.
Xiaoying Shi, Daniel M. Ricciuto, Peter E. Thornton, Xiaofeng Xu, Fengming Yuan, Richard J. Norby, Anthony P. Walker, Jeffrey M. Warren, Jiafu Mao, Paul J. Hanson, Lin Meng, David Weston, and Natalie A. Griffiths
Biogeosciences, 18, 467–486, https://doi.org/10.5194/bg-18-467-2021, https://doi.org/10.5194/bg-18-467-2021, 2021
Short summary
Short summary
The Sphagnum mosses are the important species of a wetland ecosystem. To better represent the peatland ecosystem, we introduced the moss species to the land model component (ELM) of the Energy Exascale Earth System Model (E3SM) by developing water content dynamics and nonvascular photosynthetic processes for moss. We tested the model against field observations and used the model to make projections of the site's carbon cycle under warming and atmospheric CO2 concentration scenarios.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Łukasz Chmura, Michał Gałkowski, Piotr Sekuła, Mirosław Zimnoch, Jarosław Nęcki, Jakub Bartyzel, Damian Zięba, Kazimierz Różański, Wojciech Wołkowicz, and Laszlo Haszpra
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-748, https://doi.org/10.5194/acp-2019-748, 2019
Revised manuscript not accepted
Short summary
Short summary
The rise of temperatures across the globe, mainly attributed to the anthropogenic emissions of greenhouse gases, is predicted to have an increased impact on ecosystems over the next century. One of the manifestations of this anthropogenic global warming will be the increased occurrence of prolonged droughts in the temperate climate zones. In the current study we present the evidence of an increased impact of droughts on the annual cycle of carbon dioxide over Central-Eastern Europe.
Jianqiu Zheng, Peter E. Thornton, Scott L. Painter, Baohua Gu, Stan D. Wullschleger, and David E. Graham
Biogeosciences, 16, 663–680, https://doi.org/10.5194/bg-16-663-2019, https://doi.org/10.5194/bg-16-663-2019, 2019
Short summary
Short summary
Arctic warming exposes soil carbon to increased degradation, increasing CO2 and CH4 emissions. Models underrepresent anaerobic decomposition that predominates wet soils. We simulated microbial growth, pH regulation, and anaerobic carbon decomposition in a new model, parameterized and validated with prior soil incubation data. The model accurately simulated CO2 production and strong influences of water content, pH, methanogen biomass, and competing electron acceptors on CH4 production.
Peter Bergamaschi, Ute Karstens, Alistair J. Manning, Marielle Saunois, Aki Tsuruta, Antoine Berchet, Alexander T. Vermeulen, Tim Arnold, Greet Janssens-Maenhout, Samuel Hammer, Ingeborg Levin, Martina Schmidt, Michel Ramonet, Morgan Lopez, Jost Lavric, Tuula Aalto, Huilin Chen, Dietrich G. Feist, Christoph Gerbig, László Haszpra, Ove Hermansen, Giovanni Manca, John Moncrieff, Frank Meinhardt, Jaroslaw Necki, Michal Galkowski, Simon O'Doherty, Nina Paramonova, Hubertus A. Scheeren, Martin Steinbacher, and Ed Dlugokencky
Atmos. Chem. Phys., 18, 901–920, https://doi.org/10.5194/acp-18-901-2018, https://doi.org/10.5194/acp-18-901-2018, 2018
Short summary
Short summary
European methane (CH4) emissions are estimated for 2006–2012 using atmospheric in situ measurements from 18 European monitoring stations and 7 different inverse models. Our analysis highlights the potential significant contribution of natural emissions from wetlands (including peatlands and wet soils) to the total European emissions. The top-down estimates of total EU-28 CH4 emissions are broadly consistent with the sum of reported anthropogenic CH4 emissions and the estimated natural emissions.
Henrique F. Duarte, Brett M. Raczka, Daniel M. Ricciuto, John C. Lin, Charles D. Koven, Peter E. Thornton, David R. Bowling, Chun-Ta Lai, Kenneth J. Bible, and James R. Ehleringer
Biogeosciences, 14, 4315–4340, https://doi.org/10.5194/bg-14-4315-2017, https://doi.org/10.5194/bg-14-4315-2017, 2017
Short summary
Short summary
We evaluate the Community Land Model (CLM4.5) against observations at an old-growth coniferous forest site that is subjected to water stress each summer. We found that, after calibration, CLM was able to reasonably simulate the observed fluxes of energy and carbon, carbon stocks, carbon isotope ratios, and ecosystem response to water stress. This study demonstrates that carbon isotopes can expose structural weaknesses in CLM and provide a key constraint that may guide future model development.
Foad Foolad, Trenton E. Franz, Tiejun Wang, Justin Gibson, Ayse Kilic, Richard G. Allen, and Andrew Suyker
Hydrol. Earth Syst. Sci., 21, 1263–1277, https://doi.org/10.5194/hess-21-1263-2017, https://doi.org/10.5194/hess-21-1263-2017, 2017
Short summary
Short summary
Estimates of evapotranspiration are vital for validation of models. However, those datasets are often limited to research applications. Here, we explore using vadose zone modeling with widespread and readily available soil water content monitoring networks. While this work focused on one agricultural site, the framework can be used everywhere there is basic data. The resulting evapotranspiration and soil water content measurements are valuable benchmarks for evaluation of land surface models.
Jitendra Kumar, Nathan Collier, Gautam Bisht, Richard T. Mills, Peter E. Thornton, Colleen M. Iversen, and Vladimir Romanovsky
The Cryosphere, 10, 2241–2274, https://doi.org/10.5194/tc-10-2241-2016, https://doi.org/10.5194/tc-10-2241-2016, 2016
Short summary
Short summary
Microtopography of the low-gradient polygonal tundra plays a critical role in these ecosystem; however, patterns and drivers are poorly understood. A modeling-based approach was developed in this study to characterize and represent the permafrost soils in the model and simulate the thermal dynamics using a mechanistic high-resolution model. Results shows the ability of the model to simulate the patterns and variability of thermal regimes and improve our understanding of polygonal tundra.
János Balogh, Marianna Papp, Krisztina Pintér, Szilvia Fóti, Katalin Posta, Werner Eugster, and Zoltán Nagy
Biogeosciences, 13, 5171–5182, https://doi.org/10.5194/bg-13-5171-2016, https://doi.org/10.5194/bg-13-5171-2016, 2016
Short summary
Short summary
In the dry grassland investigated in this study the components of the soil CO2 efflux decreased at different rates under drought conditions. During drought the contribution made by the heterotrophic components was the highest and the rhizospheric component was the most sensitive to soil drying. According to our results, the heterotrophic component of soil respiration is the major contributor to the respiration activities during drought events.
William Alexander Avery, Catherine Finkenbiner, Trenton E. Franz, Tiejun Wang, Anthony L. Nguy-Robertson, Andrew Suyker, Timothy Arkebauer, and Francisco Muñoz-Arriola
Hydrol. Earth Syst. Sci., 20, 3859–3872, https://doi.org/10.5194/hess-20-3859-2016, https://doi.org/10.5194/hess-20-3859-2016, 2016
Short summary
Short summary
Here we present a strategy to use globally available datasets in the calibration function used to convert observed moderated neutron counts into volumetric soil water content. While local sampling protocols are well documented for fixed probes, the use of roving probes presents new calibration challenges. With over 200 fixed probes and 10 roving probes in use globally, we anticipate this paper will serve as a keystone for the growing cosmic-ray neutron probe and hydrologic community.
Brett Raczka, Henrique F. Duarte, Charles D. Koven, Daniel Ricciuto, Peter E. Thornton, John C. Lin, and David R. Bowling
Biogeosciences, 13, 5183–5204, https://doi.org/10.5194/bg-13-5183-2016, https://doi.org/10.5194/bg-13-5183-2016, 2016
Short summary
Short summary
We use carbon isotopes of CO2 to improve the performance of a land surface model, a component with earth system climate models. We found that isotope observations can provide important information related to the exchange of carbon and water from vegetation driven by environmental stress from low atmospheric moisture and nitrogen limitation. It follows that isotopes have a unique potential to improve model performance and provide insight into land surface model development.
Guoping Tang, Jianqiu Zheng, Xiaofeng Xu, Ziming Yang, David E. Graham, Baohua Gu, Scott L. Painter, and Peter E. Thornton
Biogeosciences, 13, 5021–5041, https://doi.org/10.5194/bg-13-5021-2016, https://doi.org/10.5194/bg-13-5021-2016, 2016
Short summary
Short summary
We extend the Community Land Model coupled with carbon and nitrogen (CLM-CN) decomposition cascade to include simple organic substrate turnover, fermentation, Fe(III) reduction, and methanogenesis reactions, and assess the efficacy of various temperature and pH response functions. Incorporating the Windermere Humic Aqueous Model (WHAM) describes the observed pH evolution. Fe reduction can increase pH toward neutral pH to facilitate methanogenesis.
Xiaofeng Xu, Fengming Yuan, Paul J. Hanson, Stan D. Wullschleger, Peter E. Thornton, William J. Riley, Xia Song, David E. Graham, Changchun Song, and Hanqin Tian
Biogeosciences, 13, 3735–3755, https://doi.org/10.5194/bg-13-3735-2016, https://doi.org/10.5194/bg-13-3735-2016, 2016
Short summary
Short summary
Accurately projecting future climate change requires a good methane modeling. However, how good the current models are and what are the key improvements needed remain unclear. This paper reviews the 40 published methane models to characterize the strengths and weakness of current methane models and further lay out the roadmap for future model improvements.
Boris Bonn, Erika von Schneidemesser, Dorota Andrich, Jörn Quedenau, Holger Gerwig, Anja Lüdecke, Jürgen Kura, Axel Pietsch, Christian Ehlers, Dieter Klemp, Claudia Kofahl, Rainer Nothard, Andreas Kerschbaumer, Wolfgang Junkermann, Rüdiger Grote, Tobias Pohl, Konradin Weber, Birgit Lode, Philipp Schönberger, Galina Churkina, Tim M. Butler, and Mark G. Lawrence
Atmos. Chem. Phys., 16, 7785–7811, https://doi.org/10.5194/acp-16-7785-2016, https://doi.org/10.5194/acp-16-7785-2016, 2016
Short summary
Short summary
The distribution of air pollutants (gases and particles) have been investigated in different environments in Potsdam, Germany. Remarkable variations of the pollutants have been observed for distances of tens of meters by bicycles, vans and aircraft. Vegetated areas caused reductions depending on the pollutants, the vegetation type and dimensions. Our measurements show the pollutants to be of predominantly local origin, resulting in a huge challenge for common models to resolve.
Guoping Tang, Fengming Yuan, Gautam Bisht, Glenn E. Hammond, Peter C. Lichtner, Jitendra Kumar, Richard T. Mills, Xiaofeng Xu, Ben Andre, Forrest M. Hoffman, Scott L. Painter, and Peter E. Thornton
Geosci. Model Dev., 9, 927–946, https://doi.org/10.5194/gmd-9-927-2016, https://doi.org/10.5194/gmd-9-927-2016, 2016
Short summary
Short summary
We demonstrate that CLM-PFLOTRAN predictions are consistent with CLM4.5 for Arctic, temperate, and tropical sites. A tight relative tolerance may be needed to avoid false convergence when scaling, clipping, or log transformation is used to avoid negative concentration in implicit time stepping and Newton-Raphson methods. The log transformation method is accurate and robust while relaxing relative tolerance or using the clipping or scaling method can result in efficient solutions.
J. Mao, D. M. Ricciuto, P. E. Thornton, J. M. Warren, A. W. King, X. Shi, C. M. Iversen, and R. J. Norby
Biogeosciences, 13, 641–657, https://doi.org/10.5194/bg-13-641-2016, https://doi.org/10.5194/bg-13-641-2016, 2016
Short summary
Short summary
The aim of this study is to implement, calibrate and evaluate the CLM4 against carbon and hydrology observations from a shading and labeling experiment in a stand of young loblolly pines. We found a combination of parameters measured on-site and calibration targeting biomass, transpiration, and 13C discrimination gave good agreement with pretreatment measurements. We also used observations from the experiment to develop a conceptual model of short-term photosynthate storage and transport.
X. Shi, P. E. Thornton, D. M. Ricciuto, P. J. Hanson, J. Mao, S. D. Sebestyen, N. A. Griffiths, and G. Bisht
Biogeosciences, 12, 6463–6477, https://doi.org/10.5194/bg-12-6463-2015, https://doi.org/10.5194/bg-12-6463-2015, 2015
W. D. Collins, A. P. Craig, J. E. Truesdale, A. V. Di Vittorio, A. D. Jones, B. Bond-Lamberty, K. V. Calvin, J. A. Edmonds, S. H. Kim, A. M. Thomson, P. Patel, Y. Zhou, J. Mao, X. Shi, P. E. Thornton, L. P. Chini, and G. C. Hurtt
Geosci. Model Dev., 8, 2203–2219, https://doi.org/10.5194/gmd-8-2203-2015, https://doi.org/10.5194/gmd-8-2203-2015, 2015
Short summary
Short summary
The integrated Earth system model (iESM) has been developed as a
new tool for projecting the joint human-climate system. The
iESM is based upon coupling an integrated assessment model (IAM)
and an Earth system model (ESM) into a common modeling
infrastructure. By introducing heretofore-omitted
feedbacks between natural and societal drivers in iESM, we can improve
scientific understanding of the human-Earth system
dynamics.
