Articles | Volume 6, issue 4
Geosci. Model Dev., 6, 875–882, 2013
https://doi.org/10.5194/gmd-6-875-2013

Special issue: Isaac Newton Institute programme on multiscale numerics for...

Geosci. Model Dev., 6, 875–882, 2013
https://doi.org/10.5194/gmd-6-875-2013

Model evaluation paper 03 Jul 2013

Model evaluation paper | 03 Jul 2013

Forecasts covering one month using a cut-cell model

J. Steppeler et al.

Related authors

Characteristics of precipitation extremes over the Nordic region: added value of convection-permitting modeling
Erika Médus, Emma D. Thomassen, Danijel Belušić, Petter Lind, Peter Berg, Jens H. Christensen, Ole B. Christensen, Andreas Dobler, Erik Kjellström, Jonas Olsson, and Wei Yang
Nat. Hazards Earth Syst. Sci., 22, 693–711, https://doi.org/10.5194/nhess-22-693-2022,https://doi.org/10.5194/nhess-22-693-2022, 2022
Short summary
HCLIM38: a flexible regional climate model applicable for different climate zones from coarse to convection-permitting scales
Danijel Belušić, Hylke de Vries, Andreas Dobler, Oskar Landgren, Petter Lind, David Lindstedt, Rasmus A. Pedersen, Juan Carlos Sánchez-Perrino, Erika Toivonen, Bert van Ulft, Fuxing Wang, Ulf Andrae, Yurii Batrak, Erik Kjellström, Geert Lenderink, Grigory Nikulin, Joni-Pekka Pietikäinen, Ernesto Rodríguez-Camino, Patrick Samuelsson, Erik van Meijgaard, and Minchao Wu
Geosci. Model Dev., 13, 1311–1333, https://doi.org/10.5194/gmd-13-1311-2020,https://doi.org/10.5194/gmd-13-1311-2020, 2020
Short summary
seNorge_2018, daily precipitation, and temperature datasets over Norway
Cristian Lussana, Ole Einar Tveito, Andreas Dobler, and Ketil Tunheim
Earth Syst. Sci. Data, 11, 1531–1551, https://doi.org/10.5194/essd-11-1531-2019,https://doi.org/10.5194/essd-11-1531-2019, 2019
Short summary
Are we using the right fuel to drive hydrological models? A climate impact study in the Upper Blue Nile
Stefan Liersch, Julia Tecklenburg, Henning Rust, Andreas Dobler, Madlen Fischer, Tim Kruschke, Hagen Koch, and Fred Fokko Hattermann
Hydrol. Earth Syst. Sci., 22, 2163–2185, https://doi.org/10.5194/hess-22-2163-2018,https://doi.org/10.5194/hess-22-2163-2018, 2018
Short summary
CHASE-PL Climate Projection dataset over Poland – bias adjustment of EURO-CORDEX simulations
Abdelkader Mezghani, Andreas Dobler, Jan Erik Haugen, Rasmus E. Benestad, Kajsa M. Parding, Mikołaj Piniewski, Ignacy Kardel, and Zbigniew W. Kundzewicz
Earth Syst. Sci. Data, 9, 905–925, https://doi.org/10.5194/essd-9-905-2017,https://doi.org/10.5194/essd-9-905-2017, 2017
Short summary

Related subject area

Atmospheric sciences
A unified framework to estimate the origins of atmospheric moisture and heat using Lagrangian models
Jessica Keune, Dominik L. Schumacher, and Diego G. Miralles
Geosci. Model Dev., 15, 1875–1898, https://doi.org/10.5194/gmd-15-1875-2022,https://doi.org/10.5194/gmd-15-1875-2022, 2022
Short summary
Implementation of aerosol data assimilation in WRFDA (v4.0.3) for WRF-Chem (v3.9.1) using the RACM/MADE-VBS scheme
Soyoung Ha
Geosci. Model Dev., 15, 1769–1788, https://doi.org/10.5194/gmd-15-1769-2022,https://doi.org/10.5194/gmd-15-1769-2022, 2022
Short summary
Representing low-intensity fire sensible heat output in a mesoscale atmospheric model with a canopy submodel: a case study with ARPS-CANOPY (version 5.2.12)
Michael T. Kiefer, Warren E. Heilman, Shiyuan Zhong, Joseph J. Charney, Xindi Bian, Nicholas S. Skowronski, Kenneth L. Clark, Michael R. Gallagher, John L. Hom, and Matthew Patterson
Geosci. Model Dev., 15, 1713–1734, https://doi.org/10.5194/gmd-15-1713-2022,https://doi.org/10.5194/gmd-15-1713-2022, 2022
Short summary
A machine-learning-guided adaptive algorithm to reduce the computational cost of integrating kinetics in global atmospheric chemistry models: application to GEOS-Chem versions 12.0.0 and 12.9.1
Lu Shen, Daniel J. Jacob, Mauricio Santillana, Kelvin Bates, Jiawei Zhuang, and Wei Chen
Geosci. Model Dev., 15, 1677–1687, https://doi.org/10.5194/gmd-15-1677-2022,https://doi.org/10.5194/gmd-15-1677-2022, 2022
Short summary
Deep-learning spatial principles from deterministic chemical transport models for chemical reanalysis: an application in China for PM2.5
Baolei Lyu, Ran Huang, Xinlu Wang, Weiguo Wang, and Yongtao Hu
Geosci. Model Dev., 15, 1583–1594, https://doi.org/10.5194/gmd-15-1583-2022,https://doi.org/10.5194/gmd-15-1583-2022, 2022
Short summary

Cited articles

Dobler, A.: A 2-D Finite Volume Non-Hydrostatic Atmospheric Model-Implementation of Cut Cells and Further Improvements, Diploma thesis, ETH Zürich, 2005.
Hollweg, H. D., Böhm, U., Fast, I., Hennemuth, B., Keuler, K., Keup-Thiel, E., Lautenschlager, M., Legutke, S., Radtke, K., Rockel, B., Schubert, M., Will, A., Woldt, M., and Wunram, C.: Ensemble Simulations over Europe with the Regional Climate Model CLM Forced with IPCC AR4 Global Scenarios, Tech. Rep. 3, SGA-ZMAW Hamburg, 2008.
Huffman, G. J., Adler, R. F., Bolvin, D. T., and Gu, G.: Improving the global precipitation record: GPCP version 2.1., Geophys. Res. Lett., 36, L17808, https://doi.org/10.1029/2009GL040000, 2009.
Kessler, E.: On the Distribution and Continuity of Water Substance in Atmospheric Circulations, Meteorol. Monogr., Am. Meteorol. Soc., Boston, Mass, 10, 84 pp., 1969.
Lock, S. J.: Development of a New Numerical Model for Studying Atmospheric Dynamics, Ph. D. thesis, University of Leeds, 158 pp., 2008.