Articles | Volume 7, issue 4
https://doi.org/10.5194/gmd-7-1271-2014
https://doi.org/10.5194/gmd-7-1271-2014
Model description paper
 | 
04 Jul 2014
Model description paper |  | 04 Jul 2014

C-GEM (v 1.0): a new, cost-efficient biogeochemical model for estuaries and its application to a funnel-shaped system

C. Volta, S. Arndt, H. H. G. Savenije, G. G. Laruelle, and P. Regnier

Related authors

Linking biogeochemistry to hydro-geometrical variability in tidal estuaries: a generic modeling approach
Chiara Volta, Goulven Gildas Laruelle, Sandra Arndt, and Pierre Regnier
Hydrol. Earth Syst. Sci., 20, 991–1030, https://doi.org/10.5194/hess-20-991-2016,https://doi.org/10.5194/hess-20-991-2016, 2016
Short summary

Related subject area

Biogeosciences
Alquimia v1.0: a generic interface to biogeochemical codes – a tool for interoperable development, prototyping and benchmarking for multiphysics simulators
Sergi Molins, Benjamin J. Andre, Jeffrey N. Johnson, Glenn E. Hammond, Benjamin N. Sulman, Konstantin Lipnikov, Marcus S. Day, James J. Beisman, Daniil Svyatsky, Hang Deng, Peter C. Lichtner, Carl I. Steefel, and J. David Moulton
Geosci. Model Dev., 18, 3241–3263, https://doi.org/10.5194/gmd-18-3241-2025,https://doi.org/10.5194/gmd-18-3241-2025, 2025
Short summary
Soil nitrous oxide emissions from global land ecosystems and their drivers within the LPJ-GUESS model (v4.1)
Jianyong Ma, Almut Arneth, Benjamin Smith, Peter Anthoni, Xu-Ri, Peter Eliasson, David Wårlind, Martin Wittenbrink, and Stefan Olin
Geosci. Model Dev., 18, 3131–3155, https://doi.org/10.5194/gmd-18-3131-2025,https://doi.org/10.5194/gmd-18-3131-2025, 2025
Short summary
Parameterization toolbox for a physical–biogeochemical model compatible with FABM – a case study: the coupled 1D GOTM–ECOSMO E2E for the Sylt–Rømø Bight, North Sea
Hoa Nguyen, Ute Daewel, Neil Banas, and Corinna Schrum
Geosci. Model Dev., 18, 2961–2982, https://doi.org/10.5194/gmd-18-2961-2025,https://doi.org/10.5194/gmd-18-2961-2025, 2025
Short summary
H2MV (v1.0): global physically constrained deep learning water cycle model with vegetation
Zavud Baghirov, Martin Jung, Markus Reichstein, Marco Körner, and Basil Kraft
Geosci. Model Dev., 18, 2921–2943, https://doi.org/10.5194/gmd-18-2921-2025,https://doi.org/10.5194/gmd-18-2921-2025, 2025
Short summary
NN-TOC v1: global prediction of total organic carbon in marine sediments using deep neural networks
Naveenkumar Parameswaran, Everardo González, Ewa Burwicz-Galerne, Malte Braack, and Klaus Wallmann
Geosci. Model Dev., 18, 2521–2544, https://doi.org/10.5194/gmd-18-2521-2025,https://doi.org/10.5194/gmd-18-2521-2025, 2025
Short summary

Cited articles

Abril, G., Nogueira, M., Etcheber, H., Cabeçadas, G., Lemaire, E., and Brogueira, M. J.: Behaviour of Organic Carbon in Nine Contrasting European Estuaries, Estuar. Coastal Shelf S., 54, 241–262, 2002.
Alongi, D. M.: Coastal Ecosystem Processes, 1st Edn., CRC Marine Science Series, edited by: Kennish M. J. and Lutz P. L., CRC PressI, New York, USA, 1998
Alpine, A. E. and Cloern, J. E.: Trophic interactions and direct physical effects control phytoplankton biomass and production in an estuary, Limnol. Oceanogr., 37, 946–955, 1992.
Andersson, A. J. and Mackenzie, F. T.: Shallow-water ocean: A source or sink of atmospheric CO2?, Front. Ecol. Environ., 2, 348–353, 2004
Andersson, A. J., MacKenzie, F. T., and Lerman, A.: Coastal ocean and carbonate systems in the high CO2 world of the anthropocene, Am. J. Sci., 305, 875–918, 2005.
Download
Share