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Abstract. The near-surface air temperature, considered to be
measured at about 2 m above the ground, is a key meteoro-
logical parameter with a wealth of uses for humankind. How-
ever, its accurate estimation in mountain regions is impeded
by persistent limits inherent to atmospheric modeling over
complex terrain. In the present study, we analyze the role of
structural inhomogeneities of the valleys and mountains ob-
servational network in France to highlight their contribution
to the misrepresentation of near-surface air temperature over
mountain regions in the numerical weather prediction (NWP)
system Arome-France. We examine in particular the effects
of the disparity in height above ground of the temperature
measurements, of the inhomogeneous geographical distribu-
tion of stations that are preferentially located in valleys, and
of the relief mismatch between station location and model
grid points. The consequences of these inhomogeneities are
analyzed through their effect on model performance evalua-
tion and on the assimilation, with a focus on the winter sea-
son. In France, high-altitude stations usually measure tem-
perature at about 7 m over the snow-free ground and on av-
erage 1 to 2 m lower when the ground is snow-covered in
winter. We show that this height difference with respect to
standard stations measuring at 2 m should be considered both
when evaluating the model performances and in assimilation.
In terms of scores, model behaviors can be highly different
at 2 m vs. 5 m so that confounding the two levels can lead to
a strong mischaracterization of model biases. This confusion
additionally makes the assimilation of high-altitude stations
detrimental to the analysis for the Arome-France NWP sys-
tem. We also show that due to the current 3DVar assimilation

system, the assimilation of valley stations affects the near-
surface temperature analysis at all altitudes in the mountains.
On the other hand, the altitude mismatch between observa-
tion points and model grid points does not play an important
role, probably in part due to its relatively marginal occur-
rence in an NWP system with 1.3 km grid spacing. In sum-
mary, this study describes new methods and provides guide-
lines for comparing models with mountain observation data
in terms of both assimilation and performance assessment.

1 Introduction

In mountain regions, the knowledge and forecast of near-
surface air temperature are key to numerous socioeco-
nomic applications ranging from natural hazards (Morin
et al., 2020; Vionnet et al., 2020) to recreational activities
(Becken, 2010) and agriculture and water resource manage-
ment (Spandre et al., 2016; Jörg-Hess et al., 2015). In this lat-
ter respect, near-surface air temperature, sometimes referred
to as screen-level temperature, is often used in hydrological
models for the partitioning of precipitation between rain and
snow. Temperature is furthermore one of the key variables
of sensible weather, contributing to shaping ecosystems and
human activities and settlements. It is a primary essential cli-
mate variable for climate monitoring and assessment (IPCC
2021), and its accurate description over mountain regions is
a prerequisite for any climatic study in these environments.
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High-resolution numerical weather prediction (NWP)
models are routinely used by meteorological centers to sim-
ulate and forecast spatially distributed screen-level tempera-
tures at local and regional scales. These models often share
important parts of their structures, characteristics, and behav-
iors with regional climate models (RCMs) (Pichelli et al.,
2021; Torma et al., 2015). However, both types of models ex-
hibit significant biases over mountain regions, limiting their
relevance for a variety of uses they were originally designed
for (Rudisill et al., 2024; Gouttevin et al., 2023). For in-
stance, Monteiro et al. (2022) identified a spurious snow ac-
cumulation bias in their climatic simulations performed with
the CNRM-Arome RCM that precludes any analysis of the
results above 2500 m altitude in the French Alps. These au-
thors also determined that this bias in snow depth could come
from several origins, among which is a pronounced cold bias
in air temperature over mountain regions. This bias affects
both the NWP (Arome-France) and RCM (CNRM-Arome)
versions of the Arome model. In particular in relation to
snow, near-surface air temperature is involved in the estima-
tion of the snow–albedo feedback (e.g., Scherrer et al., 2012),
a mechanism by which snow aging and/or disappearance, re-
ducing the surface albedo, leads to an increased absorption
of solar radiation by the surface and further surface warm-
ing or melt (Peixoto and Oort, 1984). Several publications
(e.g., Winter et al., 2017; Kotlarski et al., 2015; Monteiro
et al., 2022) have highlighted the links between temperature
biases in high-resolution climate models and the magnitude
of this feedback, with models that suffer from negative bi-
ases over snow and ice having a tendency to artificially over-
estimate the temperature response upon snow disappearance.
In their extensive review of the temperature biases in high-
resolution regional atmospheric models over snow-covered
mountain regions, Rudisill et al. (2024) highlighted that a
cold near-surface bias over high-altitude regions is the most
common behavior of such models. Moreover, while this cold
bias is mainly strong over summits and ridges, it is often as-
sociated with a warm bias in valleys. These characteristics
are precisely the ones observed for the Arome-France high-
resolution NWP system (hereafter just “Arome”) used for op-
erational weather forecasting in France. A literature review
complemented by operational forecaster reports (Arnould
and Préaux, 2021; Beauvais, 2018) enables more precise de-
scriptions of the biases of Arome in mountain regions: (1) a
cold bias at high altitudes, (2) a low-altitude warm bias oc-
curring in stably stratified conditions, and (3) a warm bias
during snowfall situations.

The warm bias in valleys appears during long-lasting anti-
cyclonic situations in winter. It also occurs in the plains dur-
ing periods of observed temperature inversion, where some
studies have linked it to a serious problem in data assimila-
tion (Atlaskin and Vihma, 2012). This bias was highlighted
during the 2015 observational campaign held in Passy, in the
Arve Valley in the northern French Alps (Paci et al., 2016).
This campaign revealed that the warm bias of the model dur-

ing such situations impedes the forecasting and representa-
tion of the pollution events often affecting alpine valleys in
winter, as a response to strong traffic, wood fire heating (Ay-
moz et al., 2007), and poor air mixing. The air temperature is
a key meteorological parameter for the construction of win-
ter pollution risk indicators (Paci et al., 2016), enhancing the
need for its accurate estimation. The second Arome warm
bias manifests in valleys when a warm front encounters the
relief, especially in the direction perpendicular to the valleys
and ridges (Beauvais, 2018). In these situations, the warm
front penetrates too rapidly or too deeply in the valleys, lead-
ing to a modeled rise in temperature that is too strong, and
often generates an altitudinal upward shift in the snow–rain
transition in the model. As a result, the model can forecast
rainfall instead of snowfall in the valleys, where the major
roads are. This issue is not new. In its internal report on the
Arome model behavior over the winter 2017–2018, Beauvais
(2018) describes three of such events with a rain/snow par-
titioning problem while mentioning similar situations dating
back to the early days of the Arome model in 2009.

Finally, a cold bias increasing with altitude was origi-
nally detected by Vionnet et al. (2016) in a previous ver-
sion of Arome that ran at 2.5 km over France with 60 ver-
tical levels. Temperature data collected over 4 years (2010–
2014) at 33 stations in the French Alps revealed an under-
estimation by the model of −0.5 °C below 1500 m, but it
reached −3 °C at night between 1500 and 2500 m altitude.
Above this altitude, the mean bias is over −3 °C in winter
at night and just less than −2 °C during daytime. This bias
exhibits a strong seasonality, being more important in win-
ter, when the snow cover dominates at high altitude, than
in summer (Dombrowski-Etchevers et al., 2017). This bias
was confirmed by Gouttevin et al. (2023) in the current op-
erational Arome model version running at 1.3 km with 90
vertical levels. The bias has strong implications for the mod-
eled snowpack, in particular leading to snow accumulations
that are too high (mentioned above) and a delayed snowmelt,
disqualifying its use in support of water resource manage-
ment and, possibly, flood forecasting. This also prevents the
use of the model to provide the atmospheric conditions to
avalanche-warning dedicated snow models, as the snowpack
evolution and the formation of weak layers often involved
in avalanche activity are particularly sensitive to the ther-
mal gradient within the snow and to the surface temperature
(Gouttevin et al., 2018).

As described in the studies cited above, in situ observa-
tions are often used to evaluate models and provide bias
assessments or skill scores that routinely accompany the
development of NWP models. In this process, the change
of a parameterization, a modification in the dynamics, or
a change in the general model setup is only accepted if
it does not degrade operational scores. However, features
poorly considered by model developers in this process are
the specificities inherent to mountain environments that have
key implications for the measurements carried out there
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and their suitability for use in standard model evaluation
protocols without any adaptation. One such specificity is
snow. Due to the development of a quite thick snowpack in
midlatitude alpine regions (e.g., Sturm and Liston, 2021),
temperature measurements are generally not at a constant
height above the (possibly snow-covered) surface. Nor are
they between 1.25 and 2 m height above ground as recom-
mended by the WMO (a standard often ignored by modelers
who generally consider the measurement to be at 2 m). To
limit the risk that sensors get covered in snow during winter,
screen-level temperature observations are usually made at a
higher height above the snow-free ground in altitude regions
than in valley/plain environments. This is typically the case
in France, where the sensors of the high-altitude observation
network for snow and mountain meteorology, the so-called
“Nivose” stations, are about 7 m above the snow-free
ground (Fig. 1). This is also the case in, e.g., Switzerland
where the IMIS stations (Intercantonal Measurement and
Information System) used among others by Meteo-Swiss
can be as high as 6 m above snow-free ground (https:
//www.slf.ch/en/avalanche-bulletin-and-snow-situation/
measured-values/description-of-automated-stations/, last
access: 1 August 2024). However, to the best of our knowl-
edge, this height difference is not accounted for when either
operational scores (at least at the French Meteorological
Service) or academic model evaluations are performed.
While examining the majority of the references cited by
Rudisill et al. (2024), we could not find any mention of
observation vs. model height adjustment for temperature
comparisons, even in seasonally snow-covered regions.
Required adjustments for altitudinal mismatch between
model grid and station location are much more commonly
found in the literature and have been an issue recognized
by numerous modelers (e.g., Rudisill et al., 2024; Quéno
et al., 2016). It may have until now eliminated the possible
issue of height-above-surface adjustments. Regarding the
evaluations of the Arome model in mountain regions, the
true height of the Nivose sensors above snow-free ground
was accounted for in neither Vionnet et al. (2016) nor
in Dombrowski-Etchevers et al. (2017). As an answer to
this knowledge gap, the first subsection of the Results
section of this paper will question the implications of this
height-above-surface mismatch for model evaluation. We
will rely on in situ temperature data acquired at different
heights above the ground to characterize the differences
between measurements at 2 and 5 m (5 m is typically the
height above the surface of air temperature sensors at
high-altitude stations when the winter snowpack covers the
ground) in a mid-altitude and a high-altitude setting. We
will evaluate how the NWP model Arome represents these
temperatures and examine what the consequences are of not
accounting for the correct height of measurements in the
model evaluation metrics.