C. Safta, D. M. Ricciuto, K. Sargsyan, B. Debusschere, H. N. Najm, M. Williams, and P. E. Thornton
Geosci. Model Dev., 8, 1899–1918, https://doi.org/10.5194/gmd-8-1899-2015, https://doi.org/10.5194/gmd-8-1899-2015, 2015
Short summary
Short summary
In this paper we propose a probabilistic framework for an uncertainty quantification study of a carbon cycle model and focus on the comparison between steady-state and transient
simulation setups. We study model parameters via global sensitivity analysis and employ a Bayesian approach to calibrate these parameters using NEE observations at the Harvard Forest site. The calibration results are then used to assess the predictive skill of the model via posterior predictive checks.
L. Haszpra, Z. Barcza, T. Haszpra, Zs. Pátkai, and K. J. Davis
Atmos. Meas. Tech., 8, 1657–1671, https://doi.org/10.5194/amt-8-1657-2015, https://doi.org/10.5194/amt-8-1657-2015, 2015
A. V. Di Vittorio, L. P. Chini, B. Bond-Lamberty, J. Mao, X. Shi, J. Truesdale, A. Craig, K. Calvin, A. Jones, W. D. Collins, J. Edmonds, G. C. Hurtt, P. Thornton, and A. Thomson
Biogeosciences, 11, 6435–6450, https://doi.org/10.5194/bg-11-6435-2014, https://doi.org/10.5194/bg-11-6435-2014, 2014
Short summary
Short summary
Economic models provide scenarios of land use and greenhouse gas emissions to earth system models to project global change. We found, and partially addressed, inconsistencies in land cover between an economic and an earth system model that effectively alter a prescribed scenario, causing significant differences in projected terrestrial carbon and atmospheric CO2 between prescribed and altered scenarios. We outline a solution to this current problem in scenario-based global change projections.
B. Bond-Lamberty, K. Calvin, A. D. Jones, J. Mao, P. Patel, X. Y. Shi, A. Thomson, P. Thornton, and Y. Zhou
Geosci. Model Dev., 7, 2545–2555, https://doi.org/10.5194/gmd-7-2545-2014, https://doi.org/10.5194/gmd-7-2545-2014, 2014
R. L. Thompson, K. Ishijima, E. Saikawa, M. Corazza, U. Karstens, P. K. Patra, P. Bergamaschi, F. Chevallier, E. Dlugokencky, R. G. Prinn, R. F. Weiss, S. O'Doherty, P. J. Fraser, L. P. Steele, P. B. Krummel, A. Vermeulen, Y. Tohjima, A. Jordan, L. Haszpra, M. Steinbacher, S. Van der Laan, T. Aalto, F. Meinhardt, M. E. Popa, J. Moncrieff, and P. Bousquet
Atmos. Chem. Phys., 14, 6177–6194, https://doi.org/10.5194/acp-14-6177-2014, https://doi.org/10.5194/acp-14-6177-2014, 2014
X. Yang, P. E. Thornton, D. M. Ricciuto, and W. M. Post
Biogeosciences, 11, 1667–1681, https://doi.org/10.5194/bg-11-1667-2014, https://doi.org/10.5194/bg-11-1667-2014, 2014
G. Broquet, F. Chevallier, F.-M. Bréon, N. Kadygrov, M. Alemanno, F. Apadula, S. Hammer, L. Haszpra, F. Meinhardt, J. A. Morguí, J. Necki, S. Piacentino, M. Ramonet, M. Schmidt, R. L. Thompson, A. T. Vermeulen, C. Yver, and P. Ciais
Atmos. Chem. Phys., 13, 9039–9056, https://doi.org/10.5194/acp-13-9039-2013, https://doi.org/10.5194/acp-13-9039-2013, 2013
Related subject area
Biogeosciences
Use of genetic algorithms for ocean model parameter optimisation: a case study using PISCES-v2_RC for North Atlantic particulate organic carbon
SurEau-Ecos v2.0: a trait-based plant hydraulics model for simulations of plant water status and drought-induced mortality at the ecosystem level
Improved representation of plant physiology in the JULES-vn5.6 land surface model: photosynthesis, stomatal conductance and thermal acclimation
Representation of the phosphorus cycle in the Joint UK Land Environment Simulator (vn5.5_JULES-CNP)
CLM5-FruitTree: a new sub-model for deciduous fruit trees in the Community Land Model (CLM5)
The impact of hurricane disturbances on a tropical forest: implementing a palm plant functional type and hurricane disturbance module in ED2-HuDi V1.0
A validation standard for area of habitat maps for terrestrial birds and mammals
Soil Cycles of Elements simulator for Predicting TERrestrial regulation of greenhouse gases: SCEPTER v0.9
Using terrestrial laser scanning to constrain forest ecosystem structure and functions in the Ecosystem Demography model (ED2.2)
A map of global peatland extent created using machine learning (Peat-ML)
Implementation and evaluation of the unified stomatal optimization approach in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES)
ECOSMO II(CHL): a marine biogeochemical model for the North Atlantic and the Arctic
Water Ecosystems Tool (WET) 1.0 – a new generation of flexible aquatic ecosystem model
Development of an open-source regional data assimilation system in PEcAn v. 1.7.2: application to carbon cycle reanalysis across the contiguous US using SIPNET
Predicting global terrestrial biomes with the LeNet convolutional neural network
KGML-ag: a modeling framework of knowledge-guided machine learning to simulate agroecosystems: a case study of estimating N2O emission using data from mesocosm experiments
Assessing methane emissions for northern peatlands in ORCHIDEE-PEAT revision 7020
A dynamic local-scale vegetation model for lycopsids (LYCOm v1.0)
Soil-related developments of the Biome-BGCMuSo v6.2 terrestrial ecosystem model
Global evaluation of the Ecosystem Demography model (ED v3.0)
A new snow module improves predictions of the isotope-enabled MAIDENiso forest growth model
Calibrating the soil organic carbon model Yasso20 with multiple datasets
The PFLOTRAN Reaction Sandbox
A new approach to simulate peat accumulation, degradation and stability in a global land surface scheme (JULES vn5.8_accumulate_soil) for northern and temperate peatlands
Definitions and methods to estimate regional land carbon fluxes for the second phase of the REgional Carbon Cycle Assessment and Processes Project (RECCAP-2)
Locating trees to mitigate outdoor radiant load of humans in urban areas using a metaheuristic hill-climbing algorithm – introducing TreePlanter v1.0
Sensitivity of asymmetric oxygen minimum zones to mixing intensity and stoichiometry in the tropical Pacific using a basin-scale model (OGCM-DMEC V1.4)
The importance of turbulent ocean–sea ice nutrient exchanges for simulation of ice algal biomass and production with CICE6.1 and Icepack 1.2
Modeling symbiotic biological nitrogen fixation in grain legumes globally with LPJ-GUESS (v4.0, r10285)
Afforestation impact on soil temperature in regional climate model simulations over Europe
BioRT-Flux-PIHM v1.0: a biogeochemical reactive transport model at the watershed scale
Modeling the short-term fire effects on vegetation dynamics and surface energy in southern Africa using the improved SSiB4/TRIFFID-Fire model
Explicit silicate cycling in the Kiel Marine Biogeochemistry Model version 3 (KMBM3) embedded in the UVic ESCM version 2.9
Performance analysis of regional AquaCrop (v6.1) biomass and surface soil moisture simulations using satellite and in situ observations
OMEN-SED(-RCM) (v1.1): a pseudo-reactive continuum representation of organic matter degradation dynamics for OMEN-SED
Testing stomatal models at the stand level in deciduous angiosperm and evergreen gymnosperm forests using CliMA Land (v0.1)
Comparing an exponential respiration model to alternative models for soil respiration components in a Canadian wildfire chronosequence (FireResp v1.0)
Accounting for forest management in the estimation of forest carbon balance using the dynamic vegetation model LPJ-GUESS (v4.0, r9710): implementation and evaluation of simulations for Europe
FABM-NflexPD 1.0: assessing an instantaneous acclimation approach for modeling phytoplankton growth
A model for marine sedimentary carbonate diagenesis and paleoclimate proxy signal tracking: IMP v1.0
Using the International Tree-Ring Data Bank (ITRDB) records as century-long benchmarks for global land-surface models
Climate and parameter sensitivity and induced uncertainties in carbon stock projections for European forests (using LPJ-GUESS 4.0)
A model-independent data assimilation (MIDA) module and its applications in ecology
Optical model for the Baltic Sea with an explicit CDOM state variable: a case study with Model ERGOM (version 1.2)
WAP-1D-VAR v1.0: development and evaluation of a one-dimensional variational data assimilation model for the marine ecosystem along the West Antarctic Peninsula
SCOPE 2.0: a model to simulate vegetated land surface fluxes and satellite signals
SolveSAPHE-r2 (v2.0.1): revisiting and extending the Solver Suite for Alkalinity-PH Equations for usage with CO2, HCO3− or CO32− input data
Modeling gas exchange and biomass production in West African Sahelian and Sudanian ecological zones
Partitioning soil organic carbon into its centennially stable and active fractions with machine-learning models based on Rock-Eval® thermal analysis (PARTYSOCv2.0 and PARTYSOCv2.0EU)
Addressing biases in Arctic–boreal carbon cycling in the Community Land Model Version 5
Marcus Falls, Raffaele Bernardello, Miguel Castrillo, Mario Acosta, Joan Llort, and Martí Galí
Geosci. Model Dev., 15, 5713–5737, https://doi.org/10.5194/gmd-15-5713-2022, https://doi.org/10.5194/gmd-15-5713-2022, 2022
Short summary
Short summary
This paper describes and tests a method which uses a genetic algorithm (GA), a type of optimisation algorithm, on an ocean biogeochemical model. The aim is to produce a set of numerical parameters that best reflect the observed data of particulate organic carbon in a specific region of the ocean. We show that the GA can provide optimised model parameters in a robust and efficient manner and can also help detect model limitations, ultimately leading to a reduction in the model uncertainties.
Julien Ruffault, François Pimont, Hervé Cochard, Jean-Luc Dupuy, and Nicolas Martin-StPaul
Geosci. Model Dev., 15, 5593–5626, https://doi.org/10.5194/gmd-15-5593-2022, https://doi.org/10.5194/gmd-15-5593-2022, 2022
Short summary
Short summary
A widespread increase in tree mortality has been observed around the globe, and this trend is likely to continue because of ongoing climate change. Here we present SurEau-Ecos, a trait-based plant hydraulic model to predict tree desiccation and mortality. SurEau-Ecos can help determine the areas and ecosystems that are most vulnerable to drying conditions.
Rebecca J. Oliver, Lina M. Mercado, Doug B. Clark, Chris Huntingford, Christopher M. Taylor, Pier Luigi Vidale, Patrick C. McGuire, Markus Todt, Sonja Folwell, Valiyaveetil Shamsudheen Semeena, and Belinda E. Medlyn
Geosci. Model Dev., 15, 5567–5592, https://doi.org/10.5194/gmd-15-5567-2022, https://doi.org/10.5194/gmd-15-5567-2022, 2022
Short summary
Short summary
We introduce new representations of plant physiological processes into a land surface model. Including new biological understanding improves modelled carbon and water fluxes for the present in tropical and northern-latitude forests. Future climate simulations demonstrate the sensitivity of photosynthesis to temperature is important for modelling carbon cycle dynamics in a warming world. Accurate representation of these processes in models is necessary for robust predictions of climate change.
Mahdi André Nakhavali, Lina M. Mercado, Iain P. Hartley, Stephen Sitch, Fernanda V. Cunha, Raffaello di Ponzio, Laynara F. Lugli, Carlos A. Quesada, Kelly M. Andersen, Sarah E. Chadburn, Andy J. Wiltshire, Douglas B. Clark, Gyovanni Ribeiro, Lara Siebert, Anna C. M. Moraes, Jéssica Schmeisk Rosa, Rafael Assis, and José L. Camargo
Geosci. Model Dev., 15, 5241–5269, https://doi.org/10.5194/gmd-15-5241-2022, https://doi.org/10.5194/gmd-15-5241-2022, 2022
Short summary
Short summary
In tropical ecosystems, the availability of rock-derived elements such as P can be very low. Thus, without a representation of P cycling, tropical forest responses to rising atmospheric CO2 conditions in areas such as Amazonia remain highly uncertain. We introduced P dynamics and its interactions with the N and P cycles into the JULES model. Our results highlight the potential for high P limitation and therefore lower CO2 fertilization capacity in the Amazon forest with low-fertility soils.
