Articles | Volume 7, issue 4
Model description paper
25 Aug 2014
Model description paper |  | 25 Aug 2014

A flexible three-dimensional stratocumulus, cumulus and cirrus cloud generator (3DCLOUD) based on drastically simplified atmospheric equations and the Fourier transform framework

F. Szczap, Y. Gour, T. Fauchez, C. Cornet, T. Faure, O. Jourdan, G. Penide, and P. Dubuisson

Related authors

Empirical model of multiple-scattering effect on single-wavelength lidar data of aerosols and clouds
Valery Shcherbakov, Frédéric Szczap, Alaa Alkasem, Guillaume Mioche, and Céline Cornet
Atmos. Meas. Tech., 15, 1729–1754,,, 2022
Short summary
McRALI: a Monte Carlo high-spectral-resolution lidar and Doppler radar simulator for three-dimensional cloudy atmosphere remote sensing
Frédéric Szczap, Alaa Alkasem, Guillaume Mioche, Valery Shcherbakov, Céline Cornet, Julien Delanoë, Yahya Gour, Olivier Jourdan, Sandra Banson, and Edouard Bray
Atmos. Meas. Tech., 14, 199–221,,, 2021
Short summary

Related subject area

Atmospheric sciences
Improving trajectory calculations by FLEXPART 10.4+ using single-image super-resolution
Rüdiger Brecht, Lucie Bakels, Alex Bihlo, and Andreas Stohl
Geosci. Model Dev., 16, 2181–2192,,, 2023
Short summary
Data fusion uncertainty-enabled methods to map street-scale hourly NO2 in Barcelona: a case study with CALIOPE-Urban v1.0
Alvaro Criado, Jan Mateu Armengol, Hervé Petetin, Daniel Rodriguez-Rey, Jaime Benavides, Marc Guevara, Carlos Pérez García-Pando, Albert Soret, and Oriol Jorba
Geosci. Model Dev., 16, 2193–2213,,, 2023
Short summary
Forecasting tropical cyclone tracks in the northwestern Pacific based on a deep-learning model
Liang Wang, Bingcheng Wan, Shaohui Zhou, Haofei Sun, and Zhiqiu Gao
Geosci. Model Dev., 16, 2167–2179,,, 2023
Short summary
Accelerating models for multiphase chemical kinetics through machine learning with polynomial chaos expansion and neural networks
Thomas Berkemeier, Matteo Krüger, Aryeh Feinberg, Marcel Müller, Ulrich Pöschl, and Ulrich K. Krieger
Geosci. Model Dev., 16, 2037–2054,,, 2023
Short summary
A machine learning emulator for Lagrangian particle dispersion model footprints: a case study using NAME
Elena Fillola, Raul Santos-Rodriguez, Alistair Manning, Simon O'Doherty, and Matt Rigby
Geosci. Model Dev., 16, 1997–2009,,, 2023
Short summary

Cited articles

Alexandrov, M. D., Marshak, A., and Ackerman, A. S.: Cellular statistical models of broken cloud fields. Part I: Theory, J. Atmos. Sci., 67, 2125–2151,, 2010.
Asai, T.: A numerical study of the air-mass transformation over the Japan Sea in winter, J. Met. Soc. Japan, 43, 1–15, 1965.
Barker, H. W. and Liu, D. M.: Inferring optical depth of broken clouds from Landsat data, J. Climate, 8, 2620–2630, 1995.
Barker, H. W., Wiellicki B. A., and Parker, L.: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part II: validation using satellite data, J. Atmos. Sci., 53, 2304–2316, 1996.
Battaglia, A. and Mantovani, S.: Forward Monte Carlo computations of fully polarized microwave radiation in non isotropic media, J. Quant. Spectrosc. Rad. Transf., 95, 285–308, 2005.