Another fundamental use of screen-level temperature ob-
servations in operational NWP is their assimilation to im-

Figure 1. A Nivose station in summer and winter (here the Sponde
Nivose station, Albertacce, Corsica). The temperature sensor (top
dotted line) is located about 7 m above the bare ground (bottom dot-
ted line). Assuming for this example that the average height of the
snowpack is 2 m, the sensor is located about 5 m above the surface
(red arrow) in winter.

prove the representation of the atmospheric state prior to
forecasting its evolution over the upcoming hours and some-
times days (Brousseau et al., 2016; Demortier et al., 2024;
Guillet, 2019; Gustafsson et al., 2018). Indeed, a good ini-
tial state is mandatory for accurate weather forecasting. As
a matter of fact, the progress of NWP systems in recent
decades has been very driven by the increase in data assimi-
lation, especially relying on satellite data (e.g., Fischer et al.,
2018). In Arome-France, screen-level temperature observa-
tions are used in two different assimilation systems (Fig. 3
and Sect. 2.2), respectively majorly affecting the surface
(Marimbordes et al., 2024) and the atmosphere (Brousseau
et al., 2016). However, the height-above-ground specificities
of high-altitude stations are not accounted for in either as-
similation system, and data from the Nivose stations are as-
similated as if they were measured at 2 m. As an illustration,
Fig. 3 in Marimbordes et al. (2024) shows a map of so-called
“2 m temperature observations stations that are assimilated”
in the surface assimilation. This map includes high-altitude
(> 3000 m a.s.l.) stations from the Météo-France “Nivose”
observation network that actually measure air temperature
at roughly 7 m above snow-free ground. Therefore, a second
part of the present study will be dedicated to the impact of
the height mismatch between observations and the model in
terms of assimilation. More precisely, we examine the way
Arome assimilates mountain near-surface temperature obser-
vations as a possible cause for biases observed in Arome.

Finally, in situ observations from mountain regions are in-
herently heterogeneous when it comes to their topographic
context. The complex topography can result in a significant
discrepancy between the model relief at the nearest point of
a station and the actual altitude of the station. Most stations
are furthermore in valleys or mid-altitude areas, where ac-
cessibility and maintenance are made easier. This results in a
spatially and altitudinally inhomogeneous distribution of ob-
servations (e.g., Vernay et al., 2022; Thornton et al., 2022).
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While model evaluations in complex terrain regions quite of-
ten discriminate results either into altitude bands (e.g., Vion-
net et al., 2016; Monteiro et al., 2022) or classes derived
from landforms (ridges, crests, valleys, plains, e.g., Winstral
et al., 2017), such distinctions are not made in assimilation.
The structure functions that propagate the analysis increment
spatially do sometimes account for the topographic and land-
form heterogeneities (e.g., Deng and Stull, 2005), but this is
not the case in Arome for the 3DVar atmospheric assimilation
system. In the last part of the Results section, we also there-
fore scrutinize how these spatial heterogeneities of the obser-
vation network with respect to topography affect the quality
and efficiency of screen-level temperature assimilation into
the Arome NWP system.

In a nutshell, the present study intends to shed light on
some challenges associated with the use of the near-surface
air temperature observations in mountain terrain for numer-
ical weather forecasting by addressing a series of research
questions.

– Taking the example of the Arome-France NWP system
that operationally runs over a large alpine region, we
will first address the question of the impact of varied
sensor height above the surface on the assessment of
model performances. One of the underlining questions
is whether observations acquired at 2 m to about 5 m
above the snow surface can be used without specific
treatment to evaluate model performances or whether
they should be considered separately as revelatory of
different model behaviors. Through this analysis, we
intend to provide guidelines for the use of tempera-
ture measurements for model evaluation in mountain re-
gions.

– In a second subsection of the Results section, we will
evaluate the effect of this height heterogeneity on the
way the model is corrected by assimilation. This sub-
section will answer the question of whether the height
of the observation above the surface matters for assimi-
lation or whether it is not necessary to discriminate be-
tween temperatures from 2 to 5 m above the surface for
the assimilation. In particular, we will examine the as-
similation of mountain near-surface temperatures as a
possible cause for the cold bias of Arome.

– Finally, another question poorly addressed in existing
literature is how the relief mismatch between observa-
tion stations and model grid cells, as well as valley vs.
mountain heterogeneities in terms of observational den-
sity, affects the efficiency of data assimilation. We will
address this question in the Results section of this study
through the use of dedicated assimilation experiments.

The plan of our paper addresses these items sequentially, af-
ter a section dedicated to materials, methods, and study area.
To the best of our knowledge these questions have not thor-
oughly been addressed in midlatitude mountain regions of

the world. We focus on winter conditions as the period when
the model biases are the strongest. We also take the opportu-
nity to propose in the Discussion section perspectives to cir-
cumvent the problems highlighted for the benefit of weather
forecasting in complex terrain.

2 Material and methods

The main abbreviations or acronyms used in this section and
throughout the paper are summarized in Table A1.

2.1 Study area and in situ data

2.1.1 Domain and time period

The study focuses on the alpine massifs (Fig. 2: map on the
right) as the mountain range having the highest number of
meteorological observations and the most complex relief in
France. In winter, the biases of the Arome model in terms of
2 m temperature (T2m) are particularly important over this
area (Paci et al., 2016; Vionnet et al., 2016; Dombrowski-
Etchevers et al., 2017). The study period ranges from 2020
to 2023 and therefore covers almost four winters (December,
January, and February): the winters 2019–2020 (with De-
cember missing), 2020–2021, 2021–2022, and 2022–2023.

2.1.2 In situ data

This study makes use of the Météo-France operational ob-
servational network and of well-instrumented research sites
described hereafter (Fig. 2). In particular, due to the moun-
tain and assimilation focuses of the study, the operational
stations used are those located in the Alps and its foothills
(Pre-Alps) and taken into account by the altitude 3DVar as-
similation system of Arome.

Well-instrumented mountain sites

– The mid-altitude Col de Porte site (CDP, 1325 m). Col
de Porte (here after CDP) is an observation and research
site located at 1325 m in the western side of the French
Alps (white dot in the Fig. 2). Several variables are mea-
sured there (Morin et al., 2012; Lejeune et al., 2019),
including surface and near-surface air temperatures, the
latter being always measured approximately between
1.5 and 2 m above the surface: during the snow season,
the height of this temperature sensor is adjusted man-
ually above snow surface at weekly intervals so as to
be maintained at a constant height over the snowpack.
We will consider this observation to be the temperature
at 2 m in this paper. Besides, this instrumental site also
includes a Nivose station (see later in this section for a
more complete description of such stations), measuring
the temperature at approximately 5 m above the snow
surface in winter.
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Figure 2. Relief of the model over the Arome-France domain with a zoom on the study domain and the measurement stations. The stations
of the Météo-France standard network are shown in purple and those of the Météo-France Nivose network in blue, except for Col de Porte-
Nivose, which is in white due to co-location with a well-instrumented site, and the instrumented station at Col du Lac Blanc in red.

– The high-altitude Col du Lac Blanc site (CBL, 2720 m).
Col du Lac Blanc (here after CLB) is an experimen-
tal site located at 2720 m in a slightly more inner lo-
cation within the French Alps (red dot in the Fig. 2).
The site was originally dedicated to the study of wind-
induced snow transport (Guyomarc’h et al., 2019; Vion-
net et al., 2013; Naaim-Bouvet and Truche, 2013). It
features various instruments including incoming and
outgoing longwave and shortwave radiation, as well as
a mast equipped with temperature and humidity sensors
located at 2, 3.2, 5, and 7 m above the snow-free ground.
Snow height is also measured directly at the mast so that
the height of each sensor over the snow surface can be
known during the snow season. This enables the tem-
perature at 2 m above the snow surface to be retrieved
by linear interpolation between the two sensors clos-
est to that height. We also make use of the tempera-
ture measured at approximately 5 m above the snow sur-
face in winter at a station configured like a Nivose but
used only for research purposes. This station features a
temperature sensor at 7 above snow-free ground (Lac
Automatic Weather station, Guyomarc’h et al., 2019).
Snow is always present during the study period in win-
ter. Assuming that its emissivity is 0.98 (Dozier and

Warren, 1982), the surface temperature can be calcu-
lated from the outgoing longwave radiation by inverting
the Stefan–Boltzmann law.

Météo-France surface observation network

– Standard stations. By “standard stations” we designate
the stations from the RADOME network consisting
of automatic stations providing hourly surface data to
Météo-France, (shown in purple in the Fig. 2) with ex-
ceptions for the Nivose, considered separately (see be-
low).

– Nivose stations. Within the RADOME network, some
stations are specifically designed for high-altitude ar-
eas. They are called Nivose stations and are mainly lo-
cated above 2000 m in the main massifs of metropolitan
France (blue dots in Figs. 2 and 1). They measure wind,
temperature, and humidity at a height much higher than
2 m above bare ground in order to provide data despite
a deep snowpack in winter. Generally, the temperature
sensors are placed at about 7 m above the bare ground,
with±0.5 m variability depending on site configuration.
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2.2 The Arome numerical weather prediction system
and its assimilation

The limited-area NWP model Arome (Application de la
Recherche Opérationnelle à Méso-Échelle) has been oper-
ational since December 2008 and runs over the domain
named “France”, illustrated in Fig. 2. It is coupled to the
French global model Arpege (Action de Recherche Pe-
tite Échelle Grande Échelle), which has a variable spec-
tral mesh (Courtier and Geleyn, 1988) and improved res-
olution over Europe. Initially with a horizontal resolution
of 2.5 km (Seity et al., 2011), Arome has been produc-
ing forecasts on a 1.3 km grid since April 2015 (Brousseau
et al., 2016). Its physics scheme is the same as Meso-NH
(Mesoscale NonHydrostatic Model) (Lafore et al., 1998; Lac
et al., 2018). Thus, it is a non-hydrostatic model; i.e., it “ex-
plicitly solves the system of compressible Euler equations
without neglecting the vertical acceleration in the continu-
ity equation, which allows a better representation of vertical
motions or orography” (Arnould et al., 2021). Arome uses
the dynamics of the Aladin model (Adaptation Dynamique
Développement International; Bubnová et al., 1995). Al-
though the first version of Arome had 60 vertical levels with
the first level at 10 m above the surface, the version now used
operationally has 90 vertical levels, the first of which is be-
tween 4.5 and 5.5 m in the model, depending on weather con-
ditions, i.e., approximately 5 m. As a research option, a ver-
sion of this model is available with 500 m horizontal resolu-
tion and/or 120 or 156 vertical levels (with the lowest level
at 2.5 m approximately).

For the surface scheme, Arome is coupled to SUR-
FEX (Surface EXternalised; Masson et al., 2013) (orange
boxes in Fig. 3), with, for vegetation, the Isba (Interaction
Soil–Biosphere–Atmosphere; Noilhan and Planton, 1989)
scheme and, for snow, the D95 single-layer scheme (Dou-
ville et al., 1995).

