Articles | Volume 9, issue 7
https://doi.org/10.5194/gmd-9-2377-2016
https://doi.org/10.5194/gmd-9-2377-2016
Development and technical paper
 | 
12 Jul 2016
Development and technical paper |  | 12 Jul 2016

Multi-sensor cloud and aerosol retrieval simulator and remote sensing from model parameters – Part 2: Aerosols

Galina Wind, Arlindo M. da Silva, Peter M. Norris, Steven Platnick, Shana Mattoo, and Robert C. Levy

Related authors

Analysis of the MODIS above-cloud aerosol retrieval algorithm using MCARS
Galina Wind, Arlindo M. da Silva, Kerry G. Meyer, Steven Platnick, and Peter M. Norris
Geosci. Model Dev., 15, 1–14, https://doi.org/10.5194/gmd-15-1-2022,https://doi.org/10.5194/gmd-15-1-2022, 2022
Short summary
Improved cloud detection for the Aura Microwave Limb Sounder (MLS): training an artificial neural network on colocated MLS and Aqua MODIS data
Frank Werner, Nathaniel J. Livesey, Michael J. Schwartz, William G. Read, Michelle L. Santee, and Galina Wind
Atmos. Meas. Tech., 14, 7749–7773, https://doi.org/10.5194/amt-14-7749-2021,https://doi.org/10.5194/amt-14-7749-2021, 2021
Short summary
The effect of low-level thin arctic clouds on shortwave irradiance: evaluation of estimates from spaceborne passive imagery with aircraft observations
Hong Chen, Sebastian Schmidt, Michael D. King, Galina Wind, Anthony Bucholtz, Elizabeth A. Reid, Michal Segal-Rozenhaimer, William L. Smith, Patrick C. Taylor, Seiji Kato, and Peter Pilewskie
Atmos. Meas. Tech., 14, 2673–2697, https://doi.org/10.5194/amt-14-2673-2021,https://doi.org/10.5194/amt-14-2673-2021, 2021
Short summary
Evaluation of the MODIS Collection 6 multilayer cloud detection algorithm through comparisons with CloudSat Cloud Profiling Radar and CALIPSO CALIOP products
Benjamin Marchant, Steven Platnick, Kerry Meyer, and Galina Wind
Atmos. Meas. Tech., 13, 3263–3275, https://doi.org/10.5194/amt-13-3263-2020,https://doi.org/10.5194/amt-13-3263-2020, 2020
Short summary
Marine boundary layer cloud property retrievals from high-resolution ASTER observations: case studies and comparison with Terra MODIS
Frank Werner, Galina Wind, Zhibo Zhang, Steven Platnick, Larry Di Girolamo, Guangyu Zhao, Nandana Amarasinghe, and Kerry Meyer
Atmos. Meas. Tech., 9, 5869–5894, https://doi.org/10.5194/amt-9-5869-2016,https://doi.org/10.5194/amt-9-5869-2016, 2016
Short summary

