Articles | Volume 8, issue 7
https://doi.org/10.5194/gmd-8-2067-2015
https://doi.org/10.5194/gmd-8-2067-2015
Development and technical paper
 | 
13 Jul 2015
Development and technical paper |  | 13 Jul 2015

Experiences with distributed computing for meteorological applications: grid computing and cloud computing

F. Oesterle, S. Ostermann, R. Prodan, and G. J. Mayr

Related authors

Particle and front tracking in experimental and computational avalanche dynamics
Michael Neuhauser, Anselm Köhler, Anna Wirbel, Felix Oesterle, Wolfgang Fellin, Johannes Gerstmayr, Falko Dressler, and Jan-Thomas Fischer
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-164,https://doi.org/10.5194/nhess-2024-164, 2024
Preprint under review for NHESS
Short summary
AvaFrame com1DFA (v1.3): a thickness-integrated computational avalanche module – theory, numerics, and testing
Matthias Tonnel, Anna Wirbel, Felix Oesterle, and Jan-Thomas Fischer
Geosci. Model Dev., 16, 7013–7035, https://doi.org/10.5194/gmd-16-7013-2023,https://doi.org/10.5194/gmd-16-7013-2023, 2023
Short summary

Related subject area

Atmospheric sciences
Development of the CMA-GFS-AERO 4D-Var assimilation system v1.0 – Part 1: System description and preliminary experimental results
Yongzhu Liu, Xiaoye Zhang, Wei Han, Chao Wang, Wenxing Jia, Deying Wang, Zhaorong Zhuang, and Xueshun Shen
Geosci. Model Dev., 18, 4855–4876, https://doi.org/10.5194/gmd-18-4855-2025,https://doi.org/10.5194/gmd-18-4855-2025, 2025
Short summary
Optimized dynamic mode decomposition for reconstruction and forecasting of atmospheric chemistry data
Meghana Velagar, Christoph Keller, and J. Nathan Kutz
Geosci. Model Dev., 18, 4667–4684, https://doi.org/10.5194/gmd-18-4667-2025,https://doi.org/10.5194/gmd-18-4667-2025, 2025
Short summary
Interpolating turbulent heat fluxes missing from a prairie observation on the Tibetan Plateau using artificial intelligence models
Quanzhe Hou, Zhiqiu Gao, Zexia Duan, and Minghui Yu
Geosci. Model Dev., 18, 4625–4641, https://doi.org/10.5194/gmd-18-4625-2025,https://doi.org/10.5194/gmd-18-4625-2025, 2025
Short summary
Carbon dioxide plume dispersion simulated at the hectometer scale using DALES: model formulation and observational evaluation
Arseniy Karagodin-Doyennel, Fredrik Jansson, Bart J. H. van Stratum, Hugo Denier van der Gon, Jordi Vilà-Guerau de Arellano, and Sander Houweling
Geosci. Model Dev., 18, 4571–4599, https://doi.org/10.5194/gmd-18-4571-2025,https://doi.org/10.5194/gmd-18-4571-2025, 2025
Short summary
Low-level jets in the North and Baltic seas: mesoscale model sensitivity and climatology using WRF V4.2.1
Bjarke T. E. Olsen, Andrea N. Hahmann, Nicolas G. Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
Geosci. Model Dev., 18, 4499–4533, https://doi.org/10.5194/gmd-18-4499-2025,https://doi.org/10.5194/gmd-18-4499-2025, 2025
Short summary

Cited articles

Allcock, B., Bester, J., Bresnahan, J., Chervenak, A. L., Foster, I. T., Kesselman, C., Meder, S., Nefedova, V., Quesnel, D., and Tuecke, S.: Data management and transfer in high-performance computational Grid environments, Parallel Comput., 28, 749–771, 2002.
Barstad, I. and Schüller, F.: An extension of Smith's linear theory of orographic precipitation: introduction of vertical layers, J. Atmos. Sci., 68, 2695–2709, 2011.
Berger, M., Zangerl, T., and Fahringer, T.: Analysis of overhead and waiting time in the EGEE production Grid, in: Proceedings of the Cracow Grid Workshop, 2008, 287–294, 2009.
Berriman, G. B., Deelman, E., Juve, G., Rynge, M., and Vöckler, J.-S.: The application of cloud computing to scientific workflows: a study of cost and performance, Philos. T. R. Soc. A., 371, 20120066, https://doi.org/10.1098/rsta.2012.0066, 2013.
Blanco, C., Cofino, A. S., and Fernandez-Quiruelas, V.: WRF4SG: a scientific gateway for climate experiment workflows, Geophys. Res. Abstr., EGU2013-11535, EGU General Assembly 2013, Vienna, Austria, 2013.
Download
Short summary
Three practical meteorological applications with different characteristics highlight the core computer science aspects and applicability of distributed computing to meteorology. Presenting cloud and grid computing this paper shows use case scenarios fitting a wide range of meteorological applications from operational to research studies. The paper concludes that distributed computing complements and extends existing high performance computing concepts.
Share