To ensure that the model is as close as possible to the real
state of the atmosphere, it is regularly corrected using obser-
vations. This process is called data assimilation and is de-
scribed for near-surface temperatures in Fig. 3. For simplic-
ity in the following, we will refer to near-surface air tem-
perature as T2m, despite the fact that it is conventionally
measured between 1.25 and 2 m above the surface follow-
ing the WMO standards and between 1.5 and 2 m according
to the French Meteorological Service standards. When refer-
ring to modeled values for near-surface temperatures, we will
also use the term T2m (often with the suffix “_mod”). In that
case, T2m refers to a temperature diagnostic produced by the
model for a 2 m height above the surface.

In Arome, the assimilation takes place both in the atmo-
sphere and at the surface (the blue and green boxes in Fig. 3,
respectively), but without interaction. In addition, the assimi-
lation methods differ. Furthermore, the presence of fields dat-
ing from before the use of SURFEX is necessary for the as-

similation to run smoothly, whether for the atmosphere or the
surface (grayed-out box in Fig. 3).

For convenience, in the diagram and in the rest of the arti-
cle, T5m_mod will refer to the temperature at the first level of
the model, which is approximately at 5 m above the surface.
The surface temperature (Ts_mod) corresponds to the sur-
face temperature of the ground for Arome. If this ground is
snow-covered, then it becomes the surface temperature of the
snow cover (Giard and Bazile, 2000). T5m_mod and Ts_mod
are prognostic variables. These two temperatures are used to
compute T2m_mod according to Geleyn (1988)’s diagnostic.

2.2.1 The 3DVar altitude assimilation

The assimilation of atmospheric variables in Arome is
based on the 3DVar (three-dimensional variational system)
(Fig. 3 b), with an hourly data assimilation cycle (Brousseau
et al., 2016; Gustafsson et al., 2018). The aim is to provide
the best possible estimate of the state of the atmosphere at a
given time. To achieve this, the atmospheric fields predicted
by the model are used as the “background state” of the at-
mosphere, also commonly called a “guess”, which is then
combined with observations to minimize the difference be-
tween both (Guillet, 2019). In the case of 3DVar, the back-
ground corresponds to a 1 h Arome forecast (T2m (diag)(P1)
in Fig. 3a) calculated before each analysis on the basis of the
previous analysis (T2m (diag)(P0) in Fig. 3c). Before their
assimilation, all observations, whether satellite or surface
data, are first subjected to a quality control known as “screen-
ing”. This step eliminates observations that are considered
doubtful because they come from a non-qualified source or
are too far away from the background. However, if this back-
ground is biased, the screening can also reject observations
that come from accurate measurements and contain valuable
information for the assimilation.

After screening, the 3DVar combines the observations with
the background (Fig. 3b) to produce the new analysis by min-
imizing the cost function J (Demortier et al., 2024):

J (x)=
1
2
(x− xb)

TB−1(x− xb)

+
1
2

[
yo+Hx

]TR−1 [yo+Hx
]
, (1)

where xb corresponds to the background state, yo to the ob-
servation vector, and H to the (nonlinear) observation opera-
tor, which allows different types of information to be com-
pared; R and B are the observation and background error
covariance matrices. The matrix B contains background er-
ror covariances in the spectral space. This dependence on
the spatial neighborhood depends on the correlation lengths
of the errors, which in Arome are spatially uniform and do
not take into account relief. Furthermore, this B matrix is
constant in time. Background departures are calculated for
the surface observations and for the upper-air observations.
Then, J is minimized using these background departures.
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However, the increment of surface observations is calculated
at 2 m but is not carried upstream to the height of the first
level of the model before being used.

2.2.2 The Canari OI surface assimilation

For the surface, the analysis is computed by the Canari sys-
tem (Code d’Analyse Nécessaire à Arpege pour ses Rejets
et son Initialisation) (green box of Fig. 3) using the optimal
interpolation (OI) method described by Taillefer (2009):

xa = xb+BHT
[
HBHT

+R
]−1 [

yo−Hxb
]
, (2)

where xa corresponds to the analyzed state of the model.
Firstly, as with altitude assimilation, a quality control pro-

cess eliminates observations considered to be unrealistic. For
this stage, the same equation is used, but the control parame-
ters do not have the same value. It therefore sometimes hap-
pens that certain observations are rejected in the altitude as-
similation and kept in the surface assimilation. OI is an as-
similation method particularly suited in the context of rather
scarce data, when a limited number of observations are used
to determine the analyzed state (e.g., Durand et al., 1993).
So, unlike 3DVar, the observations deemed strategic are in-
terpolated at the grid point by a so-called structure function,
which models the background error covariances, i.e., B, a
static and univariate matrix that does not account for cor-
relations between, e.g., T2m and humidity at 2 m, another
analyzed observation. In our study as in operational Arome,
the Mescan (contraction of MESoscale analysis and Canari)
option (Mahfouf et al., 2007; Van Hyfte, 2021) activates this
function which uses a correlation length of 100 km varying
according to the difference in altitude between the grid point
and the observations (Marimbordes et al., 2024). Thus, using
2D optimal interpolation and the Mescan structure function,
the analyzed temperature and relative humidity fields at 2 m
are obtained (Ts (analysis) in Fig. 3b’). The T2m and Hu2m
increments calculated in the 2D canary step are then used to
compute the surface analysis, i.e., the surface temperature,
average soil temperature, surface soil humidity, and average
soil humidity (Giard and Bazile, 2000) at each point using
1D OI. The analyzed surface temperature is involved in the
estimation of the analyzed temperature at 2 m via a diagnos-
tic (Fig. 3c).

2.3 Scores

In the present study we use scores to quantify the agreement
of model results with in situ observations. In these scores,
and to quantify the impact of ill-suited relief, the stations
which present more than 150 m altitude difference with their
model grid point are by default not discarded. The following
scores will be used:

– an hourly mean bias defined as Bias= 1
N

∑N
n=1(Xn−

Xobs), where N is the total number of stations and days
during the studied period.

– a root mean square error or RMSE which calculates
an average magnitude of differences between predicted

and observed values: RMSE=
√

1
N

∑N
n=1(Xn−Xobs)2,

where N is the total number of stations and time steps
during the studied period.

As the RMSE alone does not show if a simulation is
too warm or too cold compared to reality, the RMSE
will be studied in conjunction with the bias. These cal-
culations will be done over the whole study period.

In addition, the scores will be also computed by altitude
bands (Table 2), i.e., separately for areas below 1100 m, be-
tween 1100 and 2000 m, and above 2000 m. This enables us
to distinguish between valley, mid-altitude, and high-altitude
areas, respectively, as atmospheric conditions vary accord-
ing to altitude (e.g., Chow et al., 2013; Whiteman, 2000)
and Arome exhibits different biases across altitudes (Vionnet
et al., 2016; Dombrowski-Etchevers et al., 2017; Monteiro
et al., 2022).

2.4 Assimilation experiments

2.4.1 Experiments

Targeted numerical experiments are carried out in order to
analyze the effect, on the assimilation, of geographical or
measurement inhomogeneities specific to mountain regions.
These experiments consist of modifying the observations as-
similated or the conditions in which they are assimilated.
These numerical simulations are compared to a reference,
which is the operational Arome forecast (Arome-OPER) de-
scribed in more detail hereafter. This reference is also the
one evaluated in the present study when scores and biases
are mentioned without further specification.

– Arome-OPER. The objective of this reference (OPER
for operational version of Arome described in Sect. 2.2)
is to identify and quantify the Ts, T2m, and T5m bi-
ases, be they due to the assimilation or to the model-
ing of processes in mountainous terrain. The forecasts
are extracted from the daily 00:00 h run of the study
period, the background (orange-bordered box entitled
“T2m (background at obs point)” in Fig. 3) and analysis
(blue-bordered box entitled “T2m (background at obs
point)” in Fig. 3) of T2m are retrieved from the 3DVar
at each hour, and the analyzed temperatures (purple-
bordered boxes entitled “T2m (diag)(P0)” and “1 T5m
(analysis)” of Fig. 3) come from the hourly analysis file.

– NO_VALLEY. In this numerical assimilation experi-
ment, observations of T2m and relative humidity at 2 m
(RHU2m) below 1100 m a.s.l. are excluded before en-
tering the 3DVar. The goal is to quantify the impact of
valley stations on assimilation in higher-altitude areas.
The value of the 1100 m threshold is set so that this ex-
periment does not take into account the data supplied by
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Figure 3. Workflow of the near-surface air temperature assimilation in Arome, featuring the altitude assimilation system (above the red
dotted line) and surface assimilation system (below the red dotted line). The term “diag” refers to a diagnostic variable, P1 to the first term of
a forecast, and P0 to the initial state prior to a forecast and after the analysis step. The color boxes specifically highlight the altitude 3DVar
analysis scheme, the surface Canari analysis scheme, and the diagnostics performed for T2m in the surface scheme, SURFEX.

stations located in the highest valleys the French Alps,
such as the Chamonix-Mont Blanc valley with an auto-
matic station at 1042 m a.s.l. The results of this experi-
ment will be studied over the winter of 2022–2023.

– NO_NIGHT. The diurnal cycle influences the T2m bias,
which peaks at night in mountainous areas (Vionnet
et al., 2016; Dombrowski-Etchevers et al., 2017). The
Austrian version of Arome, operated by Geosphere
Austria, does not use assimilation overnight. This raises
the question of the impact of nighttime data assimi-
lation on the Arome-France. To quantify this, in this
“NO_NIGHT” experiment, T2m and RHU2m are not
assimilated at night, i.e., when the solar angle is less
than 10°. The impact of NO_NIGHT is evaluated for
the winter of 2022–2023.

– 150M. In mountains, the difference between the actual
altitude and the model altitude can vary significantly.
For example, Mont Blanc is at 4318 m for Arome 1.3 km
compared with 4809 m in reality. Currently, no crite-
ria on altitude mismatch between the model grid point
and observation station are applied to T2m assimila-
tion in Arome. However, Quéno et al. (2016), Vionnet
et al. (2016), and Dombrowski-Etchevers et al. (2017)
considered the observations to be relevant to evaluate
model performances and calculate scores as long as this
vertical distance was less than or equal to 150 m. This
criterion was chosen as it corresponds to a 1 °C differ-
ence when considering a standard atmospheric gradient

of 6.5 °C per vertical kilometer. In this “150M” experi-
ment, we apply this 150 m threshold and do not assim-
ilate station data when their altitude differs more than
150 m from their grid point altitude in the Arome model.
As a result, 13 stations are not assimilated. This numer-
ical simulation is analyzed for the winter of 2022–2023.

2.4.2 Analysis of the experiments

In the Sect. 3.3, the abovementioned assimilation experi-
ments will be analyzed to quantify the effect of varying ob-
servational network characteristics onto the assimilation re-
sult (i.e., the analysis). These characteristics include the ex-
clusion of valley and flatland stations, of all surface stations
at night, and of stations for which the altitude difference with
respect to the model grid cell exceeds 150 m. To highlight the
effect of these variations in observational networks, we make
use of the analysis increment 1, whereby

1= xa− xb, (3)

with xa the analyzed model state and xb the background
model state prior to assimilation.

