Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
Volume 8, issue 7
Geosci. Model Dev., 8, 2067–2078, 2015
https://doi.org/10.5194/gmd-8-2067-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 8, 2067–2078, 2015
https://doi.org/10.5194/gmd-8-2067-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 13 Jul 2015

Development and technical paper | 13 Jul 2015

Experiences with distributed computing for meteorological applications: grid computing and cloud computing

F. Oesterle et al.

Related authors

Postprocessing ensemble forecasts of vertical temperature profiles
David Schoenach, Thorsten Simon, and Georg Johann Mayr
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 45–60, https://doi.org/10.5194/ascmo-6-45-2020,https://doi.org/10.5194/ascmo-6-45-2020, 2020
Short summary
Remember the past: a comparison of time-adaptive training schemes for non-homogeneous regression
Moritz N. Lang, Sebastian Lerch, Georg J. Mayr, Thorsten Simon, Reto Stauffer, and Achim Zeileis
Nonlin. Processes Geophys., 27, 23–34, https://doi.org/10.5194/npg-27-23-2020,https://doi.org/10.5194/npg-27-23-2020, 2020
Short summary
Subsiding shells and the distribution of up- and downdraughts in warm cumulus clouds over land
Christian Mallaun, Andreas Giez, Georg J. Mayr, and Mathias W. Rotach
Atmos. Chem. Phys., 19, 9769–9786, https://doi.org/10.5194/acp-19-9769-2019,https://doi.org/10.5194/acp-19-9769-2019, 2019
Short summary
Bivariate Gaussian models for wind vectors in a distributional regression framework
Moritz N. Lang, Georg J. Mayr, Reto Stauffer, and Achim Zeileis
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 115–132, https://doi.org/10.5194/ascmo-5-115-2019,https://doi.org/10.5194/ascmo-5-115-2019, 2019
Short summary
Low-visibility forecasts for different flight planning horizons using tree-based boosting models
Sebastian J. Dietz, Philipp Kneringer, Georg J. Mayr, and Achim Zeileis
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 101–114, https://doi.org/10.5194/ascmo-5-101-2019,https://doi.org/10.5194/ascmo-5-101-2019, 2019
Short summary

Related subject area

Atmospheric Sciences
Concentration Trajectory Route of Air pollution with an Integrated Lagrangian model (C-TRAIL Model v1.0) derived from the Community Multiscale Air Quality Model (CMAQ Model v5.2)
Arman Pouyaei, Yunsoo Choi, Jia Jung, Bavand Sadeghi, and Chul Han Song
Geosci. Model Dev., 13, 3489–3505, https://doi.org/10.5194/gmd-13-3489-2020,https://doi.org/10.5194/gmd-13-3489-2020, 2020
Short summary
Evaluation of three new surface irrigation parameterizations in the WRF-ARW v3.8.1 model: the Po Valley (Italy) case study
Arianna Valmassoi, Jimy Dudhia, Silvana Di Sabatino, and Francesco Pilla
Geosci. Model Dev., 13, 3179–3201, https://doi.org/10.5194/gmd-13-3179-2020,https://doi.org/10.5194/gmd-13-3179-2020, 2020
Short summary
An ensemble Kalman filter data assimilation system for the whole neutral atmosphere
Dai Koshin, Kaoru Sato, Kazuyuki Miyazaki, and Shingo Watanabe
Geosci. Model Dev., 13, 3145–3177, https://doi.org/10.5194/gmd-13-3145-2020,https://doi.org/10.5194/gmd-13-3145-2020, 2020
Short summary
Calculating human thermal comfort and thermal stress in the PALM model system 6.0
Dominik Fröhlich and Andreas Matzarakis
Geosci. Model Dev., 13, 3055–3065, https://doi.org/10.5194/gmd-13-3055-2020,https://doi.org/10.5194/gmd-13-3055-2020, 2020
Short summary
APIFLAME v2.0 biomass burning emissions model: impact of refined input parameters on atmospheric concentration in Portugal in summer 2016
Solène Turquety, Laurent Menut, Guillaume Siour, Sylvain Mailler, Juliette Hadji-Lazaro, Maya George, Cathy Clerbaux, Daniel Hurtmans, and Pierre-François Coheur
Geosci. Model Dev., 13, 2981–3009, https://doi.org/10.5194/gmd-13-2981-2020,https://doi.org/10.5194/gmd-13-2981-2020, 2020
Short summary

Cited articles

Allcock, B., Bester, J., Bresnahan, J., Chervenak, A. L., Foster, I. T., Kesselman, C., Meder, S., Nefedova, V., Quesnel, D., and Tuecke, S.: Data management and transfer in high-performance computational Grid environments, Parallel Comput., 28, 749–771, 2002.
Barstad, I. and Schüller, F.: An extension of Smith's linear theory of orographic precipitation: introduction of vertical layers, J. Atmos. Sci., 68, 2695–2709, 2011.
Berger, M., Zangerl, T., and Fahringer, T.: Analysis of overhead and waiting time in the EGEE production Grid, in: Proceedings of the Cracow Grid Workshop, 2008, 287–294, 2009.
Berriman, G. B., Deelman, E., Juve, G., Rynge, M., and Vöckler, J.-S.: The application of cloud computing to scientific workflows: a study of cost and performance, Philos. T. R. Soc. A., 371, 20120066, https://doi.org/10.1098/rsta.2012.0066, 2013.
Blanco, C., Cofino, A. S., and Fernandez-Quiruelas, V.: WRF4SG: a scientific gateway for climate experiment workflows, Geophys. Res. Abstr., EGU2013-11535, EGU General Assembly 2013, Vienna, Austria, 2013.
Publications Copernicus
Download
Short summary
Three practical meteorological applications with different characteristics highlight the core computer science aspects and applicability of distributed computing to meteorology. Presenting cloud and grid computing this paper shows use case scenarios fitting a wide range of meteorological applications from operational to research studies. The paper concludes that distributed computing complements and extends existing high performance computing concepts.
Three practical meteorological applications with different characteristics highlight the core...
Citation