Articles | Volume 9, issue 10
https://doi.org/10.5194/gmd-9-3533-2016
https://doi.org/10.5194/gmd-9-3533-2016
Model description paper
 | 
04 Oct 2016
Model description paper |  | 04 Oct 2016

LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0

Mauro Rossi and Paola Reichenbach

Related authors

Comparison of conditioning factor classification criteria in large-scale statistically based landslide susceptibility models
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci., 25, 183–206, https://doi.org/10.5194/nhess-25-183-2025,https://doi.org/10.5194/nhess-25-183-2025, 2025
Short summary
From rockfall source areas identification to susceptibility zonation: a proposed workflow tested in El Hierro (Canary Islands, Spain)
Roberto Sarro, Mauro Rossi, Paola Reichenbach, and Rosa María Mateos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-85,https://doi.org/10.5194/nhess-2024-85, 2024
Revised manuscript under review for NHESS
Short summary
Lessons learnt from a rockfall time series analysis: data collection, statistical analysis, and applications
Sandra Melzner, Marco Conedera, Johannes Hübl, and Mauro Rossi
Nat. Hazards Earth Syst. Sci., 23, 3079–3093, https://doi.org/10.5194/nhess-23-3079-2023,https://doi.org/10.5194/nhess-23-3079-2023, 2023
Short summary
A web-based GIS (web-GIS) database of the scientific articles on earthquake-triggered landslides
Luca Schilirò, Mauro Rossi, Federica Polpetta, Federica Fiorucci, Carolina Fortunato, and Paola Reichenbach
Nat. Hazards Earth Syst. Sci., 23, 1789–1804, https://doi.org/10.5194/nhess-23-1789-2023,https://doi.org/10.5194/nhess-23-1789-2023, 2023
Short summary
LAND-SUITE V1.0: a suite of tools for statistically based landslide susceptibility zonation
Mauro Rossi, Txomin Bornaetxea, and Paola Reichenbach
Geosci. Model Dev., 15, 5651–5666, https://doi.org/10.5194/gmd-15-5651-2022,https://doi.org/10.5194/gmd-15-5651-2022, 2022
Short summary

Related subject area

Climate and Earth system modeling
Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled to FESOM2.5 and NEMOv3.4
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025,https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Subsurface hydrological controls on the short-term effects of hurricanes on nitrate–nitrogen runoff loading: a case study of Hurricane Ida using the Energy Exascale Earth System Model (E3SM) Land Model (v2.1)
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev., 18, 19–32, https://doi.org/10.5194/gmd-18-19-2025,https://doi.org/10.5194/gmd-18-19-2025, 2025
Short summary
CARIB12: a regional Community Earth System Model/Modular Ocean Model 6 configuration of the Caribbean Sea
Giovanni Seijo-Ellis, Donata Giglio, Gustavo Marques, and Frank Bryan
Geosci. Model Dev., 17, 8989–9021, https://doi.org/10.5194/gmd-17-8989-2024,https://doi.org/10.5194/gmd-17-8989-2024, 2024
Short summary
Architectural insights into and training methodology optimization of Pangu-Weather
Deifilia To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
Geosci. Model Dev., 17, 8873–8884, https://doi.org/10.5194/gmd-17-8873-2024,https://doi.org/10.5194/gmd-17-8873-2024, 2024
Short summary
Evaluation of global fire simulations in CMIP6 Earth system models
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024,https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary

Cited articles

Alvioli, M., Marchesini, I., Reichenbach, P., Rossi, M., Ardizzone, F., Fiorucci, F., and Guzzetti, F.: Automatic delineation of geomorphological slope-units and their optimization for landslide susceptibility modelling, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-118, in review, 2016.
Ardizzone, F., Cardinali, M., Carrara, A., Guzzetti, F., and Reichenbach, P.: Impact of mapping errors on the reliability of landslide hazard maps, Nat. Hazards Earth Syst. Sci., 2, 3–14, https://doi.org/10.5194/nhess-2-3-2002, 2002.
Atkinson, P., Jiskoot, H., Massari, R., and Murray, T.: Generalized linear modelling in geomorphology, Earth Surf. Proc. Land., 23, 1185–1195, 1998
Atkinson, P. M. and Massari, R.: Autologistic modelling of susceptibility to landsliding in the central Apennines, Italy, Geomorphology, 130, 55–64, https://doi.org/10.1016/j.geomorph.2011.02.001, 2011.
Download
Short summary
Landslide susceptibility maps show places where landslides may occur in the future. These maps are prepared using different approaches, information on past landslides distribution and a variety of geo-environmental data. The paper describes LAND-SE (LANDslide Susceptibility Evaluation), an open-source software coded in R for statistically based susceptibility zonation that provides estimates of model performances and uncertainty. A user guide and example data are distributed with the software.