Articles | Volume 7, issue 4
Geosci. Model Dev., 7, 1779–1801, 2014
https://doi.org/10.5194/gmd-7-1779-2014
Geosci. Model Dev., 7, 1779–1801, 2014
https://doi.org/10.5194/gmd-7-1779-2014
Model description paper
25 Aug 2014
Model description paper | 25 Aug 2014

A flexible three-dimensional stratocumulus, cumulus and cirrus cloud generator (3DCLOUD) based on drastically simplified atmospheric equations and the Fourier transform framework

F. Szczap et al.

Related authors

Empirical model of multiple-scattering effect on single-wavelength lidar data of aerosols and clouds
Valery Shcherbakov, Frédéric Szczap, Alaa Alkasem, Guillaume Mioche, and Céline Cornet
Atmos. Meas. Tech., 15, 1729–1754, https://doi.org/10.5194/amt-15-1729-2022,https://doi.org/10.5194/amt-15-1729-2022, 2022
Short summary
McRALI: a Monte Carlo high-spectral-resolution lidar and Doppler radar simulator for three-dimensional cloudy atmosphere remote sensing
Frédéric Szczap, Alaa Alkasem, Guillaume Mioche, Valery Shcherbakov, Céline Cornet, Julien Delanoë, Yahya Gour, Olivier Jourdan, Sandra Banson, and Edouard Bray
Atmos. Meas. Tech., 14, 199–221, https://doi.org/10.5194/amt-14-199-2021,https://doi.org/10.5194/amt-14-199-2021, 2021
Short summary

Related subject area

Atmospheric sciences
An update on the 4D-LETKF data assimilation system for the whole neutral atmosphere
Dai Koshin, Kaoru Sato, Masashi Kohma, and Shingo Watanabe
Geosci. Model Dev., 15, 2293–2307, https://doi.org/10.5194/gmd-15-2293-2022,https://doi.org/10.5194/gmd-15-2293-2022, 2022
Short summary
Determining the sensitive parameters of the Weather Research and Forecasting (WRF) model for the simulation of tropical cyclones in the Bay of Bengal using global sensitivity analysis and machine learning
Harish Baki, Sandeep Chinta, C Balaji, and Balaji Srinivasan
Geosci. Model Dev., 15, 2133–2155, https://doi.org/10.5194/gmd-15-2133-2022,https://doi.org/10.5194/gmd-15-2133-2022, 2022
Short summary
A unified framework to estimate the origins of atmospheric moisture and heat using Lagrangian models
Jessica Keune, Dominik L. Schumacher, and Diego G. Miralles
Geosci. Model Dev., 15, 1875–1898, https://doi.org/10.5194/gmd-15-1875-2022,https://doi.org/10.5194/gmd-15-1875-2022, 2022
Short summary
Implementation of aerosol data assimilation in WRFDA (v4.0.3) for WRF-Chem (v3.9.1) using the RACM/MADE-VBS scheme
Soyoung Ha
Geosci. Model Dev., 15, 1769–1788, https://doi.org/10.5194/gmd-15-1769-2022,https://doi.org/10.5194/gmd-15-1769-2022, 2022
Short summary
Representing low-intensity fire sensible heat output in a mesoscale atmospheric model with a canopy submodel: a case study with ARPS-CANOPY (version 5.2.12)
Michael T. Kiefer, Warren E. Heilman, Shiyuan Zhong, Joseph J. Charney, Xindi Bian, Nicholas S. Skowronski, Kenneth L. Clark, Michael R. Gallagher, John L. Hom, and Matthew Patterson
Geosci. Model Dev., 15, 1713–1734, https://doi.org/10.5194/gmd-15-1713-2022,https://doi.org/10.5194/gmd-15-1713-2022, 2022
Short summary

Cited articles

Alexandrov, M. D., Marshak, A., and Ackerman, A. S.: Cellular statistical models of broken cloud fields. Part I: Theory, J. Atmos. Sci., 67, 2125–2151, https://doi.org/10.1175/2010JAS3364.1, 2010.
Asai, T.: A numerical study of the air-mass transformation over the Japan Sea in winter, J. Met. Soc. Japan, 43, 1–15, 1965.
Barker, H. W. and Liu, D. M.: Inferring optical depth of broken clouds from Landsat data, J. Climate, 8, 2620–2630, 1995.
Barker, H. W., Wiellicki B. A., and Parker, L.: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part II: validation using satellite data, J. Atmos. Sci., 53, 2304–2316, 1996.
Battaglia, A. and Mantovani, S.: Forward Monte Carlo computations of fully polarized microwave radiation in non isotropic media, J. Quant. Spectrosc. Rad. Transf., 95, 285–308, 2005.
Download