Olga Dombrowski, Cosimo Brogi, Harrie-Jan Hendricks Franssen, Damiano Zanotelli, and Heye Bogena
Geosci. Model Dev., 15, 5167–5193, https://doi.org/10.5194/gmd-15-5167-2022, https://doi.org/10.5194/gmd-15-5167-2022, 2022
Short summary
Short summary
Soil carbon storage and food production of fruit orchards will be influenced by climate change. However, they lack representation in models that study such processes. We developed and tested a new sub-model, CLM5-FruitTree, that describes growth, biomass distribution, and management practices in orchards. The model satisfactorily predicted yield and exchange of carbon, energy, and water in an apple orchard and can be used to study land surface processes in fruit orchards at different scales.
Jiaying Zhang, Rafael L. Bras, Marcos Longo, and Tamara Heartsill Scalley
Geosci. Model Dev., 15, 5107–5126, https://doi.org/10.5194/gmd-15-5107-2022, https://doi.org/10.5194/gmd-15-5107-2022, 2022
Short summary
Short summary
We implemented hurricane disturbance in a vegetation dynamics model and calibrated the model with observations of a tropical forest. We used the model to study forest recovery from hurricane disturbance and found that a single hurricane disturbance enhances AGB and BA in the long term compared with a no-hurricane situation. The model developed and results presented in this study can be utilized to understand the impact of hurricane disturbances on forest recovery under the changing climate.
Prabhat Raj Dahal, Maria Lumbierres, Stuart H. M. Butchart, Paul F. Donald, and Carlo Rondinini
Geosci. Model Dev., 15, 5093–5105, https://doi.org/10.5194/gmd-15-5093-2022, https://doi.org/10.5194/gmd-15-5093-2022, 2022
Short summary
Short summary
This paper describes the validation of area of habitat (AOH) maps produced for terrestrial birds and mammals. The main objective was to assess the accuracy of the maps based on independent data. We used open access data from repositories, such as ebird and gbif to check if our maps were a better reflection of species' distribution than random. When points were not available we used logistic models to validate the AOH maps. The majority of AOH maps were found to have a high accuracy.
Yoshiki Kanzaki, Shuang Zhang, Noah J. Planavsky, and Christopher T. Reinhard
Geosci. Model Dev., 15, 4959–4990, https://doi.org/10.5194/gmd-15-4959-2022, https://doi.org/10.5194/gmd-15-4959-2022, 2022
Short summary
Short summary
Increasing carbon dioxide in the atmosphere is an urgent issue in the coming century. Enhanced rock weathering in soils can be one of the most efficient C capture strategies. On the basis as a weathering simulator, the newly developed SCEPTER model implements bio-mixing by fauna/humans and enables organic matter and crushed rocks/minerals at the soil surface with an option to track their particle size distributions. Those features can be useful for evaluating the carbon capture efficiency.
Félicien Meunier, Sruthi M. Krishna Moorthy, Marc Peaucelle, Kim Calders, Louise Terryn, Wim Verbruggen, Chang Liu, Ninni Saarinen, Niall Origo, Joanne Nightingale, Mathias Disney, Yadvinder Malhi, and Hans Verbeeck
Geosci. Model Dev., 15, 4783–4803, https://doi.org/10.5194/gmd-15-4783-2022, https://doi.org/10.5194/gmd-15-4783-2022, 2022
Short summary
Short summary
We integrated state-of-the-art observations of the structure of the vegetation in a temperate forest to constrain a vegetation model that aims to reproduce such an ecosystem in silico. We showed that the use of this information helps to constrain the model structure, its critical parameters, as well as its initial state. This research confirms the critical importance of the representation of the vegetation structure in vegetation models and proposes a method to overcome this challenge.
Joe R. Melton, Ed Chan, Koreen Millard, Matthew Fortier, R. Scott Winton, Javier M. Martín-López, Hinsby Cadillo-Quiroz, Darren Kidd, and Louis V. Verchot
Geosci. Model Dev., 15, 4709–4738, https://doi.org/10.5194/gmd-15-4709-2022, https://doi.org/10.5194/gmd-15-4709-2022, 2022
Short summary
Short summary
Peat-ML is a high-resolution global peatland extent map generated using machine learning techniques. Peatlands are important in the global carbon and water cycles, but their extent is poorly known. We generated Peat-ML using drivers of peatland formation including climate, soil, geomorphology, and vegetation data, and we train the model with regional peatland maps. Our accuracy estimation approaches suggest Peat-ML is of similar or higher quality than other available peatland mapping products.
Qianyu Li, Shawn P. Serbin, Julien Lamour, Kenneth J. Davidson, Kim S. Ely, and Alistair Rogers
Geosci. Model Dev., 15, 4313–4329, https://doi.org/10.5194/gmd-15-4313-2022, https://doi.org/10.5194/gmd-15-4313-2022, 2022
Short summary
Short summary
Stomatal conductance is the rate of water release from leaves’ pores. We implemented an optimal stomatal conductance model in a vegetation model. We then tested and compared it with the existing empirical model in terms of model responses to key environmental variables. We also evaluated the model with measurements at a tropical forest site. Our study suggests that the parameterization of conductance models and current model response to drought are the critical areas for improving models.
Veli Çağlar Yumruktepe, Annette Samuelsen, and Ute Daewel
Geosci. Model Dev., 15, 3901–3921, https://doi.org/10.5194/gmd-15-3901-2022, https://doi.org/10.5194/gmd-15-3901-2022, 2022
Short summary
Short summary
We describe the coupled bio-physical model ECOSMO II(CHL), which is used for regional configurations for the North Atlantic and the Arctic hind-casting and operational purposes. The model is consistent with the large-scale climatological nutrient settings and is capable of representing regional and seasonal changes, and model primary production agrees with previous measurements. For the users of this model, this paper provides the underlying science, model evaluation and its development.
Nicolas Azaña Schnedler-Meyer, Tobias Kuhlmann Andersen, Fenjuan Rose Schmidt Hu, Karsten Bolding, Anders Nielsen, and Dennis Trolle
Geosci. Model Dev., 15, 3861–3878, https://doi.org/10.5194/gmd-15-3861-2022, https://doi.org/10.5194/gmd-15-3861-2022, 2022
Short summary
Short summary
We present the Water Ecosystems Tool (WET) – a new modular aquatic ecosystem model configurable to a wide array of physical setups, ecosystems and research questions based on the popular FABM–PCLake model. We aim for the model to become a community staple, thus helping to consolidate the state of the art under a few flexible models, with the aim of improving comparability across studies and preventing the
re-inventions of the wheelthat are common to our scientific modeling community.
Hamze Dokoohaki, Bailey D. Morrison, Ann Raiho, Shawn P. Serbin, Katie Zarada, Luke Dramko, and Michael Dietze
Geosci. Model Dev., 15, 3233–3252, https://doi.org/10.5194/gmd-15-3233-2022, https://doi.org/10.5194/gmd-15-3233-2022, 2022
Short summary
Short summary
We present a new terrestrial carbon cycle data assimilation system, built on the PEcAn model–data eco-informatics system, and its application for the development of a proof-of-concept carbon
reanalysisproduct that harmonizes carbon pools (leaf, wood, soil) and fluxes (GPP, Ra, Rh, NEE) across the contiguous United States from 1986–2019. Here, we build on a decade of work on uncertainty propagation to generate the most complete and robust uncertainty accounting available to date.
Hisashi Sato and Takeshi Ise
Geosci. Model Dev., 15, 3121–3132, https://doi.org/10.5194/gmd-15-3121-2022, https://doi.org/10.5194/gmd-15-3121-2022, 2022
Short summary
Short summary
Accurately predicting global coverage of terrestrial biome is one of the earliest ecological concerns, and many empirical schemes have been proposed to characterize their relationship. Here, we demonstrate an accurate and practical method to construct empirical models for operational biome mapping via a convolutional neural network (CNN) approach.
Licheng Liu, Shaoming Xu, Jinyun Tang, Kaiyu Guan, Timothy J. Griffis, Matthew D. Erickson, Alexander L. Frie, Xiaowei Jia, Taegon Kim, Lee T. Miller, Bin Peng, Shaowei Wu, Yufeng Yang, Wang Zhou, Vipin Kumar, and Zhenong Jin
Geosci. Model Dev., 15, 2839–2858, https://doi.org/10.5194/gmd-15-2839-2022, https://doi.org/10.5194/gmd-15-2839-2022, 2022
Short summary
Short summary
By incorporating the domain knowledge into a machine learning model, KGML-ag overcomes the well-known limitations of process-based models due to insufficient representations and constraints, and unlocks the “black box” of machine learning models. Therefore, KGML-ag can outperform existing approaches on capturing the hot moment and complex dynamics of N2O flux. This study will be a critical reference for the new generation of modeling paradigm for biogeochemistry and other geoscience processes.
Elodie Salmon, Fabrice Jégou, Bertrand Guenet, Line Jourdain, Chunjing Qiu, Vladislav Bastrikov, Christophe Guimbaud, Dan Zhu, Philippe Ciais, Philippe Peylin, Sébastien Gogo, Fatima Laggoun-Défarge, Mika Aurela, M. Syndonia Bret-Harte, Jiquan Chen, Bogdan H. Chojnicki, Housen Chu, Colin W. Edgar, Eugenie S. Euskirchen, Lawrence B. Flanagan, Krzysztof Fortuniak, David Holl, Janina Klatt, Olaf Kolle, Natalia Kowalska, Lars Kutzbach, Annalea Lohila, Lutz Merbold, Włodzimierz Pawlak, Torsten Sachs, and Klaudia Ziemblińska
Geosci. Model Dev., 15, 2813–2838, https://doi.org/10.5194/gmd-15-2813-2022, https://doi.org/10.5194/gmd-15-2813-2022, 2022
Short summary
Short summary
A methane model that features methane production and transport by plants, the ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model, which includes an explicit representation of northern peatlands. This model, ORCHIDEE-PCH4, was calibrated and evaluated on 14 peatland sites. Results show that the model is sensitive to temperature and substrate availability over the top 75 cm of soil depth.
Suman Halder, Susanne K. M. Arens, Kai Jensen, Tais W. Dahl, and Philipp Porada
Geosci. Model Dev., 15, 2325–2343, https://doi.org/10.5194/gmd-15-2325-2022, https://doi.org/10.5194/gmd-15-2325-2022, 2022
Short summary
Short summary
A dynamic vegetation model, designed to estimate potential impacts of early vascular vegetation, namely, lycopsids, on the biogeochemical cycle at a local scale. Lycopsid Model (LYCOm) estimates the productivity and physiological properties of lycopsids across a broad climatic range along with natural selection, which is then utilized to adjudge their weathering potential. It lays the foundation for estimation of their impacts during their long evolutionary history starting from the Ordovician.
Dóra Hidy, Zoltán Barcza, Roland Hollós, Laura Dobor, Tamás Ács, Dóra Zacháry, Tibor Filep, László Pásztor, Dóra Incze, Márton Dencső, Eszter Tóth, Katarína Merganičová, Peter Thornton, Steven Running, and Nándor Fodor
Geosci. Model Dev., 15, 2157–2181, https://doi.org/10.5194/gmd-15-2157-2022, https://doi.org/10.5194/gmd-15-2157-2022, 2022
Short summary
Short summary
Biogeochemical models used by the scientific community can support society in the quantification of the expected environmental impacts caused by global climate change. The Biome-BGCMuSo v6.2 biogeochemical model has been created by implementing a lot of developments related to soil hydrology as well as the soil carbon and nitrogen cycle and by integrating crop model components. Detailed descriptions of developments with case studies are presented in this paper.
Lei Ma, George Hurtt, Lesley Ott, Ritvik Sahajpal, Justin Fisk, Rachel Lamb, Hao Tang, Steve Flanagan, Louise Chini, Abhishek Chatterjee, and Joseph Sullivan
Geosci. Model Dev., 15, 1971–1994, https://doi.org/10.5194/gmd-15-1971-2022, https://doi.org/10.5194/gmd-15-1971-2022, 2022
Short summary
Short summary
We present a global version of the Ecosystem Demography (ED) model which can track vegetation 3-D structure and scale up ecological processes from individual vegetation to ecosystem scale. Model evaluation against multiple benchmarking datasets demonstrated the model’s capability to simulate global vegetation dynamics across a range of temporal and spatial scales. With this version, ED has the potential to be linked with remote sensing observations to address key scientific questions.
Ignacio Hermoso de Mendoza, Etienne Boucher, Fabio Gennaretti, Aliénor Lavergne, Robert Field, and Laia Andreu-Hayles
Geosci. Model Dev., 15, 1931–1952, https://doi.org/10.5194/gmd-15-1931-2022, https://doi.org/10.5194/gmd-15-1931-2022, 2022
Short summary
Short summary
We modify the numerical model of forest growth MAIDENiso by explicitly simulating snow. This allows us to use the model in boreal environments, where snow is dominant. We tested the performance of the model before and after adding snow, using it at two Canadian sites to simulate tree-ring isotopes and comparing with local observations. We found that modelling snow improves significantly the simulation of the hydrological cycle, the plausibility of the model and the simulated isotopes.
