Articles | Volume 8, issue 7
https://doi.org/10.5194/gmd-8-1991-2015
https://doi.org/10.5194/gmd-8-1991-2015
Model description paper
 | 
07 Jul 2015
Model description paper |  | 07 Jul 2015

System for Automated Geoscientific Analyses (SAGA) v. 2.1.4

O. Conrad, B. Bechtel, M. Bock, H. Dietrich, E. Fischer, L. Gerlitz, J. Wehberg, V. Wichmann, and J. Böhner

Related authors

CHELSA-W5E5: Daily 1 km meteorological forcing data for climate impact studies
Dirk Nikolaus Karger, Stefan Lange, Chantal Hari, Christopher P. O. Reyer, Olaf Conrad, Niklaus E. Zimmermann, and Katja Frieler
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-367,https://doi.org/10.5194/essd-2022-367, 2022
Revised manuscript accepted for ESSD
Short summary
SaLEM (v1.0) – the Soil and Landscape Evolution Model (SaLEM) for simulation of regolith depth in periglacial environments
Michael Bock, Olaf Conrad, Andreas Günther, Ernst Gehrt, Rainer Baritz, and Jürgen Böhner
Geosci. Model Dev., 11, 1641–1652, https://doi.org/10.5194/gmd-11-1641-2018,https://doi.org/10.5194/gmd-11-1641-2018, 2018
Short summary

Related subject area

Climate and Earth system modeling
Differentiable programming for Earth system modeling
Maximilian Gelbrecht, Alistair White, Sebastian Bathiany, and Niklas Boers
Geosci. Model Dev., 16, 3123–3135, https://doi.org/10.5194/gmd-16-3123-2023,https://doi.org/10.5194/gmd-16-3123-2023, 2023
Short summary
Evaluation of CMIP6 model performances in simulating fire weather spatiotemporal variability on global and regional scales
Carolina Gallo, Jonathan M. Eden, Bastien Dieppois, Igor Drobyshev, Peter Z. Fulé, Jesús San-Miguel-Ayanz, and Matthew Blackett
Geosci. Model Dev., 16, 3103–3122, https://doi.org/10.5194/gmd-16-3103-2023,https://doi.org/10.5194/gmd-16-3103-2023, 2023
Short summary
Data-driven aeolian dust emission scheme for climate modelling evaluated with EMAC 2.55.2
Klaus Klingmüller and Jos Lelieveld
Geosci. Model Dev., 16, 3013–3028, https://doi.org/10.5194/gmd-16-3013-2023,https://doi.org/10.5194/gmd-16-3013-2023, 2023
Short summary
Testing the reconstruction of modelled particulate organic carbon from surface ecosystem components using PlankTOM12 and machine learning
Anna Denvil-Sommer, Erik T. Buitenhuis, Rainer Kiko, Fabien Lombard, Lionel Guidi, and Corinne Le Quéré
Geosci. Model Dev., 16, 2995–3012, https://doi.org/10.5194/gmd-16-2995-2023,https://doi.org/10.5194/gmd-16-2995-2023, 2023
Short summary
An improved method of the Globally Resolved Energy Balance model by the Bayesian networks
Zhenxia Liu, Zengjie Wang, Jian Wang, Zhengfang Zhang, Dongshuang Li, Zhaoyuan Yu, Linwang Yuan, and Wen Luo
Geosci. Model Dev., 16, 2939–2955, https://doi.org/10.5194/gmd-16-2939-2023,https://doi.org/10.5194/gmd-16-2939-2023, 2023
Short summary

Cited articles

Aichner, B., Herzschuh, U., Wilkes, H., Vieth, A., and Böhner, J.: δD values of n-alkanes in Tibetan lake sediments and aquatic macrophytes – A surface sediment study and application to a 16 ka record from Lake Koucha, Org. Geochem., 41, 779–790, https://doi.org/10.1016/j.orggeochem.2010.05.010, 2010.
Asmussen, P., Conrad, O., Günther, A., Kirsch, M., and Riller, U.: Semi-automatic segmentation of petrographic thin section images using a "seeded-region growing algorithm" with an application to characterize wheathered subarkose sandstone, Comput. Geosci., https://doi.org/10.1016/j.cageo.2015.05.001, in press, 2015.
Bechtel, B.: Multitemporal Landsat data for urban heat island assessment and classification of local climate zones, in: Urban Remote Sensing Event (JURSE), 2011 Joint, Presented at the Urban Remote Sensing Event (JURSE), 2011 Joint, IEEE, 129–132, https://doi.org/10.1109/JURSE.2011.5764736, 2011a.
Bechtel, B.: Multisensorale Fernerkundungsdaten zur mikroklimatischen Beschreibung und Klassifikation urbaner Strukturen, Photogramm.-Fernerkund.-Geoinformation, 2011, 325–338, 2011b.
Bechtel, B.: Robustness of Annual Cycle Parameters to Characterize the Urban Thermal Landscapes, IEEE Geosci. Remote Sens. Lett., 9, 876–880, https://doi.org/10.1109/LGRS.2012.2185034, 2012.
Download
Short summary
The System for Automated Geoscientific Analyses (SAGA) is a comprehensive and globally established open source geographic information system (GIS) for scientific analysis and modeling. The current version 2.1.4 offers more than 700 tools that represent the broad scopes of SAGA in numerous fields of geoscientific endeavor. In this paper, we inform about the system’s architecture and functionality and highlight the wide spectrum of scientific applications of SAGA in a review of published studies.