Articles | Volume 8, issue 7
https://doi.org/10.5194/gmd-8-2067-2015
https://doi.org/10.5194/gmd-8-2067-2015
Development and technical paper
 | 
13 Jul 2015
Development and technical paper |  | 13 Jul 2015

Experiences with distributed computing for meteorological applications: grid computing and cloud computing

F. Oesterle, S. Ostermann, R. Prodan, and G. J. Mayr

Related authors

Particle and front tracking in experimental and computational avalanche dynamics
Michael Neuhauser, Anselm Köhler, Anna Wirbel, Felix Oesterle, Wolfgang Fellin, Johannes Gerstmayr, Falko Dressler, and Jan-Thomas Fischer
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-164,https://doi.org/10.5194/nhess-2024-164, 2024
Preprint under review for NHESS
Short summary
AvaFrame com1DFA (v1.3): a thickness-integrated computational avalanche module – theory, numerics, and testing
Matthias Tonnel, Anna Wirbel, Felix Oesterle, and Jan-Thomas Fischer
Geosci. Model Dev., 16, 7013–7035, https://doi.org/10.5194/gmd-16-7013-2023,https://doi.org/10.5194/gmd-16-7013-2023, 2023
Short summary

Related subject area

Atmospheric sciences
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024,https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024,https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024,https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024,https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024,https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary

Cited articles

Allcock, B., Bester, J., Bresnahan, J., Chervenak, A. L., Foster, I. T., Kesselman, C., Meder, S., Nefedova, V., Quesnel, D., and Tuecke, S.: Data management and transfer in high-performance computational Grid environments, Parallel Comput., 28, 749–771, 2002.
Barstad, I. and Schüller, F.: An extension of Smith's linear theory of orographic precipitation: introduction of vertical layers, J. Atmos. Sci., 68, 2695–2709, 2011.
Berger, M., Zangerl, T., and Fahringer, T.: Analysis of overhead and waiting time in the EGEE production Grid, in: Proceedings of the Cracow Grid Workshop, 2008, 287–294, 2009.
Berriman, G. B., Deelman, E., Juve, G., Rynge, M., and Vöckler, J.-S.: The application of cloud computing to scientific workflows: a study of cost and performance, Philos. T. R. Soc. A., 371, 20120066, https://doi.org/10.1098/rsta.2012.0066, 2013.
Blanco, C., Cofino, A. S., and Fernandez-Quiruelas, V.: WRF4SG: a scientific gateway for climate experiment workflows, Geophys. Res. Abstr., EGU2013-11535, EGU General Assembly 2013, Vienna, Austria, 2013.
Download
Short summary
Three practical meteorological applications with different characteristics highlight the core computer science aspects and applicability of distributed computing to meteorology. Presenting cloud and grid computing this paper shows use case scenarios fitting a wide range of meteorological applications from operational to research studies. The paper concludes that distributed computing complements and extends existing high performance computing concepts.