Articles | Volume 7, issue 5
https://doi.org/10.5194/gmd-7-2517-2014
https://doi.org/10.5194/gmd-7-2517-2014
Development and technical paper
 | 
29 Oct 2014
Development and technical paper |  | 29 Oct 2014

Assessing optimal set of implemented physical parameterization schemes in a multi-physics land surface model using genetic algorithm

S. Hong, X. Yu, S. K. Park, Y.-S. Choi, and B. Myoung

Related authors

Estimating hourly ground-level aerosols using GEMS aerosol optical depth: A machine learning approach
Sungmin O, Ji Won Yoon, and Seon Ki Park
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-142,https://doi.org/10.5194/amt-2024-142, 2024
Revised manuscript accepted for AMT
Short summary
Evaluation of Dust Emission and Land Surface Schemes in Predicting a Mega Asian Dust Storm over South Korea Using WRF-Chem (v4.3.3)
Ji Won Yoon, Seungyeon Lee, Ebony Lee, and Seon Ki Park
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-114,https://doi.org/10.5194/gmd-2024-114, 2024
Revised manuscript accepted for GMD
Short summary
First evaluation of the GEMS formaldehyde product against TROPOMI and ground-based column measurements during the in-orbit test period
Gitaek T. Lee, Rokjin J. Park, Hyeong-Ahn Kwon, Eunjo S. Ha, Sieun D. Lee, Seunga Shin, Myoung-Hwan Ahn, Mina Kang, Yong-Sang Choi, Gyuyeon Kim, Dong-Won Lee, Deok-Rae Kim, Hyunkee Hong, Bavo Langerock, Corinne Vigouroux, Christophe Lerot, Francois Hendrick, Gaia Pinardi, Isabelle De Smedt, Michel Van Roozendael, Pucai Wang, Heesung Chong, Yeseul Cho, and Jhoon Kim
Atmos. Chem. Phys., 24, 4733–4749, https://doi.org/10.5194/acp-24-4733-2024,https://doi.org/10.5194/acp-24-4733-2024, 2024
Short summary
First results of cloud retrieval from the Geostationary Environmental Monitoring Spectrometer
Bo-Ram Kim, Gyuyeon Kim, Minjeong Cho, Yong-Sang Choi, and Jhoon Kim
Atmos. Meas. Tech., 17, 453–470, https://doi.org/10.5194/amt-17-453-2024,https://doi.org/10.5194/amt-17-453-2024, 2024
Short summary
Optimized Stochastic Representation of Soil States Model Uncertainty of WRF (v4.2) in the Ensemble Data Assimilation System
Sujeong Lim, Seon Ki Park, and Claudio Cassardo
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-28,https://doi.org/10.5194/gmd-2023-28, 2023
Revised manuscript not accepted
Short summary

Related subject area

Climate and Earth system modeling
Evaluation of CORDEX ERA5-forced NARCliM2.0 regional climate models over Australia using the Weather Research and Forecasting (WRF) model version 4.1.2
Giovanni Di Virgilio, Fei Ji, Eugene Tam, Jason P. Evans, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Yue Li, and Matthew L. Riley
Geosci. Model Dev., 18, 703–724, https://doi.org/10.5194/gmd-18-703-2025,https://doi.org/10.5194/gmd-18-703-2025, 2025
Short summary
Design, evaluation, and future projections of the NARCliM2.0 CORDEX-CMIP6 Australasia regional climate ensemble
Giovanni Di Virgilio, Jason P. Evans, Fei Ji, Eugene Tam, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Stephen White, Yue Li, Moutassem El Rafei, Rishav Goyal, Matthew L. Riley, and Jyothi Lingala
Geosci. Model Dev., 18, 671–702, https://doi.org/10.5194/gmd-18-671-2025,https://doi.org/10.5194/gmd-18-671-2025, 2025
Short summary
Amending the algorithm of aerosol–radiation interactions in WRF-Chem (v4.4)
Jiawang Feng, Chun Zhao, Qiuyan Du, Zining Yang, and Chen Jin
Geosci. Model Dev., 18, 585–603, https://doi.org/10.5194/gmd-18-585-2025,https://doi.org/10.5194/gmd-18-585-2025, 2025
Short summary
The very-high-resolution configuration of the EC-Earth global model for HighResMIP
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev., 18, 461–482, https://doi.org/10.5194/gmd-18-461-2025,https://doi.org/10.5194/gmd-18-461-2025, 2025
Short summary
GOSI9: UK Global Ocean and Sea Ice configurations
Catherine Guiavarc'h, David Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
Geosci. Model Dev., 18, 377–403, https://doi.org/10.5194/gmd-18-377-2025,https://doi.org/10.5194/gmd-18-377-2025, 2025
Short summary

Cited articles

Ball, J., Woodrow, L. E., and Beny, J. A.: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, In Progress in Photosynthesis Research, Volume 4 Proceedings of the VIIth International Congress on Photosynthesis, Providence, Rhode Island, USA, 10–15 August 1986, 221–224, 1987.
Bastani, M., Kholghi, M., and Rakhshandehroo, G. R.: Inverse modeling of variable-density groundwater flow in a semi-arid area in Iran using a genetic algorithm, Hydrogeol. J., 18, 1191–1203, 2010.
Bulatewicz, T., Jin, W., Staggenborg, S., Lauwo, S., Miller, M., Das, S., Andresen, D., Peterson, J., Steward, D. R., and Welch, S. M.: Calibration of a crop model to irrigated water use using a genetic algorithm, Hydrol. Earth Syst. Sci., 13, 1467–1483, https://doi.org/10.5194/hess-13-1467-2009, 2009.
Brutsaert, W. A.: Evaporation Into the Atmosphere, D. Reidel, Dordrecht, Netherlands, 299 pp, 1982.
Cai, X., Yang, Z.-L., David, C. H., Niu, G.-Y., and Rodell, M.: Hydrological evaluation of the Noah-MP land surface model for the Mississipi River Basin. J. Geophys. Res.-Atmos., 119, 23–38, https://doi.org/10.1002/2013JD020792, 2014.
Download
Share