At observation stations, an ideal analysis increment would
enable the analysis to fully coincide with the observation. We
therefore define the ideal analysis increment at stations as

1ideal = xobs− xb, (4)

where xobs denotes the observation.
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The NO_NIGHT experiment, disabling the assimilation of
surface observations at night, enables us to highlight the ef-
fect of the altitude observations only for the nighttime period.
We hence call for the nighttime period

1obs_altitude =1NO_NIGHT. (5)

For the nighttime period, we can hence define a virtual
analysis increment coming from the analysis of surface ob-
servation only, 1v

obs_surface, by considering the following re-
lationship between the analysis increment of the Arome-
OPER experiment (1OPER) and the ones that respectively
result from the assimilation of altitude (1obs_altitude) and sur-
face observations (1v

obs_surface) only:

1OPER =1v
obs_surface+1obs_altitude. (6)

In practice, this virtual analysis increment for surface ob-
servations only likely differs from the one that would have
been calculated by disabling the altitude analysis due to com-
pounding effects between altitude and surface observations.
In the decomposition proposed in relation (6), these com-
pounding effects are integrated in the surface observation
analysis increment 1v

obs_surface, hence distinguished as a vir-
tual increment analysis, and we do not have the possibility to
quantify them.

Similarly, the analysis increment of Arome-OPER can also
be decomposed into the virtual contribution from the flatland
and valleys 1v

valleys and what comes from the upper-air and
mountain stations only included in the NO_VALLEY exper-
iment. According to this decomposition,

1OPER =1v
valleys+1NO_VALLEY (7)

and also

,1OPER =1v
valleys+1v

mountain+1obs_altitude (8)

where relation (7) enables us to retrieve 1v
valleys, while rela-

tion (8) enables us to retrieve the contribution from mountain
stations only among surface observations, 1v

mountain.
Another possible decomposition of 1OPER reads

1OPER =1150M+1v
>150 m

=1obs_altitude+1v
<150 m+1v

>150 m, (9)

where 1v
>150 m (1v

<150 m) is the virtual analysis increment for
surface stations with more (less) than 150 m altitude depar-
ture with respect to model relief, while 1150M refers to the
150M experiment.

In these latter relations, similarly to the 1v
obs_surface in-

crement, the virtual increments, denoted by a v exponent,
are not directly calculated from an experiment but diag-
nosed from a complementary experiment and therefore in-
clude compounding effects that cannot be isolated.

These different increments will be used in the Results and
Discussion sections to analyze the effects of heterogeneities
in the observational network in Alpine terrain on the assimi-
lation in Arome.

3 Results

3.1 Impacts of heterogeneous sensor height on model
evaluation

In this section, we closely examine the impact of differ-
ences in height between standard temperature measurements
(at about 2 m above surface) and measurements from high-
altitude networks (at rather 5 m above the surface during the
snow season) in terms of model evaluation over the winter
season. In the Introduction we illustrated how temperature
actually measured at 5 m above the surface in winter in high-
mountain regions is commonly considered to be at 2 m when
evaluating atmospheric models, an assumption that we will
refer to as “error in measurement height”. We will first ex-
amine the comparability between temperatures observed at 2
and 5 m above the surface for well-instrumented sites in win-
ter. Then, we will scrutinize how both temperatures compare
in the Arome model world and with respect to observations.
Finally, we will derive the impact of the commonly made er-
ror in measurement height on the scores obtained when com-
paring the Arome model to observations.

3.1.1 Comparison between observed T2m and T5m at
the well-instrumented sites

Figure 4 features the diurnal cycles of temperatures retrieved
for the surface (Ts) and at 2 and 5 m at the CDP and CLB
sites. The same diurnal cycles obtained in the Arome-OPER
forecasts are also shown and will be analyzed later (note that
a complementary figure, Fig. B1 in the Appendix, enables
an easier comparison between all temperatures at each site
at the expense of general readability). We observed a mean
difference between observed T2m and T5m of 0.3 °C at CDP
(0.4 °C at CLB). Such a difference is not significant at CLB
with respect to the measurement uncertainty, which is ex-
pertly estimated to be within±0.5 °C based on the numerous
co-located temperature measurements and the use of temper-
ature shelters of different designs (Guyomarc’h et al., 2019).
Despite a higher accuracy for the T2m observation at CDP,
estimated by Morin et al. (2012) to within 0.1 °C, the T5m
Nivose measurement from the CDP probably has a lower ac-
curacy, likely similar to the one estimated at CLB. Although
their mean values are not significantly different, the daily cy-
cles of T5m and T2m observations significantly differ, with
a maximum difference of 0.6 °C at 09:00 UTC at CDP (and
0.5 °C at 05:00 UTC at CLB; Fig. 4a and b). In addition, the
root mean square difference between observed T5m and T2m
over winter is also significant with a value of 0.6 °C at both
sites. We finally find that differences between 2 and 5 m mea-
surements are also significant in terms of thermal amplitudes
at the CDP (Table 1, Obs columns). We note that the dif-
ference between T2m and Ts is significantly more marked
than the one between T2m and T5m in the observations,
with an average difference of 4.8 °C at the CDP and 3.2 °C
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Table 1. Thermal amplitude of temperatures T5m and T2m ob-
served and modeled by Arome-OPER at CDP and CLB over the
winters (DJF) between 1 January 2020 and 28 February 2022.

Sites
T5m T2m

Obs OPER Obs OPER

Col de Porte 2.9 2.2 3.6 3.3
Col du Lac Blanc 1.1 0.4 1.4 3.7

at the CLB; the maximum difference amounts to 6.5 °C at
10:00 UTC and 4.2 °C at 07:00 UTC at CDP and CLB, re-
spectively.

Further analyses show that the differences between ob-
served T2m and T5m can be much higher than the mean val-
ues during specific situations, especially during stable condi-
tions when stratified cold air covers the Alps. The dates 19
and 20 December 2021 typically illustrate this kind of situa-
tion (Fig. 5a).

During this period, the Alpine massif is under the influ-
ence of an anticyclone centered on northwestern Europe and
reaching up to 1040 hPa. Close to the surface, the winds
are weak and from the east. Despite cloudy weather on the
plains, the Alps are, on the other hand, under clear skies.
During this period, the sun sets around 05:00 UTC for the
summits of Grandes Rousses, the massif where the CLB is
located. In these stable winter conditions, the nocturnal ra-
diation and the snow then present on the ground induce a
very strong inversion in the low atmosphere (Pepin and Kidd,
2006). This generates a marked gradient between T5m and
T2m at CLB of up to 2.5 °C at 07:00 UTC on 20 Decem-
ber. A similar behavior was also highlighted by Gouttevin
et al. (2023) for Arome-OPER at the CLB and at another
high-altitude site, with a strong stratification in air tempera-
tures in the lowermost boundary layer during clear-sky, low
winds conditions, as supported by Fig. 5b. While cloudy sky
situations feature a very homogeneous, non-stratified lower
boundary layer, clear-sky days (especially with low wind)
feature a strong temperature gradient between the surface and
the air higher up so that the difference between T2m and T5m
is on average distinctively lower than −0.5 °C at night and
even lower than 0.65 °C in low wind conditions.

We conclude from this section that considering T2m and
T5m as fully equal temperatures is an invalid approximation
at both our mid- and high-altitude sites: the difference be-
tween T2m and T5m is weak and within the measurement
uncertainty on average over winter but is not so during cer-
tain weather situations. Indeed, in anticyclonic weather, par-
ticularly at night with clear skies and low winds, this differ-
ence can be greater than 2 °C and therefore very significant.
Furthermore, differences exist in the diurnal cycles and am-
plitudes. Consequently, when using the observations at 5 m
of the Nivose stations as if they were at 2 m, an error is in-
troduced in the calculation of the scores, especially of error

scores like the RMSE typically used to qualify operational
forecasts (Vionnet et al., 2016; Dombrowski-Etchevers et al.,
2017) and their improvements.

3.1.2 Comparison between forecasted T2m and T5m at
the well-instrumented sites

Figure 4a and b also show the diurnal cycles of T5m_mod
and T2m_mod simulated by Arome-OPER at CDP and CLB.
The difference between these cycles is significant, with a
mean difference of 0.7 °C at CDP (and 4.3 °C at CLB) and a
maximum difference of 1.1 °C at 02:00 UTC at CDP (5.3 °C
at 05:00 UTC at CLB). The average difference between the
modeled temperatures is therefore much larger than between
the observed temperatures (of 133 % at CDP and 975 % at
CLB). Moreover, the gradient between the T5m_mod and
T2m_mod is significantly stronger at the CLB than at the
CDP.

If we compare the model to observations at 5 and 2 m over
the three winters of our study period (Fig. 4), we note that
Arome slightly overestimates the T5m at CLB with an av-
erage bias of 0.5 °C (Table 2) and underestimates it at CDP
during daytime, with for the latter site a maximum bias of
−0.8 °C at 10:00 UTC (Fig. 4a, Table 2). Besides, the RMSE
of the model at both sites has a similar value, higher than
the bias. Hence, although Arome is on average weakly bi-
ased at 5 m, it suffers from biases in certain weather condi-
tions. As a further illustration, the maximum negative error
of T5m_mod over the three winters falls to −5.1 °C at CDP
(−5.2 °C at CLB), while the maximum positive error reaches
8.7 °C at CDP (6.3 °C at CLB, Table 2). On the other hand,
the model is too cold at 2 m at both sites, with an average
bias of −0.6 °C at CDP (−3.4 °C at CLB, Table 2). As with
T5m_mod, the mean value of the bias at CDP does not reflect
the dispersion of T2m_mod, for which the bias ranges from
−7.9 to 6.5 °C (Table 2). The bias and RMSE are stronger at
2 m than at 5 m, particularly at the high-altitude site. Arome
hence represents temperature with a better accuracy at its first
level than at 2 m.

We conclude from these results that the T5m_mod and the
T2m_mod cannot be considered as equivalent and approxi-
mated by each other in Arome. As a result, the height of the
sensor should be taken into account when the model is com-
pared to observations.

3.1.3 Assessment of forecasted T2m and T5m across
the Alps

We confirm the results obtained at the two research sites
in the previous subsections, with an analysis of the differ-
ences between the Arome-OPER (forecast) T2m and T5m
across the study area: Fig. 6a illustrates how the mean winter
T2m_mod minus T5m_mod difference evolves as a function
of altitude over the French Alps during winter 2021–2022.
While the median of this mean difference is on the order of 0
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Figure 4. Diurnal cycle of the 5 m (a, red), 2 m (b, violet), and surface (c, blue) observed (OBS) and modeled (OPER) temperatures averaged
over the winters of the study period at the CDP and CLB research sites. The shaded (hatched) areas represent the observed (modeled)
variability via the 25 %–75 % percentile range.

