Articles | Volume 8, issue 5
https://doi.org/10.5194/gmd-8-1383-2015
https://doi.org/10.5194/gmd-8-1383-2015
Development and technical paper
 | 
13 May 2015
Development and technical paper |  | 13 May 2015

Development and evaluation of the Screening Trajectory Ozone Prediction System (STOPS, version 1.0)

B. H. Czader, P. Percell, D. Byun, S. Kim, and Y. Choi

Related authors

The impact of observation nudging on simulated meteorology and ozone concentrations during DISCOVER-AQ 2013 Texas campaign
Xiangshang Li, Yunsoo Choi, Beata Czader, Anirban Roy, Hyuncheol Kim, Barry Lefer, and Shuai Pan
Atmos. Chem. Phys., 16, 3127–3144, https://doi.org/10.5194/acp-16-3127-2016,https://doi.org/10.5194/acp-16-3127-2016, 2016
Short summary
Impact of updated traffic emissions on HONO mixing ratios simulated for urban site in Houston, Texas
B. H. Czader, Y. Choi, X. Li, S. Alvarez, and B. Lefer
Atmos. Chem. Phys., 15, 1253–1263, https://doi.org/10.5194/acp-15-1253-2015,https://doi.org/10.5194/acp-15-1253-2015, 2015
Short summary

Related subject area

Atmospheric sciences
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025,https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025,https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025,https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025,https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary
Forecasting contrail climate forcing for flight planning and air traffic management applications: the CocipGrid model in pycontrails 0.51.0
Zebediah Engberg, Roger Teoh, Tristan Abbott, Thomas Dean, Marc E. J. Stettler, and Marc L. Shapiro
Geosci. Model Dev., 18, 253–286, https://doi.org/10.5194/gmd-18-253-2025,https://doi.org/10.5194/gmd-18-253-2025, 2025
Short summary

Cited articles

Appel, K., Chemel, C., Roselle, S. J., Francis, X. V., Hu, R.-M., Sokhi, R. S., Rao, S. T., and Galmarini, S.: Examination of the Community Multiscale Air Quality (CMAQ) model performance over the North American and European domains, Atmos. Environ., 53, 142–155, 2012.
Arnold, J. R. and Dennis, R. L.: Testing CMAQ chemistry sensitivities in base case and emissions control runs at SEARCH and SOS99 surface sites in the southeastern US, Atmos. Environ., 40, 5027–5040, 2006.
Byun, D. and Schere, K. L.: Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System, Appl. Mech. Rev., 59, 51–77, 2006.
Byun, D. W., Kim, S.-T., and Kim, S.-B.: Evaluation of air quality models for the simulation of a high ozone episode in the Houston metropolitan area, Atmos. Environ., 41, 837–853, 2007.
Czader, B. H., Byun, D. W., Kim, S.-T., and Carter, W. P. L.: A study of VOC reactivity in the Houston-Galveston air mixture utilizing an extended version of SAPRC-99 chemical mechanism, Atmos. Environ., 42, 5733–5742, 2008.
Download
Short summary
This paper presents the development and evaluation of a hybrid Lagrangian-Eulerian modeling tool based on the CMAQ model. In this tool, a small sub-domain consisting of grid cells in horizontal and veridical directions follows a trajectory defined by the mean mixed-layer wind. The advantage of this tool compared to other Lagrangian models is its capability to utilize realistic boundary conditions that change with space and time as well as a detailed treatment of chemical reactions.