Articles | Volume 8, issue 7
https://doi.org/10.5194/gmd-8-1955-2015
https://doi.org/10.5194/gmd-8-1955-2015
Methods for assessment of models
 | 
07 Jul 2015
Methods for assessment of models |  | 07 Jul 2015

GASAKe: forecasting landslide activations by a genetic-algorithms-based hydrological model

O. G. Terranova, S. L. Gariano, P. Iaquinta, and G. G. R. Iovine

Related authors

Rainstorms able to induce flash floods in a Mediterranean-climate region (Calabria, southern Italy)
O. G. Terranova and S. L. Gariano
Nat. Hazards Earth Syst. Sci., 14, 2423–2434, https://doi.org/10.5194/nhess-14-2423-2014,https://doi.org/10.5194/nhess-14-2423-2014, 2014

Related subject area

Climate and Earth system modeling
Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled to FESOM2.5 and NEMOv3.4
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025,https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Subsurface hydrological controls on the short-term effects of hurricanes on nitrate–nitrogen runoff loading: a case study of Hurricane Ida using the Energy Exascale Earth System Model (E3SM) Land Model (v2.1)
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev., 18, 19–32, https://doi.org/10.5194/gmd-18-19-2025,https://doi.org/10.5194/gmd-18-19-2025, 2025
Short summary
CARIB12: a regional Community Earth System Model/Modular Ocean Model 6 configuration of the Caribbean Sea
Giovanni Seijo-Ellis, Donata Giglio, Gustavo Marques, and Frank Bryan
Geosci. Model Dev., 17, 8989–9021, https://doi.org/10.5194/gmd-17-8989-2024,https://doi.org/10.5194/gmd-17-8989-2024, 2024
Short summary
Architectural insights into and training methodology optimization of Pangu-Weather
Deifilia To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
Geosci. Model Dev., 17, 8873–8884, https://doi.org/10.5194/gmd-17-8873-2024,https://doi.org/10.5194/gmd-17-8873-2024, 2024
Short summary
Evaluation of global fire simulations in CMIP6 Earth system models
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024,https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary

Cited articles

Aleotti, P.: A warning system for rainfall-induced shallow failures, Eng. Geol., 73, 247–265, 2004.
Alfieri, L., Salamon, P., Pappenberger, F., Wetterhall, F., and Thielen, J.: Operational early warning systems for water-related hazards in Europe, Environ. Sci. Policy, 21, 35–49, 2012.
AMRA: Overview of intense rainfall on volcanic soils–regional and local scale, in: SafeLand – Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies, edited by: Crosta, G. B., Agliardi, F., Frattini, P., and Sosio, R., 101–122, 2012.
Berti, M., Martina, M. L. V., Franceschini, S., Pignone, S., Simoni, A., and Pizziolo, M.: Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach, J. Geophys. Res., 117, F04006, https://doi.org/10.1029/2012JF002367, 2012.
Download
Short summary
A model for predicting the timing of activation of rainfall-induced landslides is presented. Calibration against real events is based on genetic algorithms, and provides a family of optimal solutions (kernels) that maximize a fitness function. Accordingly, a set of mobility functions is obtained through convolution with rainfall. Once properly validated, the model allows one to estimate future landslide activations in the same study area, by employing either recorded or forecasted rainfall.