Figure 5. (a) Temporal evolution of temperatures observed at 2 m (purple) and 5 m (red) from 19 December 2021 at midnight to 21 December
2021 at 11:00 p.m. at the Col du Lac Blanc. (b) Diurnal cycles of differences between T2m_obs and T5m_obs at CLB over one winter
season. Clear-sky (cloudy) situations refer to days with an average effective atmospheric emissivity lower than 0.7 (higher than 0.9), which
correspond roughly to the lower and upper quartile of the daily effectivity distribution at the CLB (Gouttevin et al., 2023). Low wind
conditions are considered when wind is lower than 4 m s−1.

to−2 °C for altitudes lower than 1700 m a.s.l., the mean tem-
perature difference drastically drops to median values below
−4 °C for altitudes above 2000 m with extreme mean win-
ter differences close to −8 °C. Above 2400 m a.s.l., 95 % of
the mean differences between T2m_mod and T5m_mod are
below −2 °C. Furthermore, the biases in Arome-OPER as-

sessed at the CLB and CDP sites are partly representative of
the biases generally found across the French Alps, as shown
in Fig. 6b: this figure compiles the mean winter biases of
Arome in terms of T2m and T5m, as calculated at all standard
and Nivose stations, and also including the research sites. A
warm bias affects T2m_mod in mid-altitude mountains up to
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Table 2. Scores of Arome-OPER at CDP and CLB over the winters (DJF) between 1 January 2020 and 28 February 2022.

Sites
T5m T2m Ts

BIAS
RMSE

BIAS
RMSE

BIAS
RMSE

Mean Min Max Mean Min Max Mean Min Max

CDP −0.1 −5.1 8.7 1.7 −0.6 −7.9 6.5 1.8 3.3 −4.7 15.5 5.0
CLB 0.5 −5.2 6.3 1.3 −3.4 −12.4 4.2 4.7 −6.2 −20.2 8.2 7.7

around 1600 m, with the observations at CDP deviating from
this pattern with a slightly negative T2m bias.

The thermal amplitude of the diurnal cycles for the T2m
and T5m observed and forecast temperatures is reported in
Table 1 for both CDP and CLB. At CDP, simulated ampli-
tudes are relatively close to observations, with a slight under-
estimation for T5m and T2m. At CLB, the amplitude for T5m
is underestimated. On the other hand, it is overestimated for
T2m. Arome attenuates the diurnal cycle too much at the first
level of the atmosphere and accentuates it too much close to
the surface.

3.1.4 Reviewing scores and revisiting model biases

As T2m and T5m should not be considered equivalent,
the T2m scores of Vionnet et al. (2016) and Dombrowski-
Etchevers et al. (2017) at high Alpine or Pyrenean stations
should therefore be put into perspective as temperature obser-
vations at 2 and 5 m above the snow surface were used with-
out distinction. According to Gouttevin et al. (2023), based
on detailed evaluations at two high-altitude sites, the tem-
perature scores at about 10 m show that the Arome model is
only slightly biased at this level. We therefore propose re-
visiting the general scores of Arome over the Alps (as esti-
mated by Vionnet et al., 2016, and Dombrowski-Etchevers
et al., 2017), making a clear distinction between the first
model level at about 5 m above the surface and 2 m. In Fig. 7
and Table 3, bias and STDE scores were therefore calcu-
lated one the one hand for stations above 2500 m altitude
(Nivose stations only) by comparing the T2m diagnosed by
Arome and the temperature observed at the Nivose stations
between November 2022 and May 2023, according to the
method used by Vionnet et al. (2016). As these scores/bi-
ases are calculated assuming that the stations measure at 2 m
above the surface, they are not true biases or RMSE at 2 m,
and we hence call them “pseudo-biases” in the following.
On the other hand, the same scores were obtained using the
T5m_mod forecasted by Arome (leading to true T5m biases
and scores). The stations with an altitude difference of more
than 150 m from their model grid point have been removed
from the calculation of these scores. Indeed, although the
standard vertical temperature gradient of −0.65 °C/100 m is
often applied to account for this difference between model
relief and real relief, this is not the correct solution (Sheridan
et al., 2018). In the mountains, the altimetric temperature gra-

Table 3. Bias and STDE for Nivose stations according to the Vion-
net et al. (2016) method (comparison with T2m_mod) and new
method (comparison with T5m_mod).

1500–2500 m > 2500 m

Bias STDE Bias STDE

Vionnet et al. (2016) method −3.1 4.5 −3.6 5.0
Revised score method −0.5 1.8 −0.7 2.0

dient is rarely equal to −0.65 °C/100 m: it can be null in the
case of isothermal conditions with snow precipitation, pos-
itive in the case of inversions, or strongly negative. Table 3
compares the old and the new revisited scores.

The cold bias decreases by 2°, while the STDE decreases
by 1° only by comparing temperatures at an equivalent height
above ground level. It therefore has a significant impact on
scores to evaluate models in relation to comparable obser-
vations and to bear in mind their representativeness. Taking
sensor height into account has a greater impact on scores
than applying an altitude correction that is potentially false.
The monthly temperature bias at high-altitude Nivose sta-
tions calculated for 4 months (January, April, August, and
November) by Dombrowski-Etchevers et al. (2017) (same
method as Vionnet et al., 2016) has been recalculated for the
period 2022–2023, on the one hand using T2m_diag (as ini-
tially) (see Fig. 7a) and on the other using T5m_mod (see
Fig. 7b). Monthly biases are much lower when comparing
with T5m_mod than with T2m_diag, as expected. It is no
longer the months with snow on the ground that are the most
biased, but the months with the most solar radiation. The
nocturnal bias is virtually null (slightly positive), while the
diurnal bias is negative. The graph showing T5m, T2m, and
Ts predicted by the model versus observations confirms what
was highlighted at CLB and CLP in Fig. 4. In addition, the
month of April is undoubtedly the most biased due to the ex-
cessive presence of snow on the ground in the model (a bias
mentioned by Monteiro et al., 2022), which further limits the
heating of the atmosphere by the surface.

Finally, the correct use of Nivose observations allows for
the evaluation of a prognostic model variable rarely scru-
tinized: the temperature at the lowermost model level. The
Arome model is thus less biased at high altitude than previ-
ously estimated. It is therefore one of the least biased models
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Figure 6. (a) Arome-OPER mean temperature differences between 2 and 5 m as a function of altitude for each model grid point over the
study area for winter 2021–2022. The orange line denotes the median, box plots mark the 25th–75th percentiles, blue whiskers mark the
5th–95th percentiles, and dots mark the values outside this range. (b) Arome-OPER temperature biases at 5 m (red dashed line) and 2 m
(violet dashed line) at Nivose stations (crosses), standard stations (dots), and instrumented sites (diamonds) over the winters of the 2020–
2022 period. Bias is calculated by grouping stations by 100 m altitude bands and by station type. The altitude range shown in the figure, e.g.,
600 m, corresponds to stations with an altitude between 500 and 600 m. The number of stations used to calculate the biases is indicated by
bars with the Nivose stations in orange and the standard stations in gray. The Col de Porte station is counted here as an instrumented site, not
as a Nivose station.

according to the synthesis by Rudisill et al. (2024) and is
close to the Canadian limited-area model GEM-LAM evalu-
ated by Vionnet et al. (2015), featuring a “0.5 °C cold bias at
high elevations” (Rudisill et al., 2024; Vionnet et al., 2015).

3.2 Effects of heterogeneous sensor height in the 3DVar
assimilation

3.2.1 Theoretical effects

Due to the climatological differences between the observed
T5m and T2m (see Sect. 3.1), an error is introduced during
the 3DVar assimilation if an observed T5m is considered to
be at 2 m, as currently done for Nivose stations. Indeed, dur-
ing assimilation, the background in T2m is compared to the
observation at 5 m. This difference, called “innovation”, is
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Figure 7. (a) Diurnal cycle of the T2m bias calculated according to Vionnet et al. (2016), i.e., without taking into account the sensor height,
and (b) true T5m bias, estimated based on T5m_mod. Only T5m_obs values from Nivose stations for the altitude band above 2500 m are
used for these scores, calculated for 4 months of the 2020–2022 study period: January, April, August, and November. Six stations meet the
150 m criterion at this altitude.

used together with the one induced by other surface and satel-
lite observations to estimate the analysis increment. The in-
crement specific to that station or location is then reported to
the first level of the model. Normally, this operation should
rely on the inverse of an observation operator (working as an
adjoint to the T2m diagnostic), but in Arome this adjoint is
not activated so the increment is directly added to the T5m
background to calculate the analyzed T5m (Fig. 3). However,
our analysis showed significant differences on average and
in particular in certain situations, with T5m climatologically
warmer than T2m. This difference theoretically leads to a
positive bias in the innovation and in the analysis increment,
which should produce an overestimated analyzed T5m.

In addition, Arome itself has different biases at 2 and 5 m.
At 2 m, the model is on average clearly too cold for stations
located above 1600 m altitude (Fig. 6), a bias which induces
positive innovations and likely has a positive contribution to
the analysis increment. At 5 m on the other hand, the model
has a slight negative bias: if the model leveled considered
for assimilation of near-surface air temperatures were 5 m in-
stead of 2 m, the assimilation of T5m_obs would lead to little
or no innovation and have a weak influence on the analysis
increment.

Thus, our analysis reveals that Arome’s temperature bias
further reinforces the error made by using T2m_mod instead
of T5m_mod in the analysis of air temperature observations.
Not only is the height of the observed temperature incorrect,
leading to a bias linked to the climatology of temperatures at
2 and 5 m in the mountains, but also Arome’s cold bias at 2 m
reinforces this error and adds an additional overestimation to
the innovation, which likely propagates to the analysis incre-
ment. As the T5m_mod-T2m_mod difference increases with

altitude in Arome (Fig. 6), the second effect should be higher
and lead to more errors in the analysis at high altitudes.

3.2.2 Direct verification of the effects in the
assimilation system

In the previous sections, we theoretically estimated that treat-
ing Nivose observations as measurements at 2 m introduces
a warm bias in the analyzed temperatures at 5 m, resulting
from the effect of height on observed temperatures and rein-
forced by the negative bias of the model 2 m of different sign
and stronger magnitude than at 5 m above the surface. In the
present section, we will examine whether this hypothesis can
be validated by looking at the effect of the assimilation of
observations on the analyzed T5m.

Figure 8 shows the background at 2 m (and 5 m for Nivose
stations), as well as the forecast and analyzed temperatures
at 5 m (or 2 m for standard stations), and compares them to
observations, splitting between standard and Nivose stations
and across altitudes.

When examining the situation at Nivose stations (Fig. 8b
and d), the background at 2 m used in the 3DVar assimila-
tion appears too cold compared to the observations. This is
not surprising since the observations are at 5 m and observed
temperatures are, on average, warmer at 5 m than at 2 m, and
the model is negatively and increasingly biased for T2m from
1600 m a.s.l to high altitudes (cf. Sect. 3.1). In relation to this,
Fig. 8 consistently shows that the background at 2 m is colder
at high altitudes than at mid-altitudes.

