Articles | Volume 9, issue 7
https://doi.org/10.5194/gmd-9-2415-2016
https://doi.org/10.5194/gmd-9-2415-2016
Development and technical paper
 | 
22 Jul 2016
Development and technical paper |  | 22 Jul 2016

Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information

Anna B. Harper, Peter M. Cox, Pierre Friedlingstein, Andy J. Wiltshire, Chris D. Jones, Stephen Sitch, Lina M. Mercado, Margriet Groenendijk, Eddy Robertson, Jens Kattge, Gerhard Bönisch, Owen K. Atkin, Michael Bahn, Johannes Cornelissen, Ülo Niinemets, Vladimir Onipchenko, Josep Peñuelas, Lourens Poorter, Peter B. Reich, Nadjeda A. Soudzilovskaia, and Peter van Bodegom

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Harper on behalf of the Authors (04 May 2016)  Author's response   Manuscript 
ED: Publish subject to minor revisions (Editor review) (06 May 2016) by Jatin Kala
AR by Anna Harper on behalf of the Authors (13 May 2016)  Author's response   Manuscript 
ED: Publish as is (20 May 2016) by Jatin Kala
AR by Anna Harper on behalf of the Authors (24 May 2016)
Download
Short summary
Dynamic global vegetation models (DGVMs) are used to predict the response of vegetation to climate change. We improved the representation of carbon uptake by ecosystems in a DGVM by including a wider range of trade-offs between nutrient allocation to photosynthetic capacity and leaf structure, based on observed plant traits from a worldwide data base. The improved model has higher rates of photosynthesis and net C uptake by plants, and more closely matches observations at site and global scales.