Toni Viskari, Janne Pusa, Istem Fer, Anna Repo, Julius Vira, and Jari Liski
Geosci. Model Dev., 15, 1735–1752, https://doi.org/10.5194/gmd-15-1735-2022, https://doi.org/10.5194/gmd-15-1735-2022, 2022
Short summary
Short summary
We wanted to examine how the chosen measurement data and calibration process affect soil organic carbon model calibration. In our results we found that there is a benefit in using data from multiple litter-bag decomposition experiments simultaneously, even with the required assumptions. Additionally, due to the amount of noise and uncertainties in the system, more advanced calibration methods should be used to parameterize the models.
Glenn E. Hammond
Geosci. Model Dev., 15, 1659–1676, https://doi.org/10.5194/gmd-15-1659-2022, https://doi.org/10.5194/gmd-15-1659-2022, 2022
Short summary
Short summary
This paper describes a simplified interface for implementing and testing new chemical reactions within the reactive transport simulator PFLOTRAN. The paper describes the interface, providing example code for the interface. The paper includes several chemical reactions implemented through the interface.
Sarah E. Chadburn, Eleanor J. Burke, Angela V. Gallego-Sala, Noah D. Smith, M. Syndonia Bret-Harte, Dan J. Charman, Julia Drewer, Colin W. Edgar, Eugenie S. Euskirchen, Krzysztof Fortuniak, Yao Gao, Mahdi Nakhavali, Włodzimierz Pawlak, Edward A. G. Schuur, and Sebastian Westermann
Geosci. Model Dev., 15, 1633–1657, https://doi.org/10.5194/gmd-15-1633-2022, https://doi.org/10.5194/gmd-15-1633-2022, 2022
Short summary
Short summary
We present a new method to include peatlands in an Earth system model (ESM). Peatlands store huge amounts of carbon that accumulates very slowly but that can be rapidly destabilised, emitting greenhouse gases. Our model captures the dynamic nature of peat by simulating the change in surface height and physical properties of the soil as carbon is added or decomposed. Thus, we model, for the first time in an ESM, peat dynamics and its threshold behaviours that can lead to destabilisation.
Philippe Ciais, Ana Bastos, Frédéric Chevallier, Ronny Lauerwald, Ben Poulter, Josep G. Canadell, Gustaf Hugelius, Robert B. Jackson, Atul Jain, Matthew Jones, Masayuki Kondo, Ingrid T. Luijkx, Prabir K. Patra, Wouter Peters, Julia Pongratz, Ana Maria Roxana Petrescu, Shilong Piao, Chunjing Qiu, Celso Von Randow, Pierre Regnier, Marielle Saunois, Robert Scholes, Anatoly Shvidenko, Hanqin Tian, Hui Yang, Xuhui Wang, and Bo Zheng
Geosci. Model Dev., 15, 1289–1316, https://doi.org/10.5194/gmd-15-1289-2022, https://doi.org/10.5194/gmd-15-1289-2022, 2022
Short summary
Short summary
The second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP) will provide updated quantification and process understanding of CO2, CH4, and N2O emissions and sinks for ten regions of the globe. In this paper, we give definitions, review different methods, and make recommendations for estimating different components of the total land–atmosphere carbon exchange for each region in a consistent and complete approach.
Nils Wallenberg, Fredrik Lindberg, and David Rayner
Geosci. Model Dev., 15, 1107–1128, https://doi.org/10.5194/gmd-15-1107-2022, https://doi.org/10.5194/gmd-15-1107-2022, 2022
Short summary
Short summary
Exposure to solar radiation on clear and warm days can lead to heat stress and thermal discomfort. This can be alleviated by planting trees providing shade in particularly warm areas. Here, we use a model to locate trees and optimize their blocking of solar radiation. Our results show that locations can differ depending, e.g., tree size (juvenile or mature) and number of trees that are positioned simultaneously. The model is available as a tool for accessibility by researchers and others.
Kai Wang, Xiujun Wang, Raghu Murtugudde, Dongxiao Zhang, and Rong-Hua Zhang
Geosci. Model Dev., 15, 1017–1035, https://doi.org/10.5194/gmd-15-1017-2022, https://doi.org/10.5194/gmd-15-1017-2022, 2022
Short summary
Short summary
We use observational data of dissolved oxygen (DO) and organic nitrogen to calibrate a basin-scale model (OGCM-DEMC V1.4) and then evaluate model capacity for simulating mid-depth DO in the tropical Pacific. Sensitivity studies show that enhanced vertical mixing combined with reduced biological consumption performs well in reproducing asymmetric oxygen minimum zones (OMZs). We find that DO is more sensitive to biological processes in the upper OMZs but to physical processes in the lower OMZs.
Pedro Duarte, Philipp Assmy, Karley Campbell, and Arild Sundfjord
Geosci. Model Dev., 15, 841–857, https://doi.org/10.5194/gmd-15-841-2022, https://doi.org/10.5194/gmd-15-841-2022, 2022
Short summary
Short summary
Sea ice modeling is an important part of Earth system models (ESMs). The results of ESMs are used by the Intergovernmental Panel on Climate Change in their reports. In this study we present an improvement to calculate the exchange of nutrients between the ocean and the sea ice. This nutrient exchange is an essential process to keep the ice-associated ecosystem functioning. We found out that previous calculation methods may underestimate the primary production of the ice-associated ecosystem.
Jianyong Ma, Stefan Olin, Peter Anthoni, Sam S. Rabin, Anita D. Bayer, Sylvia S. Nyawira, and Almut Arneth
Geosci. Model Dev., 15, 815–839, https://doi.org/10.5194/gmd-15-815-2022, https://doi.org/10.5194/gmd-15-815-2022, 2022
Short summary
Short summary
The implementation of the biological N fixation process in LPJ-GUESS in this study provides an opportunity to quantify N fixation rates between legumes and to better estimate grain legume production on a global scale. It also helps to predict and detect the potential contribution of N-fixing plants as
green manureto reducing or removing the use of N fertilizer in global agricultural systems, considering different climate conditions, management practices, and land-use change scenarios.
Giannis Sofiadis, Eleni Katragkou, Edouard L. Davin, Diana Rechid, Nathalie de Noblet-Ducoudre, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Lisa Jach, Ronny Meier, Priscilla A. Mooney, Pedro M. M. Soares, Susanna Strada, Merja H. Tölle, and Kirsten Warrach Sagi
Geosci. Model Dev., 15, 595–616, https://doi.org/10.5194/gmd-15-595-2022, https://doi.org/10.5194/gmd-15-595-2022, 2022
Short summary
Short summary
Afforestation is currently promoted as a greenhouse gas mitigation strategy. In our study, we examine the differences in soil temperature and moisture between grounds covered either by forests or grass. The main conclusion emerged is that forest-covered grounds are cooler but drier than open lands in summer. Therefore, afforestation disrupts the seasonal cycle of soil temperature, which in turn could trigger changes in crucial chemical processes such as soil carbon sequestration.
Wei Zhi, Yuning Shi, Hang Wen, Leila Saberi, Gene-Hua Crystal Ng, Kayalvizhi Sadayappan, Devon Kerins, Bryn Stewart, and Li Li
Geosci. Model Dev., 15, 315–333, https://doi.org/10.5194/gmd-15-315-2022, https://doi.org/10.5194/gmd-15-315-2022, 2022
Short summary
Short summary
Watersheds are the fundamental Earth surface functioning unit that connects the land to aquatic systems. Here we present the recently developed BioRT-Flux-PIHM v1.0, a watershed-scale biogeochemical reactive transport model, to improve our ability to understand and predict solute export and water quality. The model has been verified against the benchmark code CrunchTope and has recently been applied to understand reactive transport processes in multiple watersheds of different conditions.
Huilin Huang, Yongkang Xue, Ye Liu, Fang Li, and Gregory S. Okin
Geosci. Model Dev., 14, 7639–7657, https://doi.org/10.5194/gmd-14-7639-2021, https://doi.org/10.5194/gmd-14-7639-2021, 2021
Short summary
Short summary
This study applies a fire-coupled dynamic vegetation model to quantify fire impact at monthly to annual scales. We find fire reduces grass cover by 4–8 % annually for widespread areas in south African savanna and reduces tree cover by 1 % at the periphery of tropical Congolese rainforest. The grass cover reduction peaks at the beginning of the rainy season, which quickly diminishes before the next fire season. In contrast, the reduction of tree cover is irreversible within one growing season.
Karin Kvale, David P. Keller, Wolfgang Koeve, Katrin J. Meissner, Christopher J. Somes, Wanxuan Yao, and Andreas Oschlies
Geosci. Model Dev., 14, 7255–7285, https://doi.org/10.5194/gmd-14-7255-2021, https://doi.org/10.5194/gmd-14-7255-2021, 2021
Short summary
Short summary
We present a new model of biological marine silicate cycling for the University of Victoria Earth System Climate Model (UVic ESCM). This new model adds diatoms, which are a key aspect of the biological carbon pump, to an existing ecosystem model. Our modifications change how the model responds to warming, with net primary production declining more strongly than in previous versions. Diatoms in particular are simulated to decline with climate warming due to their high nutrient requirements.
Shannon de Roos, Gabriëlle J. M. De Lannoy, and Dirk Raes
Geosci. Model Dev., 14, 7309–7328, https://doi.org/10.5194/gmd-14-7309-2021, https://doi.org/10.5194/gmd-14-7309-2021, 2021
Short summary
Short summary
A spatially distributed version of the field-scale crop model AquaCrop v6.1 was developed for applications at various spatial scales. Multi-year 1 km simulations over central Europe were evaluated against biomass and surface soil moisture products derived from optical and microwave satellite missions, as well as in situ observations of soil moisture. The regional version of the AquaCrop model provides a suitable setup for subsequent satellite-based data assimilation.
Philip Pika, Dominik Hülse, and Sandra Arndt
Geosci. Model Dev., 14, 7155–7174, https://doi.org/10.5194/gmd-14-7155-2021, https://doi.org/10.5194/gmd-14-7155-2021, 2021
Short summary
Short summary
OMEN-SED is a model for early diagenesis in marine sediments simulating organic matter (OM) degradation and nutrient dynamics. We replaced the original description with a more realistic one accounting for the widely observed decrease in OM reactivity. The new model reproduces pore water profiles and sediment–water interface fluxes across different environments. This functionality extends the model’s applicability to a broad range of environments and timescales while requiring fewer parameters.
Yujie Wang, Philipp Köhler, Liyin He, Russell Doughty, Renato K. Braghiere, Jeffrey D. Wood, and Christian Frankenberg
Geosci. Model Dev., 14, 6741–6763, https://doi.org/10.5194/gmd-14-6741-2021, https://doi.org/10.5194/gmd-14-6741-2021, 2021
Short summary
Short summary
We present the first step in testing a new land model as part of a new Earth system model. Our model links plant hydraulics, stomatal optimization theory, and a comprehensive canopy radiation scheme. We compared model-predicted carbon and water fluxes to flux tower observations and model-predicted sun-induced chlorophyll fluorescence to satellite retrievals. Our model quantitatively predicted the carbon and water fluxes as well as the canopy fluorescence yield.
John Zobitz, Heidi Aaltonen, Xuan Zhou, Frank Berninger, Jukka Pumpanen, and Kajar Köster
Geosci. Model Dev., 14, 6605–6622, https://doi.org/10.5194/gmd-14-6605-2021, https://doi.org/10.5194/gmd-14-6605-2021, 2021
Short summary
Short summary
Forest fires heavily affect carbon stocks and fluxes of carbon in high-latitude forests. Long-term trends in soil respiration following forest fires are associated with recovery of aboveground biomass. We evaluated models for soil autotrophic and heterotrophic respiration with data from a chronosequence of stand-replacing forest fires in northern Canada. The best model that reproduced expected patterns in soil respiration components takes into account soil microbe carbon as a model variable.
Mats Lindeskog, Benjamin Smith, Fredrik Lagergren, Ekaterina Sycheva, Andrej Ficko, Hans Pretzsch, and Anja Rammig
Geosci. Model Dev., 14, 6071–6112, https://doi.org/10.5194/gmd-14-6071-2021, https://doi.org/10.5194/gmd-14-6071-2021, 2021
Short summary
Short summary
Forests play an important role in the global carbon cycle and for carbon storage. In Europe, forests are intensively managed. To understand how management influences carbon storage in European forests, we implement detailed forest management into the dynamic vegetation model LPJ-GUESS. We test the model by comparing model output to typical forestry measures, such as growing stock and harvest data, for different countries in Europe.
Onur Kerimoglu, Prima Anugerahanti, and Sherwood Lan Smith
Geosci. Model Dev., 14, 6025–6047, https://doi.org/10.5194/gmd-14-6025-2021, https://doi.org/10.5194/gmd-14-6025-2021, 2021
Short summary
Short summary
In large-scale models, variations in cellular composition of phytoplankton are often insufficiently represented. Detailed modeling approaches exist, but they require additional state variables that increase the computational costs. In this study, we test an instantaneous acclimation model in a spatially explicit setup and show that its behavior is mostly similar to that of a variant with an additional state variable but different from that of a fixed composition variant.