Secondly, we note that at Nivose stations, the analyzed
T5m performs poorly at night, and especially worse than the
forecast at 5 m (at middle and high altitudes), and even then
the background at 5 m (at high altitudes) (Fig. 8b and d) has
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Figure 8. Diurnal cycles of temperature observed (Tobs, crosses) or calculated at different steps within the assimilation workflow of Arome-
OPER for mid-altitude mountain stations (a, b) and high-altitude mountain stations (c, d) over the study period. Within each altitude range
a distinction is made between standard stations (a, c) and Nivose stations (b, d). The number of stations is given in brackets. Within the
modeled temperatures, the background at 2 m (orange) refers to the Arome background interpolated at the observation point (dashed orange
box in Fig. 3); the background at 5 m (light blue) designates the background at the first level of the model at the closest grid point of the
station; the forecast temperature comes from the Arome-OPER forecast (see Sect. 2.4, navy blue line) also taken at the closest grid point
of the station; and the analyzed T5m (or T2m diagnostic – analysis) in purple refers to the T5m analysis (or its associated T2m diagnostic)
accounting for all observations including surface and satellite ones.

a warm bias of up to 0.9 °C at 07:00 UTC for high-altitude
stations, whereas the 5 m background and forecasts are al-
most unbiased. This means that the assimilation of the ob-
servations leads to an overcorrection of T5m in the model,
which switches from underestimation in the forecast and
background at high altitudes to overestimation in the analy-
sis. This error is consistent with the fact that the height of
the Nivose stations is not being taken into account in the
assimilation, as theoretically assessed in the previous sec-
tion. In fact, the value of the innovation (observation mi-
nus background) at high-altitude Nivose stations would be
much lower at night if it was calculated correctly using the
background at 5 m: the mean innovation at night (from 18:00
to 07:00 UTC) would then be +0.1 °C compared to +3.8 °C
when calculated with the background at 2 m as currently
done. This analysis alone cannot prove that the misaccount-
ing for the height of Nivose measurements is the sole source
of errors, as other observations are assimilated within the
3DVar to produce the analyzed T5m; however, the results
shown in Fig. 8 are fully compatible with our hypotheses.

During daytime at high altitudes, the forecast temperatures
at 5 m (Fig. 8d) and at 2 m (Fig. 8c) are too cold with a max-
imum diurnal bias of −2.0 °C at 12:00 UTC for the Nivose
stations and −1.8 °C at 08:00 UTC for the standard stations;
both biases are partly corrected by the analysis. We hypoth-
esize that the lower magnitude of the innovation during that
part of the day, and possibly the contribution of other obser-
vation sources (satellite, etc.), prevents an overcorrection of
the analyzed T5m as seen at night. Note that for technical
reasons, the interpolation procedure for the background tem-
perature at 2 m involves the four nearest grid points to the
station and differs from that used for the other model prod-
ucts (nearest model grid point). This induces a structural dif-
ference between the background at 2 m and, for instance, the
forecast at 2 m that is usually below 0.5 °C but can be en-
hanced by local effects when only a few stations are consid-
ered like in Fig. 8c, resulting in that case in the background at
2 m being distinctively colder than the forecast at that height.

In mid-altitude mountain areas, the analyzed T5m is also
worse than the forecast at Nivose stations at night, a degra-
dation consistent with an overestimated increment of about
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+2.0 °C for the background at 2 m at night that would have
been reduced to about+0.1 °C if considered at 5 m (Fig. 8b).
However, the effects are less marked at these mid-altitude
Nivose stations than at the high-altitude ones because the
T5m–T2m difference is smaller (cf. Sect. 3.2.1). In addition,
the mid-altitude areas are more influenced by the standard
stations (with no problematic sensor height) than the high-
altitude ones, where stations are scarcer and mostly Nivose.
The effect of height error should therefore be more limited
in mid-altitude mountains. In conclusion, the assimilation of
screen-level temperature observations degrades the analyzed
T5m at the point closest to the Nivose stations, especially at
night. This predominantly affects the high-altitude areas, as
the height problem is less prominent at lower altitudes and
affects fewer observation stations. However, at standard sta-
tions, the assimilation generally leads to an improvement in
the temperature forecast at night without any deterioration
during the day (Fig. 8b and d), which conforms with the ex-
pectations of an assimilation system.

3.3 Effect of geographic heterogeneities within the
mountain observation network on the 3DVar
assimilation

We performed targeted assimilation experiments to estimate
the impact of two problems present in the Arome-OPER as-
similation system (cf. Sect. 2.4):

– The heterogeneity in density and altitudinal coverage of
the observation network by means of the NO_VALLEY
experiment.

– The altitude mismatch between the stations and model
grid points by means of the 150M experiment.

These two problems are present in Arome-OPER but not
in 150M and NO_VALLEY, respectively. By comparing the
improvement brought about by assimilation with respect to
its background (i.e., the analysis increment) between Arome-
OPER and the experiments, we can quantify the impact of
these problems, particularly in relation to the contribution
of upper-air and surface observations. Although the experi-
ments do not make any difference in their assimilation be-
tween station types, in order to be able to compare their anal-
ysis increments with the observations, we will separate the
Nivose from the standard stations in our results.

3.3.1 Quantifying the impact of altitude differences
between stations and model grid (150M
experiment)

In our dataset, there are 13 weather stations (out of 82) for
which the model relief (of the grid point containing the sta-
tion) differs by more than 150 m from the station’s actual al-
titude. These 13 stations are therefore not assimilated in the
150M experiment.

Figure 9 shows that relief errors have only a weak effect on
assimilation at all attitudes: the analysis increment calculated
without the surface stations impacted by an error of more
than 150 m between model relief and station altitude (“relief
error” in the legend) differs at most by only a few tenths of
a degree from the analysis increment including all surface
stations, which is not significant in relation to the observation
error. Our results also confirm that in valleys, this error has
no impact, but this is not surprising since only one station out
of 46 exhibits a relief mismatch with respect to the model.

Stations with unrealistic relief represent a small proportion
of mountain observations in the French Alps (15 %), which
likely explains this small effect. In fact, there are 2 Nivose
stations out of 4 in the mid-altitude mountains and 2 out of
14 at high altitudes. There are more standard stations with a
relief mismatch, with 7 out of 16 in mid-altitude mountains
and 1 out of 2 at high altitudes.

Even if we focus on the diurnal cycle of assimilation at
the station, the difference between Arome-OPER and 150M
remains negligible and has a sign that varies and is decor-
related from the altitude. Furthermore, this difference does
not depend on the sign and value of the difference between
the model relief and reality. Thus, although significant dif-
ferences can occasionally be observed between 150M and
Arome-OPER, we conclude that stations with an important
altitude mismatch with respect to the model have a negligi-
ble impact on assimilation in Arome.

3.3.2 Quantifying the impact of the altitudinal
heterogeneity in station density (NO_VALLEY
experiment)

As stated in the Introduction, the 3DVar assimilation sys-
tem does not consider any effect of the topography. Val-
ley stations therefore influence the analysis calculated for
mid-altitude and high-altitude mountains, and vice versa,
disregarding the differences in dominant processes and
model biases across altitudes, highlighted for instance
in Sect. 3.1. By comparing the analysis increments be-
tween the NO_VALLEY and Arome-OPER experiments (cf
Sect. 2.4.2), we can quantify the impact of lowland and val-
ley stations on the analyzed T5m at higher altitudes.

Figure 9 shows that the assimilation of lowland and valley
stations has a cooling effect at all altitudes. Their impact is
the most important and significant in the lowlands and Alpine
valleys, where nighttime cooling averages −0.4 °C with a
minimum of −0.7 °C at 06:00 UTC (Fig. 9a). In the mid-
altitude mountains, the impact is weaker with a maximum
contribution of −0.3 °C at 06:00 UTC. The assimilation of
lowland and valley stations also cools the high altitudes by
−0.3 °C on average (Fig. 9c) at night at Nivose stations.

Similarly, we can examine the contribution of the moun-
tain (mid-altitude and high-altitude) observations at night
through the NO_VALLEY analysis increment. On average,
their contribution to assimilation amounts to +0.3 °C in the
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Figure 9. Analysis increments (denoted 1) obtained in different configurations of the pool of assimilated observations, as described in
Sect. 2.4.2. These increments are retrieved at station locations in valleys (a), mid-altitude mountains (b), and high-altitude, taking into
account only Nivose stations in mountains (b, c). The difference between the observation and the background of Arome-OPER represents an
idealized increment (black crosses). There is no measure at 5 m in valleys, so no idealized increment is calculated.

valleys (cyan line in Fig. 9a). At mid-altitudes, mountain ob-
servations warm the assimilation at Nivose stations by 0.6 °C
(Fig. 9b). At high altitudes, this warming is greater, with
a mean contribution of 1.1 °C (Fig. 9c). Mountain stations
therefore warm the analysis at nighttime, whatever the alti-
tude of the stations, even in the valleys.

It hence appears that the nighttime cooling effect of (nu-
merous) valley stations on the analyzed T5m in mountains
has the same magnitude as the nighttime warming effect of
(scarcer) mountain stations on the analyzed T5m in valleys.
However, the assimilation of mountain stations has a stronger
effect in mountain areas than the assimilation of flatland and
valley stations there, which have an effect of opposite sign
(cooling) and a magnitude 2 times (for mid-altitudes) to 4
times (for high altitudes) lower. This result suggests that the
heterogeneity in station density across altitudes has a moder-
ate but not dominant impact in shaping the screen-level tem-
perature analysis increment in high-altitude regions.

4 Discussion

4.1 Impact of mountain, surface, and altitude
observations on assimilation

Mountain stations contribute to positive assimilation incre-
ments at night in mid- and high-altitude mountains, ranging
from 0.6 to 1.1 °C in mean values (Sect. 3.3.2). In high al-
titudes and to a lesser extent in mid-altitudes, this warming
overnight degrades the performance of Arome-OPER, as il-
lustrated by a distinctively positive assimilation increment,
while the ideal increment is close to zero. The results of
the assimilation experiments hence confirm the results from
Sect. 3.2 and the role of mountain station assimilation in the
degradation of the T5m analysis.

As the Arome-OPER T5m forecast bias is very weak at
night at high altitudes (Fig. 8), we deduce that the positive

increment of the analysis comes in part from the comparison
of the (colder) model T2m diagnostic with the Nivose obser-
vations taken at about 5 m over the surface. Another source
of error is the direct use of the temperature increment at 2 m
to modify the model temperature at 5 m, without a transfer
to the correct height above the surface to calculate the ana-
lyzed temperature at the first level of the model. These two
influences have not yet been individually quantified. The first
problem is included in the mountain contribution (cyan line,
Fig. 9), while the second affects all surface observations.

As mentioned in Sect. 3.3.2, we note that the contribu-
tion of valley stations to the analysis increment in mountains
dampens the warming effect of the assimilation of mountain
stations by about 0.3 °C. This negative contribution is an ar-
tifact of the 3DVar system that does not account for relief
in the spatial area of influence of the increments, but it has
the effect of limiting the warm bias of the analyzed T5m at
Nivose stations. Therefore it can be seen as a compensation
error within the model.

