Articles | Volume 9, issue 9
https://doi.org/10.5194/gmd-9-3213-2016
https://doi.org/10.5194/gmd-9-3213-2016
Development and technical paper
 | 
19 Sep 2016
Development and technical paper |  | 19 Sep 2016

Estimation of trace gas fluxes with objectively determined basis functions using reversible-jump Markov chain Monte Carlo

Mark F. Lunt, Matt Rigby, Anita L. Ganesan, and Alistair J. Manning

Related authors

Greenhouse gas column observations from a portable spectrometer in Uganda
Neil Humpage, Hartmut Boesch, William Okello, Jia Chen, Florian Dietrich, Mark F. Lunt, Liang Feng, Paul I. Palmer, and Frank Hase
Atmos. Meas. Tech., 17, 5679–5707, https://doi.org/10.5194/amt-17-5679-2024,https://doi.org/10.5194/amt-17-5679-2024, 2024
Short summary
Verifying national inventory-based combustion emissions of CO2 across the UK and mainland Europe using satellite observations of atmospheric CO and CO2
Tia R. Scarpelli, Paul I. Palmer, Mark Lunt, Ingrid Super, and Arjan Droste
Atmos. Chem. Phys., 24, 10773–10791, https://doi.org/10.5194/acp-24-10773-2024,https://doi.org/10.5194/acp-24-10773-2024, 2024
Short summary
Methane emissions are predominantly responsible for record-breaking atmospheric methane growth rates in 2020 and 2021
Liang Feng, Paul I. Palmer, Robert J. Parker, Mark F. Lunt, and Hartmut Bösch
Atmos. Chem. Phys., 23, 4863–4880, https://doi.org/10.5194/acp-23-4863-2023,https://doi.org/10.5194/acp-23-4863-2023, 2023
Short summary
Evaluation of wetland CH4 in the Joint UK Land Environment Simulator (JULES) land surface model using satellite observations
Robert J. Parker, Chris Wilson, Edward Comyn-Platt, Garry Hayman, Toby R. Marthews, A. Anthony Bloom, Mark F. Lunt, Nicola Gedney, Simon J. Dadson, Joe McNorton, Neil Humpage, Hartmut Boesch, Martyn P. Chipperfield, Paul I. Palmer, and Dai Yamazaki
Biogeosciences, 19, 5779–5805, https://doi.org/10.5194/bg-19-5779-2022,https://doi.org/10.5194/bg-19-5779-2022, 2022
Short summary
Atmospheric observations consistent with reported decline in the UK's methane emissions (2013–2020)
Mark F. Lunt, Alistair J. Manning, Grant Allen, Tim Arnold, Stéphane J.-B. Bauguitte, Hartmut Boesch, Anita L. Ganesan, Aoife Grant, Carole Helfter, Eiko Nemitz, Simon J. O'Doherty, Paul I. Palmer, Joseph R. Pitt, Chris Rennick, Daniel Say, Kieran M. Stanley, Ann R. Stavert, Dickon Young, and Matt Rigby
Atmos. Chem. Phys., 21, 16257–16276, https://doi.org/10.5194/acp-21-16257-2021,https://doi.org/10.5194/acp-21-16257-2021, 2021
Short summary

Related subject area

Atmospheric sciences
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024,https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024,https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024,https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024,https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024,https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary

Cited articles

Berchet, A., Pison, I., Chevallier, F., Bousquet, P., Conil, S., Geever, M., Laurila, T., Lavric, J., Lopez, M., Moncrieff, J., Necki, J., Ramonet, M., Schmidt, M., Steinbacher, M., and Tarniewicz, J.: Towards better error statistics for atmospheric inversions of methane surface fluxes, Atmos. Chem. Phys., 13, 7115–7132, https://doi.org/10.5194/acp-13-7115-2013, 2013.
Berchet, A., Pison, I., Chevallier, F., Bousquet, P., Bonne, J.-L., and Paris, J.-D.: Objectified quantification of uncertainties in Bayesian atmospheric inversions, Geosci. Model Dev., 8, 1525–1546, https://doi.org/10.5194/gmd-8-1525-2015, 2015.
Bocquet, M.: Toward Optimal Choices of Control Space Representation for Geophysical Data Assimilation, Mon. Weather Rev., 137, 2331–2348, https://doi.org/10.1175/2009MWR2789.1, 2009.
Bocquet, M., Wu, L., and Chevallier, F.: Bayesian design of control space for optimal assimilation of observations. Part I: Consistent multiscale formalism, Q. J. Roy. Meteor. Soc., 137, 1340–1356, https://doi.org/10.1002/qj.837, 2011.
Bodin, T. and Sambridge, M.: Seismic tomography with the reversible jump algorithm, Geophys. J. Int., 178, 1411–1436, https://doi.org/10.1111/j.1365-246X.2009.04226.x, 2009.
Download
Short summary
Bayesian inversions can be used to estimate emissions of gases from atmospheric data. We present an inversion framework that objectively defines the basis functions, which describe regions of emissions. The framework allows for the uncertainty in the choice of basis functions to be propagated through to the posterior emissions distribution in a single-step process, and provides an alternative to using a single set of basis functions.