Yoshiki Kanzaki, Dominik Hülse, Sandra Kirtland Turner, and Andy Ridgwell
Geosci. Model Dev., 14, 5999–6023, https://doi.org/10.5194/gmd-14-5999-2021, https://doi.org/10.5194/gmd-14-5999-2021, 2021
Short summary
Short summary
Sedimentary carbonate plays a central role in regulating Earth’s carbon cycle and climate, and also serves as an archive of paleoenvironments, hosting various trace elements/isotopes. To help obtain
trueenvironmental changes from carbonate records over diagenetic distortion, IMP has been newly developed and has the capability to simulate the diagenesis of multiple carbonate particles and implement different styles of particle mixing by benthos using an adapted transition matrix method.
Jina Jeong, Jonathan Barichivich, Philippe Peylin, Vanessa Haverd, Matthew Joseph McGrath, Nicolas Vuichard, Michael Neil Evans, Flurin Babst, and Sebastiaan Luyssaert
Geosci. Model Dev., 14, 5891–5913, https://doi.org/10.5194/gmd-14-5891-2021, https://doi.org/10.5194/gmd-14-5891-2021, 2021
Short summary
Short summary
We have proposed and evaluated the use of four benchmarks that leverage tree-ring width observations to provide more nuanced verification targets for land-surface models (LSMs), which currently lack a long-term benchmark for forest ecosystem functioning. Using relatively unbiased European biomass network datasets, we identify the extent to which presumed biases in the much larger International Tree-Ring Data Bank might degrade the validation of LSMs.
Johannes Oberpriller, Christine Herschlein, Peter Anthoni, Almut Arneth, Andreas Krause, Anja Rammig, Mats Lindeskog, Stefan Olin, and Florian Hartig
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-287, https://doi.org/10.5194/gmd-2021-287, 2021
Revised manuscript accepted for GMD
Short summary
Short summary
Understanding uncertainties of projected ecosystem dynamics under environmental change is of immense value for research and climate change policy. Here, we analyze these across European forests. We find that uncertainties are dominantly induced by parameters related to water and mortality and climate with increasing importance of climate from north to south. These results highlight that climate not only contributes uncertainty, but also modifies uncertainties in other ecosystem processes.
Xin Huang, Dan Lu, Daniel M. Ricciuto, Paul J. Hanson, Andrew D. Richardson, Xuehe Lu, Ensheng Weng, Sheng Nie, Lifen Jiang, Enqing Hou, Igor F. Steinmacher, and Yiqi Luo
Geosci. Model Dev., 14, 5217–5238, https://doi.org/10.5194/gmd-14-5217-2021, https://doi.org/10.5194/gmd-14-5217-2021, 2021
Short summary
Short summary
In the data-rich era, data assimilation is widely used to integrate abundant observations into models to reduce uncertainty in ecological forecasting. However, applications of data assimilation are restricted by highly technical requirements. To alleviate this technical burden, we developed a model-independent data assimilation (MIDA) module which is friendly to ecologists with limited programming skills. MIDA also supports a flexible switch of different models or observations in DA analysis.
Thomas Neumann, Sampsa Koponen, Jenni Attila, Carsten Brockmann, Kari Kallio, Mikko Kervinen, Constant Mazeran, Dagmar Müller, Petra Philipson, Susanne Thulin, Sakari Väkevä, and Pasi Ylöstalo
Geosci. Model Dev., 14, 5049–5062, https://doi.org/10.5194/gmd-14-5049-2021, https://doi.org/10.5194/gmd-14-5049-2021, 2021
Short summary
Short summary
The Baltic Sea is heavily impacted by surrounding land. Therefore, the concentration of colored dissolved organic matter (CDOM) of terrestrial origin is relatively high and impacts the light penetration depth. Estimating a correct light climate is essential for ecosystem models. In this study, a method is developed to derive riverine CDOM from Earth observation methods. The data are used as boundary conditions for an ecosystem model, and the advantage over former approaches is shown.
Hyewon Heather Kim, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Geosci. Model Dev., 14, 4939–4975, https://doi.org/10.5194/gmd-14-4939-2021, https://doi.org/10.5194/gmd-14-4939-2021, 2021
Short summary
Short summary
The West Antarctic Peninsula (WAP) is a rapidly warming region, revealed by multi-decadal observations. Despite the region being data rich, there is a lack of focus on ecosystem model development. Here, we introduce a data assimilation ecosystem model for the WAP region. Experiments by assimilating data from an example growth season capture key WAP features. This study enables us to glue the snapshots from available data sets together to explain the observations in the WAP.
Peiqi Yang, Egor Prikaziuk, Wout Verhoef, and Christiaan van der Tol
Geosci. Model Dev., 14, 4697–4712, https://doi.org/10.5194/gmd-14-4697-2021, https://doi.org/10.5194/gmd-14-4697-2021, 2021
Short summary
Short summary
Since the first publication 12 years ago, the SCOPE model has been applied in remote sensing studies of solar-induced chlorophyll fluorescence (SIF), energy balance fluxes, gross primary productivity (GPP), and directional thermal signals. Here, we present a thoroughly revised version, SCOPE 2.0, which features a number of new elements.
Guy Munhoven
Geosci. Model Dev., 14, 4225–4240, https://doi.org/10.5194/gmd-14-4225-2021, https://doi.org/10.5194/gmd-14-4225-2021, 2021
Short summary
Short summary
SolveSAPHE (Munhoven, 2013) was the first package to calculate pH reliably from any physically sensible pair of total alkalinity (AlkT) and dissolved inorganic carbon (CT) data and to do so in an autonomous and efficient way. Here, we extend it to use CO2, HCO3 or CO3 instead of CT. For each one of these pairs, the new SolveSAPHE calculates all of the possible pH values (0, 1, or 2), again without any prior knowledge of the solutions.
Jaber Rahimi, Expedit Evariste Ago, Augustine Ayantunde, Sina Berger, Jan Bogaert, Klaus Butterbach-Bahl, Bernard Cappelaere, Jean-Martial Cohard, Jérôme Demarty, Abdoul Aziz Diouf, Ulrike Falk, Edwin Haas, Pierre Hiernaux, David Kraus, Olivier Roupsard, Clemens Scheer, Amit Kumar Srivastava, Torbern Tagesson, and Rüdiger Grote
Geosci. Model Dev., 14, 3789–3812, https://doi.org/10.5194/gmd-14-3789-2021, https://doi.org/10.5194/gmd-14-3789-2021, 2021
Short summary
Short summary
West African Sahelian and Sudanian ecosystems are important regions for global carbon exchange, and they provide valuable food and fodder resources. Therefore, we simulated net ecosystem exchange and aboveground biomass of typical ecosystems in this region with an improved process-based biogeochemical model, LandscapeDNDC. Carbon stocks and exchange rates were particularly correlated with the abundance of trees. Grass and crop yields increased under humid climatic conditions.
Lauric Cécillon, François Baudin, Claire Chenu, Bent T. Christensen, Uwe Franko, Sabine Houot, Eva Kanari, Thomas Kätterer, Ines Merbach, Folkert van Oort, Christopher Poeplau, Juan Carlos Quezada, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Geosci. Model Dev., 14, 3879–3898, https://doi.org/10.5194/gmd-14-3879-2021, https://doi.org/10.5194/gmd-14-3879-2021, 2021
Short summary
Short summary
Partitioning soil organic carbon (SOC) into fractions that are stable or active on a century scale is key for more accurate models of the carbon cycle. Here, we describe the second version of a machine-learning model, named PARTYsoc, which reliably predicts the proportion of the centennially stable SOC fraction at its northwestern European validation sites with Cambisols and Luvisols, the two dominant soil groups in this region, fostering modelling works of SOC dynamics.
Leah Birch, Christopher R. Schwalm, Sue Natali, Danica Lombardozzi, Gretchen Keppel-Aleks, Jennifer Watts, Xin Lin, Donatella Zona, Walter Oechel, Torsten Sachs, Thomas Andrew Black, and Brendan M. Rogers
Geosci. Model Dev., 14, 3361–3382, https://doi.org/10.5194/gmd-14-3361-2021, https://doi.org/10.5194/gmd-14-3361-2021, 2021
Short summary
Short summary
The high-latitude landscape or Arctic–boreal zone has been warming rapidly, impacting the carbon balance both regionally and globally. Given the possible global effects of climate change, it is important to have accurate climate model simulations. We assess the simulation of the Arctic–boreal carbon cycle in the Community Land Model (CLM 5.0). We find biases in both the timing and magnitude photosynthesis. We then use observational data to improve the simulation of the carbon cycle.
Cited articles
Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Canadell, J. G., Friedlingstein, P., Jain, A. K., Kato, E., Poulter, B., Sitch, S., Stocker, B. D., Viovy, N., Wang, Y. P., Wiltshire, A., Zaehle, S., and Zeng, N.: The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink, Science, 348, 895–899, https://doi.org/10.1126/science.aaa1668, 2015.
Alberti, G., Vicca, S., Inglima, I., Belelli-Marchesini, L., Genesio, L., Miglietta, F., Marjanovic, H., Martinez, C., Matteucci, G., D'Andrea, E., Peressotti, A., Petrella, F., Rodeghiero, M., and Cotrufo, M. F.: Soil C:N stoichiometry controls carbon sink partitioning between above-ground tree biomass and soil organic matter in high fertility forests, Iforest 8, 195–206, https://doi.org/10.3832/ifor1196-008, 2014.
Atkin, O. K., Atkinson, L. J., Fisher, R. A., Campbell, C. D., Zaragoza-Castells, J., Pitchford, J. W., Woodward, F. I., and Hurry, V.: Using temperature-dependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate-vegetation model, Glob. Change Biol., 14, 1–18, https://doi.org/10.1111/j.1365-2486.2008.01664.x, 2008.
Aubinet, M., Grelle, G., Ibrom, A., Rannik, U., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, C., Clement, R., Elbers, J., Granier, A., Grunwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., and Vesala, T.: Estimates of the annual net carbon and water exchange of European forests: the EUROFLUX methodology, Adv. Ecol. Res., 30, 113–175, https://doi.org/10.1016/S0065-2504(08)60018-5, 2000.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001.
Ball, J. T., Woodrow, I. E., and Berry, J. A.: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, in: Progress in Photosynthesis Research, edited by: Biggins, J., Springer Netherlands, 221–224, 1987.
Balogh, J., Pintér, K., Fóti, S., Cserhalmi, D., Papp, M., and Nagy, Z.: Dependence of soil respiration on soil moisture, clay content, soil organic matter, and CO2 uptake in dry grasslands, Soil Biol. Biochem., 43, 1006–1013, https://doi.org/10.1016/j.soilbio.2011.01.017, 2011.
Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B., Hirschi, M., and Betts, A. K.: A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System, J. Hydrometeorol., 10, 623–643, https://doi.org/10.1175/2008JHM1068.1, 2009.
Barcza, Z., Kern, A., Haszpra, L., and Kljun, N.: Spatial representativeness of tall tower eddy covariance measurements using remote sensing and footprint analysis, Agr. Forest Meteorol., 149, 795–807, https://doi.org/10.1016/j.agrformet.2008.10.021, 2009.
Barcza, Z., Bondeau, A., Churkina, G., Ciais, P., Czóbel, S., Gelybó, G., Grosz, B., Haszpra, L., Hidy, D., Horváth, L., Machon, A., Pásztor, L., Somogyi, Z., and Van Oost, K.: Model-based biospheric greenhouse gas balance of Hungary, in: Atmospheric Greenhouse Gases: The Hungarian Perspective, edited by: Haszpra, L., Springer, 295–330, 2011.
Beven, K. and Binley, A.: The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, https://doi.org/10.1002/hyp.3360060305, 1992.
Bond-Lamberty, B., Gower, S. T., Ahl, D. E., and Thornton, P. E.: Reimplementation of the Biome-BGC model to simulate successional change, Tree Physiol., 25, 413–424, https://doi.org/10.1093/treephys/25.4.413, 2005.
Bond-Lamberty, B., Gower, S. T., and Ahl, D. E.: Improved simulation of poorly drained forests using Biome-BGC, Tree Physiol., 27, 703–715, https://doi.org/10.1093/treephys/27.5.703, 2007a.
Bond-Lamberty, B., Peckham, S. D., Ahl, D. E., and Gower, S. T.: Fire as the dominant driver of central Canadian boreal forest carbon balance, Nature, 450, 89–92, https://doi.org/10.1038/nature06272, 2007b.
Campbell, G. S. and Diaz, R.: Simplified soil water balance models to predict crop transpiration, in: Drought Research Priorities for the Drylands, 15–26, 1988.
Campioli, M., Vicca, S., Luyssaert, S., Bilcke, J., Ceschia, E., Chapin III, F. S., Ciais, P., Fernández-Martínez, M., Malhi, Y., Obersteiner, M., Olefeldt, D., Papale, D., Piao, S. L., Peñuelas, J., Sullivan, P. F., Wang, X., Zenone, T., and Janssens, I. A.: Biomass production efficiency controlled by management in temperate and boreal ecosystems, Nat. Geosci., 8, 843–846, https://doi.org/10.1038/ngeo2553, 2015.
Cannell, M. G. R. and Thornley, J. H. M.: Modelling the components of plant respiration: Some guiding principles, Ann. Bot.-London, 85, 45–54, https://doi.org/10.1006/anbo.1999.0996, 2000.