Finally, our assimilation experiments enable an insight
into the role of surface vs. upper-air observation assimila-
tion across altitudes in mountain regions. The contribution
of the surface observations is, by construction, the composi-
tion of the mountain and valley contributions. At night, sur-
face observations cool the valleys by −0.1 °C on average, as
the negative contribution of valley observations is higher in
magnitude than the positive contribution of mountain obser-
vations (Fig. 9a). This helps reduce the warm bias of Arome
in valleys (Fig. 6). The aggregated effect of surface observa-
tions is opposite in mid- and high-altitude mountains, where
they warm the T5m analysis more significantly (Fig. 9b and
c) due to a high positive and dominant contribution of moun-
tain stations over valley stations.

In mid-altitude areas, the contribution of surface obser-
vations reaches +0.6 °C at 18:00 UTC at Nivose stations.
At high altitudes, the contribution of surface observations
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is higher, with an average nighttime contribution of 0.85 °C
at Nivose stations. These positive analysis increments are in
line with the dominant role of mountain station assimilation
for altitude regions and the height-above-surface and miss-
ing adjoint issues mentioned above. Conversely, altitude ob-
servations warm the valleys by an average of 0.1 °C, with a
maximum of 0.5 °C at 01:00 UTC, and cool the mountains by
−0.1 °C. We conclude that in mountain regions, the assimila-
tion of T5m is therefore mainly influenced by surface obser-
vations throughout all altitudes: from valleys to high moun-
tains. Most strikingly, at least for the nighttime period, the
analysis increment due solely to altitude (upper-air) observa-
tions is closer to the ideal increment than those induced by
surface observations alone and by Arome-OPER. This sug-
gests that, at least for nighttime conditions, the assimilation
of surface observations as a whole is not beneficial for the
analysis of T5m at middle and high altitudes.

4.2 Main findings and insights into the use of
temperature observations in mountains

Our study examined the impacts of inhomogeneities in the
surface observation network in complex, mountainous alpine
terrain on the evaluation of the performances of a numerical
weather prediction system and on the assimilation of these
data themselves. The inhomogeneities studied are of three
flavors: (i) the difference in height above the surface of the
temperature sensors across altitudes, in connection with the
development of the snowpack over the winter; (ii) the differ-
ence of altitude between the individual observation stations
and the model grid point they are located in; and (iii) the in-
homogeneity in station densities between valleys and moun-
taintops.

We find that the various heights above the surface of the
measurements involved across altitudes matter. First, as sig-
nificant differences exist in a number of meteorological sit-
uations where temperatures differ between 2 m height and
further up above the surface in high-mountain regions, this
difference impacts targeted model evaluations. Second, the
NWP or atmospheric models may present quite different bi-
ases at different heights above the surface, even within a few
meters. In the example of the Arome system, our distinction
between 5 and 2 m across the observational network enables
us to state that the temperature at the lowest model prognos-
tic level, close to 5 m above the surface, is only very moder-
ately biased in Arome. However, temperature proves highly
biased at levels below, be it at 2 m above the surface or more
intensely directly at the surface itself. This generalizes the
findings of Gouttevin et al. (2023) based on a two-site study
in the French Alps and makes the T2m temperature bias as
much of a concern for surface modelers as for atmospheric
ones. We therefore recommend that model biases be analyzed
as at different heights, considering the proper height of the
measurements available, as illustrated in Figs. 6 and 7.

In the case of Arome, we further found that these differ-
ences in biases at different heights lead to an overestimation
of the assimilation increment when the differences in height
are not accounted for in the assimilation system and 5 m high
observations are assimilated as 2 m high ones. As a result,
while useful for the correction of near-surface air tempera-
tures for the initial (analysis) step of forecasts in low-altitude
regions (Leuenberger et al., 2024), the assimilation of surface
stations is actually currently detrimental in mountain regions
in the French high-resolution weather forecasting system. We
also note that activating the adjoint of the diagnostic within
the assimilation could be a first step to reduce the current
errors in the assimilation process.

Contrarily, we find that the relief mismatch between sta-
tions and the model has no significant impact in assimilation.
This conclusion may be relative to the configuration of sta-
tions where this mismatch is observed in the present case
study, only 15 % of which present an important mismatch
with respect to the relief of the Arome-OPER system, that
runs with a high spatial resolution coming with an enhanced
representation of the topography. It should be verified when
working with coarser model resolutions or in other mountain
regions. In particular, it may not hold for regions with more
abrupt relief and more intense altitude variations like the Hi-
malayas.

With regards to the heterogeneous density of stations
across altitudes, our study shows that the valleys and lower-
altitude stations that are the most numerous and hence the
most assimilated in the French Alps have a lower influence
on the analysis of temperature at high-altitude areas than the
high-altitude stations themselves. This result suggests that
the topographic heterogeneity in station density has a moder-
ate impact on high-altitude regions. Again, this conclusion is
not general and should be revisited in other regions or even
for specific regions of the French Alps with lower station
densities.

As a matter of fact, in the present case study, the effect of
low-altitude stations at high-altitude locations and the effect
of high-altitude station assimilation on the temperature of
low-altitude areas have the same order of magnitude, chang-
ing the analysis temperature by about ±0.3 °C. However,
these effects are of opposite signs: this means that data from a
different altitude bring a moderate but non-null correction to
the model at another altitude, where the biases can be differ-
ent and hence be enhanced instead of corrected. In the case of
Arome, the assimilation of valley stations warms the model
at high altitudes, while the assimilation of high-altitude sta-
tions, relevant for high-altitude model behavior, tends to cool
it. This result illustrates the limitations of the current 3DVar
assimilation system that disregards the effect of topography
in the spatial structure of assimilation increments. To pre-
vent these undesirable effects, topography should be better
accounted for in the assimilation systems. So Merker et al.
(2018) have shown that the KENDA (Km-scale ENsemble-
based Data Assimilation) system (Schraff et al., 2016) used
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in COSMO better catches small-scale features like orography
(Schraff et al., 2016). For Arome, an ensemble assimilation
scheme (3DEnvar, Brousseau et al., 2025) was recently intro-
duced in the new operational version. This scheme implicitly
accounts for relief via background error correlation matrices
inferred from the model ensemble. This new feature could
help reduce the impact of inhomogeneity in station densities
between valleys and mountaintops.

In line with previous studies, our work here highlights that
model biases differ significantly across altitudes (Rudisill
et al., 2024; Vionnet et al., 2016; Quéno et al., 2016; Mon-
teiro et al., 2022). Therefore, we strongly recommend that
different altitude regions should be considered separately or
differently in assimilation (see above) but also when it comes
to model evaluation. Only evaluation differentiated by alti-
tude can foster a better understanding of the model limita-
tions and promote efficient model improvements over moun-
tain regions, targeting altitude-specific biases and underlin-
ing processes. For instance, in the case of Arome, the aware-
ness of a concomitant high-altitude cold and low-altitude
warm bias can lead to the hypothesis of deficient katabatic
flows that provide a convenient explanatory mechanism dis-
cussed in more detail in Sect. 4.3. Such a hypothesis could
not have been formulated if only one global bias had been
assessed without altitudinal differentiation.

Similarly, we estimate that not considering the height-
above-surface difference between standard and Nivose sta-
tions has long impeded a proper quantification and under-
standing of the near-surface temperature bias of our NWP
system, Arome, probably partly hindering its resolution.
Having a more accurate T2m estimate, not affected by, e.g.,
the error in measurement height, would enable better knowl-
edge of the true model biases and the formulation of relevant
hypotheses for these biases, henceforth favoring the improve-
ment of the model’s physical parameterizations. For exam-
ple, in the case of Arome-OPER, the accuracy of the tem-
perature representation at the lowest model level enables us
to mostly exclude problems linked to the dynamical core of
the atmospheric model and to draw the focus on the surface
energy balance and associated processes. Some further ex-
amples of hypotheses will be described in Sect. 4.3.

4.3 Towards a more robust surface temperature

Figure 4a and b show a different behavior of the modeled
surface temperature Ts according to altitude. At the high-
altitude site CLB, where the surface is rock generally covered
with snow in winter, the Ts is too cold by several degrees (up
to−7 °C negative bias at night) in winter, and the diurnal cy-
cle is too strong. This cold bias in Ts has a direct impact on
the diagnostic of T2m. On the other hand, at the mid-altitude
CDP site, where the surface is grassy and surrounded by a
forest environment and snow cover can be discontinuous in
winter, the Ts modeled by Arome is too warm (up to +4 °C

Table 4. Thermal amplitude of surface temperature observed and
modeled by Arome-OPER at CDP and CLB over the winters (DJF)
between 1 January 2020 and 28 February 2022.

Sites
Ts

Obs OPER

Col de Porte 3.8 5.3
Col du Lac Blanc 4.5 8.4

positive bias during the day), while the diurnal cycle remains
too strong.

The thermal amplitude of the diurnal cycles of Ts is re-
ported in Table 4 for both sites, showing this overestimation.
It also has consequences for T2m that are diagnosed in part
based on the surface temperature, as can be seen in Table 1.

Hence, at the high-altitude site, the T2m nighttime neg-
ative bias of Arome is partly induced by a snow surface
temperature that is too cold, an issue already highlighted by
Gouttevin et al. (2023) and Monteiro et al. (2022) for this
model, while other authors advance a clear imbrication be-
tween surface temperature, surface processes, and T2m bi-
ases for other models, especially in the presence of snow
(e.g., Arduini et al., 2019; Rudisill et al., 2024). The surface
processes possibly involved in these biases are manyfold: as
snow rarely covers the ground thoroughly at the scale of a
model grid cell, snow cover fractions are used by the mod-
els, with parameterizations rarely constrained by field data
or suited to the local context of model application (Lalande
et al., 2023). They constitute a first possible cause for surface
temperature biases, as they are used to weight the surface en-
ergy fluxes over snow-covered and snow-free areas (Lalande
et al., 2023; Liu et al., 2017). The representation of the snow
cover is also often pinpointed as a possible source of surface
and near-surface temperature biases, in connection with pro-
cesses like the thermal conduction (one-layered snow model
being unable to account for the thermal conductivity and low
thermal inertial of surface snow layers) or albedo (possibly
in connection with the snow cover fraction) (Arduini et al.,
2019; Rudisill et al., 2024).

In the case of the Arome-OPER system specifically, the
ground scheme currently used relies on a force-restore ap-
proach (the Isba-3L surface scheme) and a one-layered snow
model (D95) with a single soil–vegetation–snow surface
temperature relationship, a configuration pinpointed by sev-
eral authors for excessive winter nighttime cooling at the sur-
face of the snowpack (Etchevers, 2000; Douville et al., 1995;
Gouttevin et al., 2023; Monteiro et al., 2022). One avenue of
research is to replace the present force-restore scheme with a
multilayer soil and surface scheme, Isba-DIFF, that allows a
resolution of specific energy balances for the soil–vegetation
system as described in Monteiro et al. (2024) and would be
associated with the multilayer snow scheme Isba-ES (Boone
and Etchevers, 2001). These changes that promote a more
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physical representation of the soil–snow–atmosphere contin-
uum have been successfully tested by Monteiro et al. (2024)
with modifications to improve the snow cover.

