Articles | Volume 8, issue 10
https://doi.org/10.5194/gmd-8-3105-2015
https://doi.org/10.5194/gmd-8-3105-2015
Development and technical paper
 | 
06 Oct 2015
Development and technical paper |  | 06 Oct 2015

Assessment of valley cold pools and clouds in a very high-resolution numerical weather prediction model

J. K. Hughes, A. N. Ross, S. B. Vosper, A. P. Lock, and B. C. Jemmett-Smith

Related authors

Increasing precipitation due to climate change could partially offset the impact of warming air temperatures on glacier loss in the monsoon-influenced Himalaya until 2100 CE
Anya Schlich-Davies, Ann Rowan, Andrew Ross, Duncan Quincey, and Vivi Pedersen
EGUsphere, https://doi.org/10.31223/X5SH7C,https://doi.org/10.31223/X5SH7C, 2025
Short summary
Comparing short term intensity fluctuations and an Eyewall replacement cycle in Hurricane Irma (2017) during a period of rapid intensification
William Stanley Torgerson, Juliane Schwendike, Andrew Ross, and Chris Short
EGUsphere, https://doi.org/10.5194/egusphere-2023-1272,https://doi.org/10.5194/egusphere-2023-1272, 2023
Preprint archived
Short summary
Intensity fluctuations in Hurricane Irma (2017) during a period of rapid intensification
William Torgerson, Juliane Schwendike, Andrew Ross, and Chris J. Short
Weather Clim. Dynam., 4, 331–359, https://doi.org/10.5194/wcd-4-331-2023,https://doi.org/10.5194/wcd-4-331-2023, 2023
Short summary
Stratospheric gravity waves over the mountainous island of South Georgia: testing a high-resolution dynamical model with 3-D satellite observations and radiosondes
Neil P. Hindley, Corwin J. Wright, Alan M. Gadian, Lars Hoffmann, John K. Hughes, David R. Jackson, John C. King, Nicholas J. Mitchell, Tracy Moffat-Griffin, Andrew C. Moss, Simon B. Vosper, and Andrew N. Ross
Atmos. Chem. Phys., 21, 7695–7722, https://doi.org/10.5194/acp-21-7695-2021,https://doi.org/10.5194/acp-21-7695-2021, 2021
Short summary
Is a more physical representation of aerosol activation needed for simulations of fog?
Craig Poku, Andrew N. Ross, Adrian A. Hill, Alan M. Blyth, and Ben Shipway
Atmos. Chem. Phys., 21, 7271–7292, https://doi.org/10.5194/acp-21-7271-2021,https://doi.org/10.5194/acp-21-7271-2021, 2021
Short summary

Related subject area

Atmospheric sciences
The sensitivity of aerosol data assimilation to vertical profiles: case study of dust storm assimilation with LOTOS-EUROS v2.2
Mijie Pang, Jianbing Jin, Ting Yang, Xi Chen, Arjo Segers, Batjargal Buyantogtokh, Yixuan Gu, Jiandong Li, Hai Xiang Lin, Hong Liao, and Wei Han
Geosci. Model Dev., 18, 3781–3798, https://doi.org/10.5194/gmd-18-3781-2025,https://doi.org/10.5194/gmd-18-3781-2025, 2025
Short summary
Knowledge-inspired fusion strategies for the inference of PM2.5 values with a neural network
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
Geosci. Model Dev., 18, 3707–3733, https://doi.org/10.5194/gmd-18-3707-2025,https://doi.org/10.5194/gmd-18-3707-2025, 2025
Short summary
Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching
Pauline Bonnet, Lorenzo Pastori, Mierk Schwabe, Marco Giorgetta, Fernando Iglesias-Suarez, and Veronika Eyring
Geosci. Model Dev., 18, 3681–3706, https://doi.org/10.5194/gmd-18-3681-2025,https://doi.org/10.5194/gmd-18-3681-2025, 2025
Short summary
A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025,https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025,https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary

Cited articles

Barr, S. and Orgill, M. M.: Influence of external meterology on nocturnal valley drainage winds, J. Appl. Meteor., 28, 497–517, https://doi.org/10.1175/1520-0450(1989)028<0497:IOEMON>2.0.CO;2, 1989.
Beare, R. and Macvean, M.: Resolution sensitivity and scaling of large-edy simulations of the stable boundary layer., Bound.-Lay. Meteorol., 112, 257–281, https://doi.org/10.1023/B:BOUN.0000027910.57913.4d, 2004.
Beare, R. J., Macvean, M. K., Holtslag, A. A. M., Cuxart, J., Esau, I., Golaz, J. C., Jimenez, M. A., Khairoutdinov, M., Kosovic, B., Lewellen, D., Lund, T. S., Lundquist, J. K., Mccabe, A., Moene, A. F., Noh, Y., Raasch, S., and Sullivan, P.: An intercomparison of large-eddy simulations of the stable boundary layer, Bound.-Lay. Meteorol., 118, 247–272, https://doi.org/10.1007/s10546-004-2820-6, 2006.
Boutle, I., Eyre, J., and Lock, A. P.: Seamless Stratocumulus Simulation across the Turbulent Gray Zone, Mon. Weather Rev., 142, 1655–1668, https://doi.org/10.1175/MWR-D-13-00229.1, 2014.
Hong, S. and Dudhia, J.: Next-Generation Numerical Weather Prediction: Bridging Parameterization, Explicit Clouds, and Large Eddies., Bull. Amer. Meteor. Soc., 93, ES6–ES9, https://doi.org/10.1175/2011BAMS3224.1, 2011.
Download
Short summary
The formation of cold air pools in valleys under stable conditions represents an important challenge for numerical weather prediction (NWP). In this study a two-month cold pool simulation is presented using a high-resolution NWP model. Results are compared to observations and assumptions made in the cloud parametrization scheme about the sub-grid variability of humidity are shown to dominate model bias. Our results show that this is a key area for very high resolution modelling development.
Share