Chapin, F. S., Woodwell, G. M., Randerson, J. T., Rastetter, E. B., Lovett, G. M., Baldocchi, D. D., Clark, D. A., Harmon, M. E., Schimel, D. S., Valentini, R., Wirth, C., Aber, J. D., Cole, J. J., Goulden, M. L., Harden, J. W., Heimann, M. R., Howarth, W., Matson, P. A., McGuire, A. D., Melillo, J. M., Mooney, H. A., Neff, J. C., Houghton, R. A., Pace, M. L., Ryan, M. G., Running, S. W., Sala, O. E., Schlesinger, W. H., and Schulze, E. D.: Reconciling carbon-cycle concepts, terminology, and methods, Ecosystems 9, 1041–1050, https://doi.org/10.1007/s10021-005-0105-7, 2006.
Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity, Mon. Weather Rev., 129, 569–585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001.
Chiesi, M., Maselli, F., Moriondo, M., Fibbi, L., Bindi, M., and Running, S. W.: Application of BIOME-BGC to simulate Mediterranean forest processes, Ecol. Model., 206, 179–190, https://doi.org/10.1016/j.ecolmodel.2007.03.032, 2007.
Churkina, G., Running, S. W., Running, S. W., Schloss, A. L., and the participants of the Potsdam NPP Model Intercomparison: Comparing global models of terrestrial net primary productivity (NPP): the importance of water availability, Glob. Change Biol., 5, 46–55, https://doi.org/10.1046/j.1365-2486.1999.00006.x, 1999.
Churkina, G., Tenhunen, J., Thornton, P., Falge, E. M., Elbers, J. A., Erhard, M., Grünwald, T., Kowalski, A. S., Rannik, Ü., and Sprinz, D.: Analyzing the ecosystem carbon dynamics of four European coniferous forests using a biogeochemistry model, Ecosystems, 6, 168–184, https://doi.org/10.1007/s10021-002-0197-2, 2003.
Churkina, G., Brovkin, V., von Bloh, W., Trusilova, K., Jung, M., and Dentener, F.: Synergy of rising nitrogen depositions and atmospheric CO2 on land carbon uptake moderately offsets global warming, Global Biogeochem. Cy., 23, GB4027, https://doi.org/10.1029/2008GB003291, 2009.
Churkina, G., Zaehle, S., Hughes, J., Viovy, N., Chen, Y., Jung, M., Heumann, B. W., Ramankutty, N., Heimann, M., and Jones, C.: Interactions between nitrogen deposition, land cover conversion, and climate change determine the contemporary carbon balance of Europe, Biogeosciences, 7, 2749–2764, https://doi.org/10.5194/bg-7-2749-2010, 2010.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J.,Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R. B., Piao S., and Thornton, P.: Carbon and Other Biogeochemical Cycles, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change edited by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Clapp, R. B. and Hornberger, G. M.: Empirical equations for some soil hydraulic properties, Water Resour. Res., 14, 601–604, https://doi.org/10.1029/WR014i004p00601, 1978.
Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J.: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer, Agr. Forest Meteorol., 54, 107–136, https://doi.org/10.1016/0168-1923(91)90002-8, 1991.
Damour, G., Simonneau, T., Cochard, H., and Urban, L.: An overview of models of stomatal conductance at the leaf level, Plant. Cell Environ., 33, 1419–1438, https://doi.org/10.1111/j.1365-3040.2010.02181.x, 2010.
Dietze, M., Serbin, S., Davidson, C., Desai, A., Feng, X., Kelly, R., Kooper, R., Lebauer, D., Mantooth, J., Mchenry, K., and Wang, D.: A quantitative assessment of a terrestrial biosphere model's data needs across North American biomes, J. Geophys. Res.-Biogeo., 119, 286–300, https://doi.org/10.1002/2013JG002392, 2014.
Di Vittorio, A. V., Anderson, R. S., White, J. D., Miller, N. L., and Running, S. W.: Development and optimization of an Agro-BGC ecosystem model for C4 perennial grasses, Ecol. Model., 221, 2038–2053, https://doi.org/10.1016/j.ecolmodel.2010.05.013, 2010.
Driessen, P., Deckers, J., Spaargaren, O., and Nachtergaele, F.: Lecture notes on the major soils of the world, edited by: Driessen, P., Deckers, J., Spaargaren, O., and Nachtergaele, F., Food and Agriculture Organization (FAO), 2001.
Eastaugh, C. S., Pötzelsberger, E., and Hasenauer, H.: Assessing the impacts of climate change and nitrogen deposition on Norway spruce (Picea abies L. Karst) growth in Austria with BIOME-BGC, Tree Physiol., 31, 262–274, https://doi.org/10.1093/treephys/tpr033, 2011.
Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A bio-chemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 78–90, https://doi.org/10.1007/BF00386231, 1980.
Florides, G. and Kalogirou, S.: Annual ground temperature measurements at various depth, available at: https://www.researchgate.net/publication/30500353 (last access: 10 April 2016), 2016.
Fodor, N. and Rajkai, K.: Computer program (SOILarium 1.0) for estimating the physical and hydrophysical properties of soils from other soil characteristics, Agrokémia és Talajt., 60, 27–40, 2011.
Foken, T. and Vichura, B.: Tools for quality assessment of surface-based flux measurements, Agr. Forest Meteorol., 78, 83–105, https://doi.org/10.1016/0168-1923(95)02248-1, 1996.
Franks, P. J., Adams, M. A., Amthor, J. S., Barbour, M. M., Berry, J. A., Ellsworth, D. S., Farquhar, G. D., Ghannoum, O., Lloyd, J., McDowel, L., Norby, R. J., Tissue, D. T., and von Caemmerer, S.: Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century, New Phytol., 197, 1077–1094, https://doi.org/10.1111/nph.12104, 2013.
Friedlingstein, P. and Prentice, I. C.: Carbon-climate feedbacks: a review of model and observation based estimates, Curr. Opin. Environ. Sust., 2, 251–257, https://doi.org/10.1016/j.cosust.2010.06.002, 2010.
Friedlingstein, P., Joel, G., Field, C. B., and Fung, I. Y.: Toward an allocation scheme for global terrestrial carbon models, Glob. Change Biol., 5, 755–770, https://doi.org/10.1046/j.1365-2486.1999.00269.x, 1999.
Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J. J., Jones, C. J., Joos, F., Kato, T. K., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K. G., Schnur, R., Strassmann, K., Weawer, A. J., Yoshikawa, C., and Zeng, N.: Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison, J. Climate, 19, 3338–3353, https://doi.org/10.1175/JCLI3800.1, 2006.
Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A., Liddicoat, S. K., and Knutti, R.: Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks, J. Climate, 27, 511–526, https://doi.org/10.1175/JCLI-D-12-00579.1, 2014.
Friend, A. D., Arneth, A., Kiang, N. Y., Lomas, M., Ogée, J., Rödenbeck, C., Running, S. W., Santaren, J. D., Sitch, S., Viovy, N., Woodward, F. I., and Zaehle, S.: FLUXNET and modelling the global carbon cycle, Glob. Change Biol., 1, 1–24, https://doi.org/10.1111/j.1365-2486.2006.01223.x, 2006.
Groffman, P. M. and Tiedje, J. M.: Denitrification in north temperate forest soils: Relationships between denitrification and environmental factors at the landscape scale, Soil Biol. Biochem., 21, 621–626, https://doi.org/10.1016/0038-0717(89)90054-0, 1989
Hartig, F., Dyke, J., Hickler, T., Higgins, S. I., O'Hara, R. B., Scheiter, S., and Huth, A.: Connecting dynamic vegetation models to data - an inverse perspective, J. Biogeogr., 39, 2240–2252, https://doi.org/10.1111/j.1365-2699.2012.02745.x, 2012.
Hashimoto, S., Morishita, T., Sakata, T., Ishizuka, S., Kaneko, S., and Takahashi, M.: Simple models for soil CO2, CH4, and N2O fluxes calibrated using a Bayesian approach and multi-site data, Ecol. Model., 222, 1283–1292, https://doi.org/10.1016/j.ecolmodel.2011.01.013, 2011.
Hidy, D., Barcza, Z., Haszpra, L., Churkina, G., Pintér, K., and Nagy, Z.: Development of the Biome-BGC model for simulation of managed herbaceous ecosystems, Ecol. Model., 226, 99–119, https://doi.org/10.1016/j.ecolmodel.2011.11.008, 2012.
Hidy, D., Barcza, Z., Thornton, P., and Running, S. W.: User's Guide for Biome-BGC MuSo 4.0, available at: http://nimbus.elte.hu/bbgc/files/Manual_BBGC_MuSo_v4.0.pdf (last access: 15 October 2016), 2015.
Hlásny, T., Barcza, Z., Barka, I., Merganicova, K., Sedmak, R., Kern, A, Pajtik, J., Balazs, B., Fabrika, M., and Churkina, G.: Future carbon cycle in mountain spruce forests of Central Europe: Modelling framework and ecological inferences, Forest Ecol. Manage., 328, 55–68, https://doi.org/10.1016/j.foreco.2014.04.038, 2014.
Hunt, E. R., Piper, S. C., Nemani, R., Keeling, C. D., Otto, R. D., and Running, S. W.: Global net carbon exchange and intra-annual atmospheric CO2 concentrations predicted by an ecosystem process model and three-dimensional atmospheric transport model, Global Biogeochem. Cy., 10, 431–456, https://doi.org/10.1029/96GB01691, 1996.
Huntzinger, D. N., Schwalm, C., Michalak, A. M., Schaefer, K., King, A. W., Wei, Y., Jacobson, A., Liu, S., Cook, R. B., Post, W. M., Berthier, G., Hayes, D., Huang, M., Ito, A., Lei, H., Lu, C., Mao, J., Peng, C. H., Peng, S., Poulter, B., Riccuito, D., Shi, X., Tian, H., Wang, W., Zeng, N., Zhao, F., and Zhu, Q.: The North American Carbon Program Multi-Scale Synthesis and Terrestrial Model Intercomparison Project – Part 1: Overview and experimental design, Geosci. Model Dev., 6, 2121–2133, https://doi.org/10.5194/gmd-6-2121-2013, 2013.
IPCC: Guidelines for National Greenhouse Gas Inventories, edited by: Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K., National Greenhouse Gas Inventories Programme, IGES, Japan, 2006.
Jarvis, N. J.: A simple empirical model of root water uptake, J. Hydrol., 107, 57–72, https://doi.org/10.1016/0022-1694(89)90050-4, 1989.
Jarvis, P. G.: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field, Philos. Trans. R. Soc. B, 273, 593–610, https://doi.org/10.1098/rstb.1976.0035, 1976.
Jochheim, H., Puhlmann, M., Beese, F., Berthold, D., Einert, P., Kallweit, R., Konopatzky, A., Meesenburg, H., Meiwes, K. J., Raspe, S., Schulte-Bisping, H., and Schulz, C.: Modelling the carbon budget of intensive forest monitoring sites in Germany using the simulation model BIOME-BGC, iForest – Biogeosciences For., 2, 7–10, https://doi.org/10.3832/ifor0475-002, 2009.
Jolly, W., Nemani, R. R., and Running, S. W.: A generalized, bioclimatic index to predict foliar phenology in response to climate, Glob. Change Biol., 11, 619–632, https://doi.org/10.1111/j.1365-2486.2005.00930.x, 2005.
Jung, M., Le Maire, G., Zaehle, S., Luyssaert, S., Vetter, M., Churkina, G., Ciais, P., Viovy, N., and Reichstein, M.: Assessing the ability of three land ecosystem models to simulate gross carbon uptake of forests from boreal to Mediterranean climate in Europe, Biogeosciences, 4, 647–656, https://doi.org/10.5194/bg-4-647-2007, 2007a.
Jung, M., Vetter, M., Herold, M., Churkina, G., Reichstein, M., Zaehle, S., Ciais, P., Viovy, N., Bondeau, A., Chen, Y., Trusilova, K., Feser, F., and Heimann, M.: Uncertainties of modeling gross primary productivity over Europe: A systematic study on the effects of using different drivers and terrestrial biosphere models, Global Biogochem. Cy., 21, GB4021, https://doi.org/10.1029/2006GB002915, 2007b.
Kimball, J. S., White, M. A., and Running, S. W.: BIOME-BGC simulations of stand hydrologic processes for BOREAS, J. Geophys. Res., 102, 29043–29051, https://doi.org/10.1029/97JD02235, 1997.
Knorr, W. and Kattge, J.: Inversion of terrestrial ecosystem model parameter values against eddy covariance measurements by Monte Carlo sampling, Glob. Change Biol., 11, 1333–1351, https://doi.org/10.1111/j.1365-2486.2005.00977.x, 2005.
Korol, R. L., Milner, K. S., and Running, S. W.: Testing a mechanistic model for predicting stand and tree growth, Forest Sci., 42, 139–153, 1996.
Kulkarni, M. V., Burgin, A. J., Groffman, P. M., and Yavitt, J. B.: Direct flux and N-15 tracer methods for measuring denitrification in forest soils, Biogeochemistry, 117, 359–373, https://doi.org/10.1007/s10533-013-9876-7, 2014.
