Articles | Volume 8, issue 7
https://doi.org/10.5194/gmd-8-2119-2015
https://doi.org/10.5194/gmd-8-2119-2015
Development and technical paper
 | 
16 Jul 2015
Development and technical paper |  | 16 Jul 2015

Evaluation of the high resolution WRF-Chem (v3.4.1) air quality forecast and its comparison with statistical ozone predictions

R. Žabkar, L. Honzak, G. Skok, R. Forkel, J. Rakovec, A. Ceglar, and N. Žagar

Related authors

Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models
M. Bocquet, H. Elbern, H. Eskes, M. Hirtl, R. Žabkar, G. R. Carmichael, J. Flemming, A. Inness, M. Pagowski, J. L. Pérez Camaño, P. E. Saide, R. San Jose, M. Sofiev, J. Vira, A. Baklanov, C. Carnevale, G. Grell, and C. Seigneur
Atmos. Chem. Phys., 15, 5325–5358, https://doi.org/10.5194/acp-15-5325-2015,https://doi.org/10.5194/acp-15-5325-2015, 2015
Short summary

Related subject area

Atmospheric sciences
ClimKern v1.2: a new Python package and kernel repository for calculating radiative feedbacks
Tyler P. Janoski, Ivan Mitevski, Ryan J. Kramer, Michael Previdi, and Lorenzo M. Polvani
Geosci. Model Dev., 18, 3065–3079, https://doi.org/10.5194/gmd-18-3065-2025,https://doi.org/10.5194/gmd-18-3065-2025, 2025
Short summary
Accounting for effects of coagulation and model uncertainties in particle number concentration estimates based on measurements from sampling lines – a Bayesian inversion approach with SLIC v1.0
Matti Niskanen, Aku Seppänen, Henri Oikarinen, Miska Olin, Panu Karjalainen, Santtu Mikkonen, and Kari Lehtinen
Geosci. Model Dev., 18, 2983–3001, https://doi.org/10.5194/gmd-18-2983-2025,https://doi.org/10.5194/gmd-18-2983-2025, 2025
Short summary
Top-down CO emission estimates using TROPOMI CO data in the TM5-4DVAR (r1258) inverse modeling suit
Johann Rasmus Nüß, Nikos Daskalakis, Fabian Günther Piwowarczyk, Angelos Gkouvousis, Oliver Schneising, Michael Buchwitz, Maria Kanakidou, Maarten C. Krol, and Mihalis Vrekoussis
Geosci. Model Dev., 18, 2861–2890, https://doi.org/10.5194/gmd-18-2861-2025,https://doi.org/10.5194/gmd-18-2861-2025, 2025
Short summary
The Multi-Compartment Hg Modeling and Analysis Project (MCHgMAP): mercury modeling to support international environmental policy
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025,https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Similarity-based analysis of atmospheric organic compounds for machine learning applications
Hilda Sandström and Patrick Rinke
Geosci. Model Dev., 18, 2701–2724, https://doi.org/10.5194/gmd-18-2701-2025,https://doi.org/10.5194/gmd-18-2701-2025, 2025
Short summary

Cited articles

Ackermann, I. J., Hass, H., Memmesheimer, M., Ziegenbein, C., and Ebel, A.: The parameterization of the sulfate-nitrate-ammonia aerosol system in the long-range transport model EURAD, Meteorological Atmospheric Physics, 57, 101–114, 1995.
ALADIN International Team, The ALADIN project: Mesoscale modelling seen as a basic tool for weather forecasting and atmospheric research, WMO Bull., 46, 317–324, 1997.
Baklanov, A.: Chemical weather forecasting: a new concept of integrated modeling. Adv. Sci. Res., 4, 23–27, 2010.
Baklanov, A., Korsholm, U., Mahura, A., Petersen, C., and Gross, A.: Enviro-HIRLAM: on-line coupled modelling of urban meteorology and air pollution, Adv. Sci. Res., 2, 41–46, 2008.
Download
Share