Articles | Volume 18, issue 22
https://doi.org/10.5194/gmd-18-8723-2025
https://doi.org/10.5194/gmd-18-8723-2025
Methods for assessment of models
 | 
20 Nov 2025
Methods for assessment of models |  | 20 Nov 2025

On the proper use of screen-level temperature measurements in weather forecasting models over mountains

Danaé Préaux, Ingrid Dombrowski-Etchevers, Isabelle Gouttevin, and Yann Seity

Related authors

Improving forecasts of snow water equivalent with hybrid machine learning
Oriol Pomarol Moya, Madlene Nussbaum, Siamak Mehrkanoon, Philip D. A. Kraaijenbrink, Isabelle Gouttevin, Derek Karssenberg, and Walter W. Immerzeel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1845,https://doi.org/10.5194/egusphere-2025-1845, 2025
Short summary
A two-fold deep-learning strategy to correct and downscale winds over mountains
Louis Le Toumelin, Isabelle Gouttevin, Clovis Galiez, and Nora Helbig
Nonlin. Processes Geophys., 31, 75–97, https://doi.org/10.5194/npg-31-75-2024,https://doi.org/10.5194/npg-31-75-2024, 2024
Short summary
Snow accumulation and ablation measurements in a midlatitude mountain coniferous forest (Col de Porte, France, 1325 m altitude): the Snow Under Forest (SnoUF) field campaign data set
Jean Emmanuel Sicart, Victor Ramseyer, Ghislain Picard, Laurent Arnaud, Catherine Coulaud, Guilhem Freche, Damien Soubeyrand, Yves Lejeune, Marie Dumont, Isabelle Gouttevin, Erwan Le Gac, Frédéric Berger, Jean-Matthieu Monnet, Laurent Borgniet, Éric Mermin, Nick Rutter, Clare Webster, and Richard Essery
Earth Syst. Sci. Data, 15, 5121–5133, https://doi.org/10.5194/essd-15-5121-2023,https://doi.org/10.5194/essd-15-5121-2023, 2023
Short summary
Spatial variability of Saharan dust deposition revealed through a citizen science campaign
Marie Dumont, Simon Gascoin, Marion Réveillet, Didier Voisin, François Tuzet, Laurent Arnaud, Mylène Bonnefoy, Montse Bacardit Peñarroya, Carlo Carmagnola, Alexandre Deguine, Aurélie Diacre, Lukas Dürr, Olivier Evrard, Firmin Fontaine, Amaury Frankl, Mathieu Fructus, Laure Gandois, Isabelle Gouttevin, Abdelfateh Gherab, Pascal Hagenmuller, Sophia Hansson, Hervé Herbin, Béatrice Josse, Bruno Jourdain, Irene Lefevre, Gaël Le Roux, Quentin Libois, Lucie Liger, Samuel Morin, Denis Petitprez, Alvaro Robledano, Martin Schneebeli, Pascal Salze, Delphine Six, Emmanuel Thibert, Jürg Trachsel, Matthieu Vernay, Léo Viallon-Galinier, and Céline Voiron
Earth Syst. Sci. Data, 15, 3075–3094, https://doi.org/10.5194/essd-15-3075-2023,https://doi.org/10.5194/essd-15-3075-2023, 2023
Short summary
An optimal estimation algorithm for the retrieval of fog and low cloud thermodynamic and micro-physical properties
Alistair Bell, Pauline Martinet, Olivier Caumont, Frédéric Burnet, Julien Delanoë, Susana Jorquera, Yann Seity, and Vinciane Unger
Atmos. Meas. Tech., 15, 5415–5438, https://doi.org/10.5194/amt-15-5415-2022,https://doi.org/10.5194/amt-15-5415-2022, 2022
Short summary

Cited articles

Antoine, S., Honnert, R., Seity, Y., Vié, B., Burnet, F., and Martinet, P.: Evaluation of an improved AROME configuration for fog forecasts during the SOFOG3D campaign, Weather and Forecasting, 38, 1605–1620, https://doi.org/10.1175/WAF-D-22-0215.1, 2023. a
Arduini, G.: Processus de la couche limite atmosphérique stable hivernale en vallée alpine, phdthesis, 2017. a
Arduini, G., Balsamo, G., Dutra, E., Day, J. J., Sandu, I., Boussetta, S., and Haiden, T.: Impact of a multi-layer snow scheme on near-surface weather forecasts, Journal of Advances in Modeling Earth Systems, 11, 4687–4710, 2019. a, b
Arnould, G. and Préaux, D.: Study of AROME Temperature in mountain regions, ACCORD Newsletter, https://www.umr-cnrm.fr/accord/IMG/pdf/accord-nl1.pdf (last access: 27 October 2025), 2021. a
Arnould, G., Dombrowski-Etchevers, I., Gouttevin, I., and Seity, Y.: Améliorer la prévision de température en montagne par des descentes d’échelle, La Météorology, 115, 37–44, https://doi.org/10.37053/lameteorologie-2021-0091, 2021. a, b
Download
Short summary
Air temperature is usually measured around 2 m above the ground following meteorological standards. However, in mountain regions, temperature sensors are often placed higher up to avoid being buried in snow in winter. We show that the measurement height is of high importance when quantifying the errors made by weather prediction models. Also, it should be accounted for when these observations are used to correct the models in real time, as doing otherwise degrades their forecasts at high altitudes.
Share