Lagergren, F., Grelle, A., Lankreijer, H., Mölder, M., and Lindroth, A.: Current carbon balance of the forested area in Sweden and its sensitivity to global change as simulated by Biome-BGC, Ecosystems, 9, 894–908, https://doi.org/10.1007/s10021-005-0046-1, 2006.
Leuning, R.: A critical appraisal of a combined stomatal-photosynthesis model for C3 plants, Plant. Cell Environ., 18, 339–355, https://doi.org/10.1111/j.1365-3040.1995.tb00370.x, 1995.
Liu, H. P., Peters, G., and Foken, T.: New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer, Bound.-Lay Meteorol., 100, 459–468, https://doi.org/10.1023/A:1019207031397, 2001.
Lombardozzi, D. L., Bonan, G. B., Smith, N. G., Dukes, J. S., and Fisher, R. A.: Temperature acclimation of photosynthesis and respiration: a key uncertainty in the carbon cycle-climate feedback, Geophys. Res. Lett., 42, 8624–8631, https://doi.org/10.1002/2015GL065934, 2015.
Ma, S., Churkina, G., Wieland, R., and Gessler, A.: Optimization and evaluation of the ANTHRO-BGC model for winter crops in Europe, Ecol. Model., 222, 3662–3679, https://doi.org/10.1016/j.ecolmodel.2011.08.025, 2011.
Ma, S., Acutis, A., Barcza, Z., Touhami, H. B., Doro, L., Hidy, D., Köchy, M., Minet, J., Lellei-Kovács, E., Perego, A., Rolinski, A., Ruget, F., Seddaiu, G., Wu, L., and Bellocchi, G.: The grassland model intercomparison of the MACSUR (Modelling European Agriculture with Climate Change for Food Security) European knowledge hub, in: Proceedings of the 7th International Congress on Environmental Modelling and Software, edited by: Ames, D. P., Quinn, N. W. T., and Rizzoli, A. E., San Diego, California, USA, 2014.
Marjanović, H., Alberti, G., Balogh, J., Czóbel, S., Horváth, L., Jagodics, A., Nagy, Z., Ostrogović, M. Z., Peressotti, A., and Führer, E.: Measurements and estimations of biosphere-atmosphere exchange of greenhouse gases − Grasslands, in: Atmospheric Greenhouse Gases: The Hungarian Perspective, edited by: Haszpra, L., Springer, Dordrecht – Heidelberg – London – New York, 121–156, https://doi.org/10.1007/978-90-481-9950-1_7, 2011a.
Marjanović, H., Ostrogović, M. Z., Alberti, G., Balenović, I., Paladinić, E., Indir, K., Peresotti, A., and Vuletić, D.: Carbon dynamics in younger stands of pedunculate oak during two vegetation periods, Šum. list special issue, 135, 59–73, 2011b (in Croatian with English summary).
Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J. W., Rotter, R. P., Boote, K. J., Ruane, A. C., Thorburn, P. J., Cammarano, D., Hatfield, J. L., Rosenzweig, C., Aggarwal, P. K., Angulo, C., Basso, B., Bertuzzi, P., Biernath, C., Brisson, N., Challinor, A. J., Doltra, J., Gayler, S., Goldberg, R., Grant, R. F., Heng, L., Hooker, J., Hunt, L. A., Ingwersen, J., Izaurralde, R. C., Kersebaum, K. C., Müller, C., Kumar, S. N., Nendel, C., O'leary, G., Olesen, J. E., Osborne, T. M., Palosuo, T., Priesack, E., Ripoche, D., Semenov, M. A., Shcherback, I., Steduto, P., Stöckle, C. O., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Travasso, M., Waha, K., White, J. W., and Wolf, J.: Multimodel ensembles of wheat growth: many models are better than one, Glob. Change Biol., 21, 911–925, https://doi.org/10.1111/gcb.12768, 2015.
Maselli, F., Chiesi, M., Brilli, L., and Moriondo, M.: Simulation of olive fruit yield in Tuscany through the integration of remote sensing and ground data, Ecol. Model., 244, 1–12, https://doi.org/10.1016/j.ecolmodel.2012.06.028, 2012.
Massman, W. J.: The attenuation of concentration fluctuations in turbulent flow through a tube, J. Geophys. Res., 96, 15269–15273, https://doi.org/10.1029/91JD01514, 1991.
Mayer, B.: Hydropedological relations in the region of lowland forests of Pokupsko basin, Radovi Šumarskog instituta Jastrebarsko, 31, 37–89, 1996 (in Croatian with English summary).
Medlyn, B. E., Dreyer, E., Ellsworth, D., Forstreuter, M., Harley, P. C., Kirschbaum, M. U. F., Le Roux, X., Montpied, P., Strassemeyer, J., Walcroft, A., Wang, K., and Loustau, D.: Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data, Plant. Cell Environ., 25, 1167–1179, https://doi.org/10.1046/j.1365-3040.2002.00891.x, 2002.
Merganičová, K., Pietsch, S. A., and Hasenauer, H.: Testing mechanistic modeling to assess impacts of biomass removal, Forest Ecol. Manag., 207, 37–57, https://doi.org/10.1016/j.foreco.2004.10.017, 2005.
Moore, C. J.: Frequency-response corrections for eddy-correlation systems, Bound.-Lay. Meteorol., 37, 17–35, https://doi.org/10.1007/BF00122754, 1986.
Morecroft, M. D. and Roberts, J. M.: Photosynthesis and stomatal conductance of mature canopy Oak and Sycamore trees throughout the growing season, Funct. Ecol., 13, 332–342, 1999.
Mu, Q., Zhao, M., Running, S. W., Liu, M., and Tian, H.: Contribution of increasing CO2 and climate change to the carbon cycle in China's ecosystems, J. Geophys. Res.-Biogeo., 113, G01018, https://doi.org/10.1029/2006JG000316, 2008.
Nagy, Z., Pintér, K., Czóbel, S., Balogh, J., Horváth, L., Fóti, S., Barcza, Z., Weidinger, T., Csintalan, Z., Dinh, N. Q., Grosz, B., and Tuba, Z.: The carbon budget of semi-arid grassland in a wet and a dry year in Hungary, Agr. Ecosyst. Environ., 121, 21–29, https://doi.org/10.1016/j.agee.2006.12.003, 2007.
Nagy, Z., Barcza, Z., Horváth, L., Balogh, J., Hagyó, A., Káposztás, N., Grosz, B., Machon, A., and Pintér, K.: Measurements and estimations of biosphere-atmosphere exchange of greenhouse gases – Grasslands, in: Atmospheric Greenhouse Gases: The Hungarian Perspective, edited by: Haszpra, L., 91–120, Springer, Dordrecht – Heidelberg – London – New York, 2011.
Nakai, T., van der Molen, M. K., Gash, J. H. C., and Kodama, Y: Correction of sonic anemometer angle of attack errors, Agr. Forest Meteorol., 136, 19–30, https://doi.org/10.1016/j.agrformet.2006.01.006, 2006.
Nemani, R. R. and Running, S. W.: Testing a theoretical climate-soil-leaf area hydrologic equilibrium of forests using satellite data and ecosystem simulation, Agr. Forest Meteorol., 44, 245–260, https://doi.org/10.1016/0168-1923(89)90020-8, 1989.
Olin, S., Schurgers, G., Lindeskog, M., Wårlind, D., Smith, B., Bodin, P., Holmér, J., and Arneth, A.: Modelling the response of yields and tissue C : N to changes in atmospheric CO2 and N management in the main wheat regions of western Europe, Biogeosciences, 12, 2489–2515, https://doi.org/10.5194/bg-12-2489-2015, 2015.
Ostrogović, M. Z.: Carbon stocks and carbon balance of an even-aged pedunculate oak (Quercus robur L.) forest in Kupa river basin, doctoral thesis, Faculty of forestry, University of Zagreb, 2013 (in Croatian with English summary).
Petritsch, R., Hasenauer, H., and Pietsch, S. A.: Incorporating forest growth response to thinning within biome-BGC, Forest Ecol. Manag., 242, 324–336, https://doi.org/10.1016/j.foreco.2007.01.050, 2007.
Pietsch, S. A., Hasenauer, H., Kucera, J., and Cermák, J.: Modeling effects of hydrological changes on the carbon and nitrogen balance of oak in floodplains, Tree Physiol., 23, 735–746, 2003.
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J. M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm, Glob. Change Biol., 11, 1424–1439, https://doi.org/10.1111/j.1365-2486.2005.001002.x, 2005.
Ritchie, J. T.: Soil water balance and plant water stress, in: Understanding Options for Agricultural Production, edited by: Tsuji, G. Y., Hoogenboom, G., and Thornton, P. E., Kluwer Academic Publishers, The Netherlands, 41–54, 1998.
Running, S. W. and Coughlan, J. C.: A general model of forest ecosystem processes for reginonal applications I. Hydrologic balance, canopy gas exchange and primary production processes, Ecol. Model., 42, 125–154, https://doi.org/10.1016/0304-3800(88)90112-3, 1988.
Running, S. W. and Gower, S. T.: FOREST-BGC, A general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets, Tree Physiol., 9, 147–160, https://doi.org/10.1093/treephys/9.1-2.147, 1991.
Running, S. W. and Hunt, E. R. J.: Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models, in: Scaling Physiological Processes: Leaf to Globe, edited by: Ehleringer, J. R. and Field, C., Academic Press, San Diego, 141–158, 1993.
Sándor, R. and Fodor, N.: Simulation of soil temperature dynamics with models using different concepts, Sci. World J., 2012, 1–8, https://doi.org/10.1100/2012/590287, 2012.
Sándor, R., Ma, S., Acutis, M., Barcza, Z., Ben Touhami, H., Doro, L., Hidy, D., Köchy, M., Lellei-Kovács, E., Minet, J., Perego, A., Rolinski, S., Ruget, F., Seddaiu, G., Wu, L., and Bellocchi, G.: Uncertainty in simulating biomass yield and carbon-water fluxes from grasslands under climate change, Advances in Animal Biosciences, 6, 49–51, https://doi.org/10.1017/S2040470014000545, 2015.
Sándor, R., Barcza, Z., Hidy, D., Lellei-Kovács, E., Ma, S., and Bellocchi, G.: Modelling of grassland fluxes in Europe: evaluation of two biogeochemical models, Agr. Ecosyst. Environ., 215, 1–19, https://doi.org/10.1016/j.agee.2015.09.001, 2016.
Schmid, S., Zierl, B., and Bugmann, H.: Analyzing the carbon dynamics of central European forests: comparison of Biome-BGC simulations with measurements, Reg. Environ. Chang., 6, 167–180, https://doi.org/10.1007/s10113-006-0017-x, 2006.
Schulze, E. D., Luyssaert, S., Ciais, P., Freibauer, A., Janssens, I. A., Soussana, J. F., Smith, P., Grace, J., Levin, I., Thiruchittampalam, B., Heimann, M., Dolman, A. J., Valentini, R., Bousquet, P., Peylin, P., Peters, W., Rödenbeck, C., Etiope, G., Vuichard, N., Wattenbach, M., Nabuurs, G. J., Poussi, Z., Nieschulze, J., Gash, J. H., and CarboEurope Team: Importance of methane and nitrous oxide for Europe's terrestrial greenhouse-gas balance, Nat. Geosci., 2, 842–850, https://doi.org/10.1038/ngeo686, 2009.
Schwalm, C. R., Williams, C. A., Schaefer, K., Anderson, R., Arain, M. A., Baker, I., Barr, A., Black, T. A., Chen, G., Chen, J. M., Ciais, P., Davis, K. J., Desai, A., Dietze, M., Dragoni, D., Fischer, M. L., Flanagan, L. B., Grant, R., Gu, L., Hollinger, D., Izaurralde, R. C., Kucharik, C., Lafleur, P., Law, B. E., Li, L., Li, Z., Liu, S., Lokupitiya, E., Luo, Y., Ma, S., Margolis, H., Matamala, R., McCaughey, H., Monson, R. K., Oechel, W. C., Peng, C., Poulter, B., Price, D. T., Riciutto, D. M., Riley, W., Sahoo, A. K., Sprintsin, M., Sun, J., Tian, H., Tonitto, C., Verbeeck, H., and Verma, S. B.: A model-data intercomparison of CO2 exchange across North America: Results from the North American Carbon Program site synthesis, J. Geophys. Res., 115, G00H05, https://doi.org/10.1029/2009JG001229, 2010.
Schwalm, C. R., Huntinzger, D. N., Fisher, J. B., Michalak, A. M., Bowman, K., Cias, P., Cook, R., El-Masri, B., Hayes, D., Huang, M., Ito, A., Jain, A., King, A.W., Lei, H., Liu, J., Lu, C., Mao, J., Peng, S., Poulter, B., Ricciuto, D., Schaefer, K., Shi, X., Tao, B., Tian, H., Wang, W., Wei, Y., Yang, J., and Zeng, N.: Toward “optimal” integration of terrestrial biosphere models, Geophys. Res. Lett., 42, 4418–4428, https://doi.org/10.1002/2015GL064002, 2015.
