Articles | Volume 9, issue 10
Geosci. Model Dev., 9, 3533–3543, 2016
https://doi.org/10.5194/gmd-9-3533-2016
Geosci. Model Dev., 9, 3533–3543, 2016
https://doi.org/10.5194/gmd-9-3533-2016

Model description paper 04 Oct 2016

Model description paper | 04 Oct 2016

LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0

Mauro Rossi and Paola Reichenbach

Related authors

A spaceborne SAR-based procedure to support the detection of landslides
Giuseppe Esposito, Ivan Marchesini, Alessandro Cesare Mondini, Paola Reichenbach, Mauro Rossi, and Simone Sterlacchini
Nat. Hazards Earth Syst. Sci., 20, 2379–2395, https://doi.org/10.5194/nhess-20-2379-2020,https://doi.org/10.5194/nhess-20-2379-2020, 2020
Short summary
Effective surveyed area and its role in statistical landslide susceptibility assessments
Txomin Bornaetxea, Mauro Rossi, Ivan Marchesini, and Massimiliano Alvioli
Nat. Hazards Earth Syst. Sci., 18, 2455–2469, https://doi.org/10.5194/nhess-18-2455-2018,https://doi.org/10.5194/nhess-18-2455-2018, 2018
Short summary
Criteria for the optimal selection of remote sensing optical images to map event landslides
Federica Fiorucci, Daniele Giordan, Michele Santangelo, Furio Dutto, Mauro Rossi, and Fausto Guzzetti
Nat. Hazards Earth Syst. Sci., 18, 405–417, https://doi.org/10.5194/nhess-18-405-2018,https://doi.org/10.5194/nhess-18-405-2018, 2018
Short summary
Field-based landslide susceptibility assessment in a data-scarce environment: the populated areas of the Rwenzori Mountains
Liesbet Jacobs, Olivier Dewitte, Jean Poesen, John Sekajugo, Adriano Nobile, Mauro Rossi, Wim Thiery, and Matthieu Kervyn
Nat. Hazards Earth Syst. Sci., 18, 105–124, https://doi.org/10.5194/nhess-18-105-2018,https://doi.org/10.5194/nhess-18-105-2018, 2018
Short summary
Landslides, floods and sinkholes in a karst environment: the 1–6 September 2014 Gargano event, southern Italy
Maria Elena Martinotti, Luca Pisano, Ivan Marchesini, Mauro Rossi, Silvia Peruccacci, Maria Teresa Brunetti, Massimo Melillo, Giuseppe Amoruso, Pierluigi Loiacono, Carmela Vennari, Giovanna Vessia, Maria Trabace, Mario Parise, and Fausto Guzzetti
Nat. Hazards Earth Syst. Sci., 17, 467–480, https://doi.org/10.5194/nhess-17-467-2017,https://doi.org/10.5194/nhess-17-467-2017, 2017
Short summary

Related subject area

Climate and Earth System Modeling
Development of four-dimensional variational assimilation system based on the GRAPES–CUACE adjoint model (GRAPES–CUACE-4D-Var V1.0) and its application in emission inversion
Chao Wang, Xingqin An, Qing Hou, Zhaobin Sun, Yanjun Li, and Jiangtao Li
Geosci. Model Dev., 14, 337–350, https://doi.org/10.5194/gmd-14-337-2021,https://doi.org/10.5194/gmd-14-337-2021, 2021
HIRM v1.0: a hybrid impulse response model for climate modeling and uncertainty analyses
Kalyn Dorheim, Steven J. Smith, and Ben Bond-Lamberty
Geosci. Model Dev., 14, 365–375, https://doi.org/10.5194/gmd-14-365-2021,https://doi.org/10.5194/gmd-14-365-2021, 2021
Short summary
CLIMADA v1.4.1: towards a globally consistent adaptation options appraisal tool
David N. Bresch and Gabriela Aznar-Siguan
Geosci. Model Dev., 14, 351–363, https://doi.org/10.5194/gmd-14-351-2021,https://doi.org/10.5194/gmd-14-351-2021, 2021
Short summary
FORTE 2.0: a fast, parallel and flexible coupled climate model
Adam T. Blaker, Manoj Joshi, Bablu Sinha, David P. Stevens, Robin S. Smith, and Joël J.-M. Hirschi
Geosci. Model Dev., 14, 275–293, https://doi.org/10.5194/gmd-14-275-2021,https://doi.org/10.5194/gmd-14-275-2021, 2021
Short summary
Optimization of the sulfate aerosol hygroscopicity parameter in WRF-Chem
Ah-Hyun Kim, Seong Soo Yum, Dong Yeong Chang, and Minsu Park
Geosci. Model Dev., 14, 259–273, https://doi.org/10.5194/gmd-14-259-2021,https://doi.org/10.5194/gmd-14-259-2021, 2021
Short summary

Cited articles

Alvioli, M., Marchesini, I., Reichenbach, P., Rossi, M., Ardizzone, F., Fiorucci, F., and Guzzetti, F.: Automatic delineation of geomorphological slope-units and their optimization for landslide susceptibility modelling, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-118, in review, 2016.
Ardizzone, F., Cardinali, M., Carrara, A., Guzzetti, F., and Reichenbach, P.: Impact of mapping errors on the reliability of landslide hazard maps, Nat. Hazards Earth Syst. Sci., 2, 3–14, https://doi.org/10.5194/nhess-2-3-2002, 2002.
Atkinson, P., Jiskoot, H., Massari, R., and Murray, T.: Generalized linear modelling in geomorphology, Earth Surf. Proc. Land., 23, 1185–1195, 1998
Atkinson, P. M. and Massari, R.: Autologistic modelling of susceptibility to landsliding in the central Apennines, Italy, Geomorphology, 130, 55–64, https://doi.org/10.1016/j.geomorph.2011.02.001, 2011.
Download
Short summary
Landslide susceptibility maps show places where landslides may occur in the future. These maps are prepared using different approaches, information on past landslides distribution and a variety of geo-environmental data. The paper describes LAND-SE (LANDslide Susceptibility Evaluation), an open-source software coded in R for statistically based susceptibility zonation that provides estimates of model performances and uncertainty. A user guide and example data are distributed with the software.