Related subject area

Atmospheric sciences
Quantifying the oscillatory evolution of simulated boundary-layer cloud fields using Gaussian process regression
Gunho Loren Oh and Philip H. Austin
Geosci. Model Dev., 18, 3921–3940, https://doi.org/10.5194/gmd-18-3921-2025,https://doi.org/10.5194/gmd-18-3921-2025, 2025
Short summary
Numerical investigations on the modelling of ultrafine particles in SSH-aerosol-v1.3a: size resolution and redistribution
Oscar Jacquot and Karine Sartelet
Geosci. Model Dev., 18, 3965–3984, https://doi.org/10.5194/gmd-18-3965-2025,https://doi.org/10.5194/gmd-18-3965-2025, 2025
Short summary
The third Met Office Unified Model–JULES Regional Atmosphere and Land Configuration, RAL3
Mike Bush, David L. A. Flack, Huw W. Lewis, Sylvia I. Bohnenstengel, Chris J. Short, Charmaine Franklin, Adrian P. Lock, Martin Best, Paul Field, Anne McCabe, Kwinten Van Weverberg, Segolene Berthou, Ian Boutle, Jennifer K. Brooke, Seb Cole, Shaun Cooper, Gareth Dow, John Edwards, Anke Finnenkoetter, Kalli Furtado, Kate Halladay, Kirsty Hanley, Margaret A. Hendry, Adrian Hill, Aravindakshan Jayakumar, Richard W. Jones, Humphrey Lean, Joshua C. K. Lee, Andy Malcolm, Marion Mittermaier, Saji Mohandas, Stuart Moore, Cyril Morcrette, Rachel North, Aurore Porson, Susan Rennie, Nigel Roberts, Belinda Roux, Claudio Sanchez, Chun-Hsu Su, Simon Tucker, Simon Vosper, David Walters, James Warner, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Michael Whitall, Keith D. Williams, and Hugh Zhang
Geosci. Model Dev., 18, 3819–3855, https://doi.org/10.5194/gmd-18-3819-2025,https://doi.org/10.5194/gmd-18-3819-2025, 2025
Short summary
The sensitivity of aerosol data assimilation to vertical profiles: case study of dust storm assimilation with LOTOS-EUROS v2.2
Mijie Pang, Jianbing Jin, Ting Yang, Xi Chen, Arjo Segers, Batjargal Buyantogtokh, Yixuan Gu, Jiandong Li, Hai Xiang Lin, Hong Liao, and Wei Han
Geosci. Model Dev., 18, 3781–3798, https://doi.org/10.5194/gmd-18-3781-2025,https://doi.org/10.5194/gmd-18-3781-2025, 2025
Short summary
Knowledge-inspired fusion strategies for the inference of PM2.5 values with a neural network
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
Geosci. Model Dev., 18, 3707–3733, https://doi.org/10.5194/gmd-18-3707-2025,https://doi.org/10.5194/gmd-18-3707-2025, 2025
Short summary

Cited articles

Ackerman, A., Strabala, K., Menzel, P., Frey, R., Moeller, C., Gumley, L., Baum, B., Seemann, S. W., and Zhang, H.: Discriminating clear-sky from cloud with MODIS Algorithm Theoretical Basis Document (MOD35), ATBD Reference Number: ATBD-MOD-35, available at: http://modis-atmos.gsfc.nasa.gov/reference_atbd.html, LAD:07.06.2016, 2006.
Ackerman, S. A., Holz, R. E., Frey, R., Eloranta, E. W., Maddux, B. C., and McGill, M.: Cloud Detection with MODIS. Part II: Validation, J. Atmos. Ocean. Tech., 25, 1073–1086, https://doi.org/10.1175/2007JTECHA1053.1, 2008.
Barnes, W. L., Pagano, T. S., and Salomonson, V. V.: Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1, IEEE Trans. Geosci. Remote Sens., 36, 1088–1100, 1998.
Buchard, V., da Silva, A. M., Colarco, P., Krotkov, N., Dickerson, R. R., Stehr, J. W., Mount, G., Spinei, E., Arkinson, H. L., and He, H.: Evaluation of GEOS-5 sulfur dioxide simulations during the Frostburg, MD 2010 field campaign, Atmos. Chem. Phys., 14, 1929–1941, https://doi.org/10.5194/acp-14-1929-2014, 2014.
Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., Martin, R. V., Logan, J. A., Higurashi, A., and Nakajima, T.: Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements, J. Atmos. Sci., 59, 461–483, 2002.
Short summary
The MCARS code creates sensor radiances using model-generated atmospheric columns and actual sensor and solar geometry. MCARS output looks like real data, so it is usable by any code that reads MODIS data. MCARS output can be used to test remote-sensing retrieval algorithms. Users know what went into creating the radiance: atmosphere, surface, clouds, and aerosols. Models can use MCARS output to create new parameterizations of relations of atmospheric physical quantities and measured radiances.
Share