Articles | Volume 19, issue 4
https://doi.org/10.5194/gmd-19-1519-2026
https://doi.org/10.5194/gmd-19-1519-2026
Development and technical paper
 | 
20 Feb 2026
Development and technical paper |  | 20 Feb 2026

A new sub-chunking strategy for fast netCDF-4 access in local, remote and cloud infrastructures, chunkindex V1.1.0

Cédric Penard, Flavien Gouillon, Xavier Delaunay, and Sylvain Herlédan

Related authors

Buoy measurements of strong waves in ice amplitude modulation: a signature of the impact of sea ice closedness on waves in ice attenuation
Jean Rabault, Trygve Halsne, Ana Carrasco, Anton Korosov, Joey Voermans, Patrik Bohlinger, Jens Boldingh Debernard, Malte Müller, Øyvind Breivik, Takehiko Nose, Gaute Hope, Fabrice Collard, Sylvain Herlédan, Tsubasa Kodaira, Nick Hughes, Qin Zhang, Kai Håkon Christensen, Alexander Babanin, Lars Willas Dreyer, Cyril Palerme, Lotfi Aouf, Konstantinos Christakos, Atle Jensen, Johannes Röhrs, Aleksey Marchenko, Graig Sutherland, Trygve Kvåle Løken, and Takuji Waseda
The Cryosphere, 19, 6229–6260, https://doi.org/10.5194/tc-19-6229-2025,https://doi.org/10.5194/tc-19-6229-2025, 2025
Short summary
A Comparison of Lossless Compression Algorithms for Altimeter Data
Mathieu Thevenin, Stephane Pigoury, Olivier Thomine, and Flavien Gouillon
EGUsphere, https://doi.org/10.5194/egusphere-2022-1094,https://doi.org/10.5194/egusphere-2022-1094, 2022
Preprint archived
Short summary
A Parquet Cube alternative to store gridded data for data analytics and modeling
Jean-Michel Zigna, Reda Semlal, Flavien Gouillon, Ethan Davis, Elisabeth Lambert, Frédéric Briol, Romain Prod-Homme, Sean Arms, and Lionel Zawadzki
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-138,https://doi.org/10.5194/gmd-2021-138, 2021
Preprint withdrawn
Short summary

Cited articles

Ambatipudi, S. and Byna, S.: A comparison of HDF5, Zarr, and netCDF4 in performing common I/O operations, arXiv [preprint], https://doi.org/10.48550/arXiv.2207.09503, 2022. 
Barciauskas, A., Mandel, A., Barron, K., and Deziel, Z.: Cloud-Optimized Geospatial Formats Guide (cloudnativegeo.org) https://web.archive.org/web/20250413102259/https://guide.cloudnativegeo.org/ (last access: April 2025), 2023. 
Carval, T., Bodere, E., Meillon, J., Woillez, M., Le Roux, J. F., Magin, J., and Odaka, T.: Enabling simple access to a data lake both from HPC and Cloud using Kerchunk and Intake, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-17494, https://doi.org/10.5194/egusphere-egu23-17494, 2023. 
Clementi, E., Aydogdu, A., Goglio, A. C., Pistoia, J., Escudier, R., Drudi, M., Grandi, A., Mariani, A., Lyubartsev, V., Lecci, R., Cretí, S., Coppini, G., Masina, S., and Pinardi, N.: Mediterranean Sea Physical Analysis and Forecast (CMEMS MED-Currents, EAS6 system) (Version 1), Copernicus Monitoring Environment Marine Service (CMEMS) [data set], https://doi.org/10.25423/CMCC/MEDSEA_ANALYSISFORECAST_PHY_006_013_EAS8, 2021. 
CNES: Data processing centre of the french space agency CNES, https://web.archive.org/web/20241206205004/https://cnes.fr/en/projects/centre-de-calcul, last access: December 2024.  
Download
Short summary
In this work, we propose a novel approach, called chunkindex, that was designed to improve the access to time series from native NetCDF (Network Common Data Form) files in the cloud. The advantage of our approach is that it keeps existing data as they are without requiring any reformatting. The idea is to reduce the amount of data read from the NetCDF file by creating sub-chunks that allow extracting smaller portions of compressed data without reading the entire chunk.
Share