Smith, N. G. and Dukes, J. S.: Plant respiration and photosynthesis in global-scale models: Incorporating acclimation to temperature and CO2, Glob. Change Biol., 19, 45–63, https://doi.org/10.1111/j.1365-2486.2012.02797.x, 2012.
Suyker, A. E., Verma, S. B., and Burba, G. G.: Interannual variability in net CO2 exchange of a native tallgrass prairie, Glob. Change Biol., 9, 255–265, https://doi.org/10.1046/j.1365-2486.2003.00567.x, 2003.
Suyker, A. E., Verma, S. B., Burba, G. G., Arkebauer, T. J., Walters, D. T., and Hubbard, K. G.: Growing season carbon dioxide exchange in irrigated and rainfed maize, Agr. Forest Meteorol., 124, 1–13, https://doi.org/10.1016/j.agrformet.2004.01.011, 2004.
Tatarinov, F. A. and Cienciala, E.: Application of BIOME-BGC model to managed forests, Forest Ecol. Manag., 237, 267–279, https://doi.org/10.1016/j.foreco.2006.09.085, 2006.
Thomas, R. Q., Bonan, G. B., and Goodale, C. L.: Insights into mechanisms governing forest carbon response to nitrogen deposition: a model–data comparison using observed responses to nitrogen addition, Biogeosciences, 10, 3869–3887, https://doi.org/10.5194/bg-10-3869-2013, 2013.
Thornton, P., Law, B., Gholz, H. L., Clark, K. L., Falge, E., Ellsworth, D., Goldstein, A., Monson, R., Hollinger, D., Falk, M., Chen, J., and Sparks, J.: Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests, Agr. Forest Meteorol., 113, 185–222, https://doi.org/10.1016/S0168-1923(02)00108-9, 2002.
Thornton, P. E.: Regional ecosystem simulation: Combining surface- and satellite-based observations to study linkages between terrestrial energy and mass budgets, The University of Montana, 1998.
Thornton, P. E.: User's Guide for Biome-BGC, Version 4.1.1., available at: ftp://daac.ornl.gov/data/model_archive/BIOME_BGC/biome_bgc_4.1.1/comp/bgc_users_guide_411.pdf (last access: April 2016), 2000.
Thornton, P. E. and Rosenbloom, N. A.: Ecosystem model spin-up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model, Ecol. Model., 189, 25–48, https://doi.org/10.1016/j.ecolmodel.2005.04.008, 2005.
Thornton, P. E., Lamarque, J. F., Rosenbloom, N. A., and Mahowald, N. M.: Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability, Global Biogeochem. Cy., 21, GB4018, https://doi.org/10.1029/2006GB002868, 2007.
Tjoelker, M. G., Oleksyn, J., and Reich, P. B.: Modelling respiration of vegetation: evidence for a general temperature-dependent Q10, Glob. Change Biol., 7, 223–230, https://doi.org/10.1046/j.1365-2486.2001.00397.x, 2001.
Trusilova, K. and Churkina, G.: The response of the terrestrial biosphere to urbanization: land cover conversion, climate, and urban pollution, Biogeosciences, 5, 1505–1515, https://doi.org/10.5194/bg-5-1505-2008, 2008.
Trusilova, K., Trembath, J., and Churkina, G.: Parameter estimation and validation of the terrestrial ecosystem model Biome-BGC using eddy-covariance flux measurements, Technical Report 16, MPI for Biogeochemistry, Jena, 2009.
Ťupek, B., Zanchi, G., Verkerk, P. J., Churkina, G., Viovy, N., Hughes, J. K., and Lindner, M.: A comparison of alternative modelling approaches to evaluate the European forest carbon fluxes, Forest Ecol. Manag., 260, 241–251, https://doi.org/10.1016/j.foreco.2010.01.045, 2010.
Turner, D. P., Ritts, W. D., Law, B. E., Cohen, W. B., Yang, Z., Hudiburg, T., Campbell, J. L., and Duane, M.: Scaling net ecosystem production and net biome production over a heterogeneous region in the western United States, Biogeosciences, 4, 597–612, https://doi.org/10.5194/bg-4-597-2007, 2007.
Ueyama, M., Ichii, K., Hirata, R., Takagi, K., Asanuma, J., Machimura, T., Nakai, Y., Ohta, T., Saigusa, N., Takahashi, Y., and Hirano, T.: Simulating carbon and water cycles of larch forests in East Asia by the BIOME-BGC model with AsiaFlux data, Biogeosciences, 7, 959–977, https://doi.org/10.5194/bg-7-959-2010, 2010.
van Bodegom, P. M., Douma, J. C., Witte, J. P. M., Ordonez, J. C., Bartholomeus, R. P., and Aerts, R.: Going beyond limitations of plant functional types when predicting global ecosystem–atmosphere fluxes: exploring the merits of traits-based approaches, Global Ecol. Biogeogr., 21, 625–636, https://doi.org/10.1111/j.1466-8238.2011.00717.x, 2012.
van der Molen, M. K., Gash, J. H. C., and Elbers, J. A.: Sonic anemometer (co)sine response and flux measurement – II. The effect of introducing an angle of attack dependent calibration, Agr. Forest Meteorol., 122, 95–109, 2004.
van der Molen, M. K., Dolman, A. J., Ciais, P., Eglin, T., Gobron, N., Law, B. E., Meir, P., Peters, W., Phillips, O. L., Reichstein, M., Chen, T., Dekker, S. C., Doubková, M., Friedl, M. A., Jung, M., , van den Hurk, B. J. J. M., de Jeu, R. A. M., Kruijt, B., Ohta, T., Rebel, K. T., Plummer, S., Seneviratne, S. I., Sitch, S., Teuling, A. J., van der Werf, G. R., and Wang, G.: Drought and ecosystem carbon cycling, Agr. Forest Meteorol., 151, 765–773, https://doi.org/10.1016/j.agrformet.2011.01.018, 2011.
Verma, S. B., Dobermann, A., Cassman, K. G., Walters, D. T., Knops, J. M. N., Arkebauer, T. J., Suyker, A. E., Burba, G., Amos, B., Yang, H., Ginting, D., Hubbard, K., Gitleson, A. A., and Walter-Shea, E. A.: Annual carbon dioxide exchange in irrigatedrainfed maize based agroecosystems, Agr. Forest Meteorol., 131, 77–96, https://doi.org/10.1016/j.agrformet.2005.05.003, 2005.
Vetter, M., Wirth, C., Böttcher, H., Churkina, G., Schulze, E.-D., Wutzler, T., and Weber, G.: Partitioning direct and indirect human-induced effects on carbon sequestration of managed coniferous forests using model simulations and forest inventories, Glob. Change Biol., 11, 810–827, https://doi.org/10.1111/j.1365-2486.2005.00932.x, 2005.
Vetter, M., Churkina, G., Jung, M., Reichstein, M., Zaehle, S., Bondeau, A., Chen, Y., Ciais, P., Feser, F., Freibauer, A., Geyer, R., Jones, C., Papale, D., Tenhunen, J., Tomelleri, E., Trusilova, K., Viovy, N., and Heimann, M.: Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly using seven models, Biogeosciences, 5, 561–583, https://doi.org/10.5194/bg-5-561-2008, 2008.
Vickers, D. and Mahrt, L.: Quality control and flux sampling problems for tower and aircraft data, J. Atmos. Ocean. Tech., 14, 512–526, https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2, 1997.
Vitousek, P., Edin, L. O., Matson, P. A., Fownes, J. H., and Neff, J.: Within-system element cycles, input-output budgets, and nutrient limitations, in: Success, Limitations, and Frontiers in Ecosystem Science, edited by: Pace, M. and Groffman, P., Springer, New York, 432–451, 1998.
Vitousek, P. M., Fahey, T., Johnson, D. W., and Swift, M. J.: Element interactions in forest ecosystems: succession, allometry and input-output budgets, Biogeochemistry, 5, 7–34, https://doi.org/10.1007/BF02180316, 1988.
Wang, Q., Watanabe, M., and Ouyang, Z.: Simulation of water and carbon fluxes using BIOME-BGC model over crops in China, Agr. Forest Meteorol., 131, 209–224, https://doi.org/10.1016/j.agrformet.2005.06.002, 2005.
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux measurements for density effects due to heat and water-vapor transfer, Q. J. Roy. Meteor. Soc., 106, 85–100, https://doi.org/10.1002/qj.49710644707, 1980.
White, A., Melvin, G. R., Cannell, A., and Friend, D.: Climate change impacts on ecosystems and the terrestrial carbon sink: a new assessment, Global Environ. Change, 9, 21–30, https://doi.org/10.1016/S0959-3780(99)00016-3, 1999.
White, M., Thornton, P. E., Running, S. W., and Nemani, R. R.: Parameterization and sensitivity analysis of the BIOME–BGC terrestrial ecosystem model: Net primary production controls, Earth Interact., 4, 1–85, https://doi.org/10.1175/1087-3562(2000)004<0003:PASAOT>2.0.CO;2, 2000.
Wilczak, J. M., Oncley, S. P., and Stage, S. A.: Sonic anemometer tilt correction algorithms, Bound.-Lay. Meteor., 99, 127–150, https://doi.org/10.1023/A:1018966204465, 2001.
Williams, J. R.: Runoff and water erosion, in Modeling plant and soil systems, Agronomy Monograph nr. 31, edited by: Hanks, R. J. and Ritchie, J. T., American Society of Agronomy, Madison, Wisconsin, USA, 439–455, 1991.
Williams, M., Richardson, A. D., Reichstein, M., Stoy, P. C., Peylin, P., Verbeeck, H., Carvalhais, N., Jung, M., Hollinger, D. Y., Kattge, J., Leuning, R., Luo, Y., Tomelleri, E., Trudinger, C. M., and Wang, Y.-P.: Improving land surface models with FLUXNET data, Biogeosciences, 6, 1341–1359, https://doi.org/10.5194/bg-6-1341-2009, 2009.
Woodrow, I. E. and Berry, J. A.: Enzymatic regulation of photosynthetic CO2 fixation in C3 plants, Annu. Rev. Plant Phys., 39, 533–594, https://doi.org/10.1146/annurev.pp.39.060188.002533, 1988.
WRB: World Reference Base for Soil Resources (WRB), World Soil Resources Reports No. 103, IX+128 pp., ISSS, ISRIC and United Nations Food and Agriculture Organization (FAO), Rome, 2006.
Yi, C., Ricciuto, D., Li, R., Wolbeck, J., Xu, X., Nilsson, M., Aires, L., Albertson, J. D., Amman, C., Arain, M. A., de Araujo, A. C., Aubinet, M., Aurela, M., Barcza, Z., Barr, A., Berbigier, P., Beringer, J., Bernhofer, C., Black, A. T., Bolstad, P. V., Bosveld, F. C., Broadmeadow, M. S. J., Buchmann, N., Burns, S. P., Cellier, P., Chen, J., Chen, J., Ciais, P., Clement, R., Cook, B. D., Curtis, P. S., Dail, D. B., Dellwik, E., Delpierre, N., Desai, A. R., Dore, S., Dragoni, D., Drake, B. G., Dufrêne, E., Dunn, A., Elbers, J., Eugster, W., Falk, M., Feigenwinter, C., Flanagan, L. B., Foken, T., Frank, J., Fuhrer, J., Gianelle, D., Golstein, A., Goulden, M., Granier, A., Grunwald, T., Gu, L., Guo, H., Hammerle, A., Han, S., Hanan, N. P., Haszpra, L., Heinesch, B., Helfter, C., Hendriks, D., Hutley, L. B., Ibrom, A., Jacobs, C., Johansson, T., Jongen, M., Katul, G., Kiely, G., Klumpp, K., Knohl, A., Kolb, T., Kutsch, W. L., Lafleur, P., Laurila, T., Leuning, R., Lindroth, A., Liu, H., Loubet, B., Manca, G., Marek, M., Margolis, H. A., Martin, T. A., Massman, W. J., Matamala, R., Matteucci, G., McCaughey, H., Merbold, L., Meyers, T., Migliavacca, M., Miglietta, F., Misson, L., Molder, M., Moncrieff, J., Monson, R. K., Montagnani, L., Montes-Helu, M., Moors, E., Moureaux, C., et al.: Climate control of terrestrial carbon exchange across biomes and continents, Environ. Res. Lett., 5, 034007, https://doi.org/10.1088/1748-9326/5/3/034007, 2010.
Zheng, D., Raymond, H., and Running, S. W.: A daily soil temperature model based on air temperature and precipitation for continental applications, Clim. Res., 2, 183–191, https://doi.org/10.3354/cr002183, 1993.
Short summary
This paper provides detailed documentation on the changes implemented in the widely used biogeochemical model Biome-BGC. The version containing all improvements is referred to as Biome-BGCMuSo (Biome-BGC with multilayer soil module). Case studies on forest, cropland, and grassland are presented to demonstrate the effect of developments on the simulation. By using Biome-BGCMuSo, it became possible to analyze the effects of different environmental conditions and human activities on the ecosystems.
This paper provides detailed documentation on the changes implemented in the widely used...