Articles | Volume 7, issue 5
https://doi.org/10.5194/gmd-7-2517-2014
https://doi.org/10.5194/gmd-7-2517-2014
Development and technical paper
 | 
29 Oct 2014
Development and technical paper |  | 29 Oct 2014

Assessing optimal set of implemented physical parameterization schemes in a multi-physics land surface model using genetic algorithm

S. Hong, X. Yu, S. K. Park, Y.-S. Choi, and B. Myoung

Related authors

Estimating hourly ground-level aerosols using GEMS aerosol optical depth: A machine learning approach
Sungmin O, Ji Won Yoon, and Seon Ki Park
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-142,https://doi.org/10.5194/amt-2024-142, 2024
Preprint under review for AMT
Short summary
Evaluation of Dust Emission and Land Surface Schemes in Predicting a Mega Asian Dust Storm over South Korea Using WRF-Chem (v4.3.3)
Ji Won Yoon, Seungyeon Lee, Ebony Lee, and Seon Ki Park
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-114,https://doi.org/10.5194/gmd-2024-114, 2024
Preprint under review for GMD
Short summary
First evaluation of the GEMS formaldehyde product against TROPOMI and ground-based column measurements during the in-orbit test period
Gitaek T. Lee, Rokjin J. Park, Hyeong-Ahn Kwon, Eunjo S. Ha, Sieun D. Lee, Seunga Shin, Myoung-Hwan Ahn, Mina Kang, Yong-Sang Choi, Gyuyeon Kim, Dong-Won Lee, Deok-Rae Kim, Hyunkee Hong, Bavo Langerock, Corinne Vigouroux, Christophe Lerot, Francois Hendrick, Gaia Pinardi, Isabelle De Smedt, Michel Van Roozendael, Pucai Wang, Heesung Chong, Yeseul Cho, and Jhoon Kim
Atmos. Chem. Phys., 24, 4733–4749, https://doi.org/10.5194/acp-24-4733-2024,https://doi.org/10.5194/acp-24-4733-2024, 2024
Short summary
First results of cloud retrieval from the Geostationary Environmental Monitoring Spectrometer
Bo-Ram Kim, Gyuyeon Kim, Minjeong Cho, Yong-Sang Choi, and Jhoon Kim
Atmos. Meas. Tech., 17, 453–470, https://doi.org/10.5194/amt-17-453-2024,https://doi.org/10.5194/amt-17-453-2024, 2024
Short summary
Optimized Stochastic Representation of Soil States Model Uncertainty of WRF (v4.2) in the Ensemble Data Assimilation System
Sujeong Lim, Seon Ki Park, and Claudio Cassardo
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-28,https://doi.org/10.5194/gmd-2023-28, 2023
Revised manuscript not accepted
Short summary

Related subject area

Climate and Earth system modeling
An extensible perturbed parameter ensemble for the Community Atmosphere Model version 6
Trude Eidhammer, Andrew Gettelman, Katherine Thayer-Calder, Duncan Watson-Parris, Gregory Elsaesser, Hugh Morrison, Marcus van Lier-Walqui, Ci Song, and Daniel McCoy
Geosci. Model Dev., 17, 7835–7853, https://doi.org/10.5194/gmd-17-7835-2024,https://doi.org/10.5194/gmd-17-7835-2024, 2024
Short summary
Coupling the regional climate model ICON-CLM v2.6.6 to the Earth system model GCOAST-AHOI v2.0 using OASIS3-MCT v4.0
Ha Thi Minh Ho-Hagemann, Vera Maurer, Stefan Poll, and Irina Fast
Geosci. Model Dev., 17, 7815–7834, https://doi.org/10.5194/gmd-17-7815-2024,https://doi.org/10.5194/gmd-17-7815-2024, 2024
Short summary
A fully coupled solid-particle microphysics scheme for stratospheric aerosol injections within the aerosol–chemistry–climate model SOCOL-AERv2
Sandro Vattioni, Rahel Weber, Aryeh Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
Geosci. Model Dev., 17, 7767–7793, https://doi.org/10.5194/gmd-17-7767-2024,https://doi.org/10.5194/gmd-17-7767-2024, 2024
Short summary
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024,https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev., 17, 7629–7643, https://doi.org/10.5194/gmd-17-7629-2024,https://doi.org/10.5194/gmd-17-7629-2024, 2024
Short summary

Cited articles

Ball, J., Woodrow, L. E., and Beny, J. A.: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, In Progress in Photosynthesis Research, Volume 4 Proceedings of the VIIth International Congress on Photosynthesis, Providence, Rhode Island, USA, 10–15 August 1986, 221–224, 1987.
Bastani, M., Kholghi, M., and Rakhshandehroo, G. R.: Inverse modeling of variable-density groundwater flow in a semi-arid area in Iran using a genetic algorithm, Hydrogeol. J., 18, 1191–1203, 2010.
Bulatewicz, T., Jin, W., Staggenborg, S., Lauwo, S., Miller, M., Das, S., Andresen, D., Peterson, J., Steward, D. R., and Welch, S. M.: Calibration of a crop model to irrigated water use using a genetic algorithm, Hydrol. Earth Syst. Sci., 13, 1467–1483, https://doi.org/10.5194/hess-13-1467-2009, 2009.
Brutsaert, W. A.: Evaporation Into the Atmosphere, D. Reidel, Dordrecht, Netherlands, 299 pp, 1982.
Cai, X., Yang, Z.-L., David, C. H., Niu, G.-Y., and Rodell, M.: Hydrological evaluation of the Noah-MP land surface model for the Mississipi River Basin. J. Geophys. Res.-Atmos., 119, 23–38, https://doi.org/10.1002/2013JD020792, 2014.