Articles | Volume 8, issue 5
https://doi.org/10.5194/gmd-8-1383-2015
https://doi.org/10.5194/gmd-8-1383-2015
Development and technical paper
 | 
13 May 2015
Development and technical paper |  | 13 May 2015

Development and evaluation of the Screening Trajectory Ozone Prediction System (STOPS, version 1.0)

B. H. Czader, P. Percell, D. Byun, S. Kim, and Y. Choi

Related authors

The impact of observation nudging on simulated meteorology and ozone concentrations during DISCOVER-AQ 2013 Texas campaign
Xiangshang Li, Yunsoo Choi, Beata Czader, Anirban Roy, Hyuncheol Kim, Barry Lefer, and Shuai Pan
Atmos. Chem. Phys., 16, 3127–3144, https://doi.org/10.5194/acp-16-3127-2016,https://doi.org/10.5194/acp-16-3127-2016, 2016
Short summary
Impact of updated traffic emissions on HONO mixing ratios simulated for urban site in Houston, Texas
B. H. Czader, Y. Choi, X. Li, S. Alvarez, and B. Lefer
Atmos. Chem. Phys., 15, 1253–1263, https://doi.org/10.5194/acp-15-1253-2015,https://doi.org/10.5194/acp-15-1253-2015, 2015
Short summary

Related subject area

Atmospheric sciences
Evaluation of dust emission and land surface schemes in predicting a mega Asian dust storm over South Korea using WRF-Chem
Ji Won Yoon, Seungyeon Lee, Ebony Lee, and Seon Ki Park
Geosci. Model Dev., 18, 2303–2328, https://doi.org/10.5194/gmd-18-2303-2025,https://doi.org/10.5194/gmd-18-2303-2025, 2025
Short summary
Sensitivity studies of a four-dimensional local ensemble transform Kalman filter coupled with WRF-Chem version 3.9.1 for improving particulate matter simulation accuracy
Jianyu Lin, Tie Dai, Lifang Sheng, Weihang Zhang, Shangfei Hai, and Yawen Kong
Geosci. Model Dev., 18, 2231–2248, https://doi.org/10.5194/gmd-18-2231-2025,https://doi.org/10.5194/gmd-18-2231-2025, 2025
Short summary
A Bayesian method for predicting background radiation at environmental monitoring stations in local-scale networks
Jens Peter Karolus Wenceslaus Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers
Geosci. Model Dev., 18, 1989–2003, https://doi.org/10.5194/gmd-18-1989-2025,https://doi.org/10.5194/gmd-18-1989-2025, 2025
Short summary
Inclusion of the ECMWF ecRad radiation scheme (v1.5.0) in the MAR (v3.14), regional evaluation for Belgium, and assessment of surface shortwave spectral fluxes at Uccle
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025,https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Development of a fast radiative transfer model for ground-based microwave radiometers (ARMS-gb v1.0): validation and comparison to RTTOV-gb
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
Geosci. Model Dev., 18, 1947–1964, https://doi.org/10.5194/gmd-18-1947-2025,https://doi.org/10.5194/gmd-18-1947-2025, 2025
Short summary

Cited articles

Appel, K., Chemel, C., Roselle, S. J., Francis, X. V., Hu, R.-M., Sokhi, R. S., Rao, S. T., and Galmarini, S.: Examination of the Community Multiscale Air Quality (CMAQ) model performance over the North American and European domains, Atmos. Environ., 53, 142–155, 2012.
Arnold, J. R. and Dennis, R. L.: Testing CMAQ chemistry sensitivities in base case and emissions control runs at SEARCH and SOS99 surface sites in the southeastern US, Atmos. Environ., 40, 5027–5040, 2006.
Byun, D. and Schere, K. L.: Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System, Appl. Mech. Rev., 59, 51–77, 2006.
Byun, D. W., Kim, S.-T., and Kim, S.-B.: Evaluation of air quality models for the simulation of a high ozone episode in the Houston metropolitan area, Atmos. Environ., 41, 837–853, 2007.
Czader, B. H., Byun, D. W., Kim, S.-T., and Carter, W. P. L.: A study of VOC reactivity in the Houston-Galveston air mixture utilizing an extended version of SAPRC-99 chemical mechanism, Atmos. Environ., 42, 5733–5742, 2008.
Download
Short summary
This paper presents the development and evaluation of a hybrid Lagrangian-Eulerian modeling tool based on the CMAQ model. In this tool, a small sub-domain consisting of grid cells in horizontal and veridical directions follows a trajectory defined by the mean mixed-layer wind. The advantage of this tool compared to other Lagrangian models is its capability to utilize realistic boundary conditions that change with space and time as well as a detailed treatment of chemical reactions.
Share