Articles | Volume 6, issue 5
https://doi.org/10.5194/gmd-6-1601-2013
https://doi.org/10.5194/gmd-6-1601-2013
Development and technical paper
 | 
25 Sep 2013
Development and technical paper |  | 25 Sep 2013

A method to represent ozone response to large changes in precursor emissions using high-order sensitivity analysis in photochemical models

G. Yarwood, C. Emery, J. Jung, U. Nopmongcol, and T. Sakulyanontvittaya

Related authors

Incorporation of multi-phase halogen chemistry into Community Multiscale Air Quality (CMAQ) model
Kiyeon Kim, Chul Han Song, Kyung Man Han, Greg Yarwood, Ross Beardsley, and Saewung Kim
EGUsphere, https://doi.org/10.5194/egusphere-2025-23,https://doi.org/10.5194/egusphere-2025-23, 2025
Short summary
An investigation into atmospheric nitrous acid (HONO) processes in South Korea
Kiyeon Kim, Kyung Man Han, Chul Han Song, Hyojun Lee, Ross Beardsley, Jinhyeok Yu, Greg Yarwood, Bonyoung Koo, Jasper Madalipay, Jung-Hun Woo, and Seogju Cho
Atmos. Chem. Phys., 24, 12575–12593, https://doi.org/10.5194/acp-24-12575-2024,https://doi.org/10.5194/acp-24-12575-2024, 2024
Short summary
Recommendations on benchmarks for chemical transport model applications in China – Part 2: Ozone and Uncertainty Analysis
Ling Huang, Xinxin Zhang, Chris Emery, Qing Mu, Greg Yarwood, Hehe Zhai, Zhixu Sun, Shuhui Xue, Yangjun Wang, Joshua S. Fu, and Li Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-2199,https://doi.org/10.5194/egusphere-2024-2199, 2024
Short summary
Comprehensive Air Quality Model With Extensions, v7.20: Formulation and Evaluation for Ozone and Particulate Matter Over the US
Christopher A. Emery, Kirk R. Baker, Gary M. Wilson, and Greg Yarwood
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-48,https://doi.org/10.5194/gmd-2024-48, 2024
Preprint withdrawn
Short summary
An intercomparison of satellite, airborne, and ground-level observations with WRF–CAMx simulations of NO2 columns over Houston, Texas, during the September 2021 TRACER-AQ campaign
M. Omar Nawaz, Jeremiah Johnson, Greg Yarwood, Benjamin de Foy, Laura Judd, and Daniel L. Goldberg
Atmos. Chem. Phys., 24, 6719–6741, https://doi.org/10.5194/acp-24-6719-2024,https://doi.org/10.5194/acp-24-6719-2024, 2024
Short summary

Related subject area

Atmospheric sciences
Quantifying the analysis uncertainty for nowcasting application
Yanwei Zhu, Aitor Atencia, Markus Dabernig, and Yong Wang
Geosci. Model Dev., 18, 1545–1559, https://doi.org/10.5194/gmd-18-1545-2025,https://doi.org/10.5194/gmd-18-1545-2025, 2025
Short summary
Improving the ensemble square root filter (EnSRF) in the Community Inversion Framework: a case study with ICON-ART 2024.01
Joël Thanwerdas, Antoine Berchet, Lionel Constantin, Aki Tsuruta, Michael Steiner, Friedemann Reum, Stephan Henne, and Dominik Brunner
Geosci. Model Dev., 18, 1505–1544, https://doi.org/10.5194/gmd-18-1505-2025,https://doi.org/10.5194/gmd-18-1505-2025, 2025
Short summary
The MESSy DWARF (based on MESSy v2.55.2)
Astrid Kerkweg, Timo Kirfel, Duong H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev., 18, 1265–1286, https://doi.org/10.5194/gmd-18-1265-2025,https://doi.org/10.5194/gmd-18-1265-2025, 2025
Short summary
An enhanced emission module for the PALM model system 23.10 with application for PM10 emission from urban domestic heating
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025,https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Identifying lightning processes in ERA5 soundings with deep learning
Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell
Geosci. Model Dev., 18, 1141–1153, https://doi.org/10.5194/gmd-18-1141-2025,https://doi.org/10.5194/gmd-18-1141-2025, 2025
Short summary

Cited articles

Coe-Sullivan, D., Raffuse, S. M., Pryden, D. A., Craig, K. J., Reid, S. B., Wheeler, N. J. M, Chinkin, L. R., Larkin, N. K., Solomon, R., and Strand T.: Development and applications of Systems for Modeling Emissions and Smoke from Fires: The BlueSky Smoke Modeling Framework and SMARTFIRE, Presentation at the EPA 17th Annual International Emission Inventory Conference "Inventory Evolution – Portal to Improved Air Quality", Portland, OR, 2–5 June, 2008.
Cohan, D. S., Koo, B., and Yarwood, G.: Influence of uncertain reaction rates on ozone sensitivity to emissions, Atmos. Environ., 44, 3101–3109, 2010.
Dunker, A. M.: Efficient calculation of sensitivity coefficients for complex atmospheric models, Atmos. Environ., Part A, 15, 1155–1161, 1981.
Dunker, A. M., Yarwood, G., Ortmann, J. P., and Wilson, G. M.: The decoupled direct method for sensitivity analysis in a three-dimensional air quality model – Implementation, accuracy, and efficiency, Environ. Sci. Technol., 36, 2965–2976, 2002.
Emery, C., Jung, J., Downey, N., Johnson, J., Jimenez, J., Yarwood, G., and Morris, R.: Regional and global modeling estimates of policy relevant background ozone over the United States, Atmos. Environ., 47, 206–217, https://doi.org/10.1016/j.atmosenv.2011.11.012, 2012.
Download
Share