Deficiencies in the turbulent coupling between the surface
and the atmosphere over snow are another very likely source
of the cold bias in surface and screen-level temperatures. The
situations of strong stability often encountered over continu-
ous snowpacks at high altitudes in low wind conditions tend
to reduce the turbulent transfer coefficient between the sur-
face and atmosphere and, therefore, to decouple the surface
from the atmosphere in the models, leading to excessive sur-
face cooling. The turbulent exchanges in mountain regions
are hard to capture by atmospheric models, as the assump-
tions behind the Monin–Obukhov similarity theory imple-
mented in the models are violated in complex terrain (e.g.,
Rotach et al., 2022). In the case of Arome, Gouttevin et al.
(2023) showed that turbulent coupling was underestimated
at nighttime during stable conditions at high altitudes, sig-
nificantly contributing to the T2m cold bias. The turbulent
coupling between snow and the atmosphere in complex ter-
rain could be revisited along with the scientific progress in
that field, and recent or ongoing work (Stiperski et al., 2019;
Stiperski and Calaf, 2023; McCandless et al., 2022) may lead
to interesting breakthroughs in the coming years. Also, we
add as a note that katabatic winds are likely misrepresented
in atmospheric models of kilometric scales like Arome due
to a resolution in the lower atmosphere that is too coarse, i.e.,
within the few meters above the surface (Blein, 2016). The
likely underestimation of their strength provides an inter-
esting alternative explanatory mechanism for both the near-
surface cold bias at high altitudes and warm bias in valleys, a
hypothesis that we suggest here but that has yet to be verified
against in situ data.

Finally, it would be interesting to have Ts measurements
in Alpine valleys, as this warm bias could partly explain the
T2m warm bias observed in valleys in winter and the model’s
difficulty in predicting cold pools.

4.4 T2m diagnostic ill-adapted to complex terrain?

While the more complex physical parameterizations could
improve mountain temperature forecasting (as evoked in
Sect. 4.3), it should be remembered that the T2m field pro-
duced by Arome as well as by most atmospheric models at
kilometric scale or above is a diagnostic field (Rudisill et al.,
2024; Ingleby et al., 2024). It is computed from the tem-
perature at the lowermost model level, T5m, and the surface
temperature, Ts, via an interpolation formula generally rely-
ing on the Monin–Obukhov similarity theory and depending
on surface layer parameterizations, notably surface rough-
ness lengths and stability corrections. In the case of Arome,
this analytical formulation is established so as to ensure that
the estimated static energy profile between the surface and a
given height, here 2 m, is consistent with the modeled fluxes
higher up, at the lowermost prognostic model level (Geleyn,

Figure 10. This diagram illustrates the differences between the
modeled temperature profile (black dotted line) and the actual pro-
file (gray solid line) at high altitude in winter: the modeled surface
temperature is too cold, and the layer over which the inversion de-
velops is too thick, both leading to a cold bias at 2 m. Ts is in blue,
T2m in purple, and T5m in red.

1988). Therefore, first, this diagnostic inherits the limitations
exposed in Sect. 4.3 for the estimations of the turbulent fluxes
in complex terrain and may be biased in highly stable, noc-
turnal conditions, just because the modeled fluxes are biased
in these situations (see Sect. 4.3) Second, this diagnostic was
developed at a time when the resolution of Arome’s coupling
model, Arpege (Bubnová et al., 1995), was of the order of
20 km over the Alps and relief was therefore less important
in the model. Hence, while suitable for the boundary layer
over the plains, it is likely not adapted to mountainous areas.

According to Serafin et al. (2018) and Arduini (2017), the
boundary layer is complex in mountain areas. In the valleys,
when high-pressure systems develop in winter, the winds are
weak and cold air is trapped, forming cold pools, so that the
vertical temperature profile shows a strong inversion extend-
ing vertically over several tens of meters and lasting some-
times throughout the day. At high altitude, however, the in-
versions will be strong in the very first few meters only and
may frequently be less than 2 m thick. Figure 10 illustrates
this situation, whereby the model features a temperature in-
version that is too thick. In this case, the T2m diagnostic has
a cold bias, induced both by a surface temperature that is too
cold (see Sect. 4.3) and by an inversion that is not as shallow
over the surface as in observations.

When a weather disturbance arrives, the cold air will re-
main trapped in the valleys for several hours, while the high
altitude will be under the effect of synoptic-scale circulation.
The processes are therefore different for near-surface tem-
peratures between valleys, mid-altitude mountains, and high-
altitude areas. The T2m diagnostic must therefore be adapted
accordingly.
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To overcome such issues and especially solve the problem
of nighttime disconnection frequently encountered between
surface and atmospheric models, a prognostic surface bound-
ary layer scheme has been proposed by Masson and Seity
(2009): Canopy. This scheme was shown to foster large im-
provements during stable, nighttime conditions and in moun-
tain areas, where analytical laws and interpolation methods
for the temperature profile frequently fail (Masson and Se-
ity, 2009). It hence constitutes a very promising alternative
to diagnostics.

Following this approach, Meier et al. (2021) proposed us-
ing this surface boundary layer scheme for their simulations
of temperature with Arome at kilometric resolution over the
mountains and valleys of the Austrian operational weather
forecasting domain. However, these authors noticed persis-
tent model biases for different locations in connection with
the topography (e.g., valleys vs. mountaintops) that encour-
aged them to consider the information from higher (lower)
canopy levels for mountaintops (valley). In the end, they pro-
pose weighting the canopy levels for the final T2m output
depending on the local topography, giving more weight to
higher canopy levels or even the free atmosphere for exposed,
mountaintop grid points and more weight to lower canopy
levels for grid points in narrow Alpine valleys. A parame-
ter (inversion factor noted IFAC) which depends on the posi-
tion in the relief (plain, valley, mountain) is added in Canopy.
This can be seen as a pragmatic way to inject in the model
the different behaviors of the mountain and valley bound-
ary layers, described above. The results are promising. As a
reminder, the surface boundary layer scheme Canopy, origi-
nally developed in Arome-France, is deactivated in the cur-
rent version because it enhances the valley warm T2m bias,
no doubt due to error compensation. It still constitutes an
interesting perspective but the current valley bias has to be
solved prior to the re-activation of this scheme.

Other alternatives lie in the improvements of the diag-
nostics themselves, and some recent studies have proposed
work in this direction. For instance, Dian and Masek (2016)
proposed a modification to the T2m diagnostic from Geleyn
(1988) using a different assumption for the structure func-
tion, but it is only suitable for stable or anticyclonic cases and
did not improve the estimation of T2m in all topographic and
weather situations. For their part, Ingleby et al. (2024) have
also proposed a revision of T2m diagnostics in the IFS model
that leads to less divergence from the theory and a more re-
alistic evolution of T2m in stably stratified conditions.

Another final possibility would be to increase the number
of vertical levels in the model in order to obtain a prognos-
tic rather than a diagnostic temperature at 2 m. Indeed, recent
work by Antoine et al. (2023) showed that adding levels in
the lowermost layers of an atmospheric model significantly
improves fog forecasting, thanks to a better representation
of near-surface atmospheric variables. We hypothesize that
having a first atmospheric level at around 2.5 m like in their
study could therefore improve the representation of the verti-

cal temperature profile in the first few meters of the atmo-
sphere. This could typically be tested using the 500 m re-
search version of Arome over the Alps, which has 120 verti-
cal levels, with an increased number of levels near the surface
(Arnould et al., 2021). All these perspectives may be investi-
gated in the future for the Arome-OPER NWP system.

5 Conclusions

This study investigated the impact of inhomogeneities of the
observational network specific to mountain regions on the
evaluation of the NWP system Arome and on the effects of
surface data assimilation within this system.

We first questioned whether the differences in height
above the surface between sensors should be accounted for
when evaluating models in terms of near-surface air temper-
ature. These differences are correlated with altitude and in-
duced by the need to prevent the sensors from being buried in
thick snowpacks in high-altitude terrain over the winter. We
showed that T5m and T2m should not be considered equiv-
alent when performing model evaluations: despite a limited
mean difference over winter at our mid- and high-altitude re-
search sites, both temperatures can differ significantly in spe-
cific situations, especially low winds and clear skies. There-
fore, taking one for another introduces errors. Furthermore,
at the instance of the Arome model, atmospheric models may
present very different biases at these different heights so that
the confusion between the two temperatures leads to erro-
neous interpretations of model biases. We therefore recom-
mend a distinct evaluation of modeled T5m and T2m against
the relevant observations in mountain terrain. Only evalua-
tion differentiated by altitude can foster a better understand-
ing of the model limitations and promote efficient model im-
provements over mountain regions.

We then questioned whether this difference in height plays
a detrimental role in assimilation, as observations at 2 or
5 m are not discriminated within the assimilation system of
Arome, an approximation that we estimate may be common
among NWP systems. We showed that, indeed, this confu-
sion between heights in the assimilation process leads in the
case of Arome to an overestimation of the analysis increment
in high-altitude regions, inducing an overestimation of T5m
analysis at night and a degradation of performances with re-
spect to the model without assimilation (background or fore-
cast), while relying on upper-air data (satellite, radar) assim-
ilation only would produce a better analysis.

Finally, we questioned the effect of station vs. model re-
lief mismatch and higher density in valley stations on the as-
similation. The differences in altitude between stations and
model grid points do not significantly affect the performance
of assimilation, a result that is hard to generalize to other
mountain regions or NWP systems as it likely depends on
station densities across altitudes and model resolution. Simi-
larly, we quantified the density imbalance between valley and
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mountain stations as not having a dominant effect on assim-
ilation results, despite a non-null contribution from stations
from distinct altitude ranges featuring different model biases
and hence of limited relevance, on the order or 0.3 °C.

To summarize, this study helped define guidelines for
the improvement of high-resolution NWP systems in moun-
tain terrains: in particular, sensor height should be consid-
ered both in model evaluation and assimilation, topography
should be accounted for in the spatial structure functions in-
volved in assimilation, and model biases at 2 m height and
lower could possibly be reduced by the use of diagnostics
more appropriate to mountain terrain, a higher number of
vertical levels in the models, and enhanced work on the sur-
face scheme to improve the representation of soil–snow–
atmosphere energy transfers.

Appendix A: Summary of key abbreviations used in the
study

Table A1. Key abbreviations used in the study for modeled and observed temperatures, type of stations, and numerical assimilation experi-
ments.

Category Abbreviation Signification

Model
T5m_mod Temperature at the first level of the model (approximately 5 m)

T2m_mod Temperature diagnostic at 2 m according to Geleyn (1988)

Ts_mod Surface temperature of the ground for Arome

Observed
T2m_obs Observed temperature at 2 m, above the bare ground for standard stations and above the

surface at instrumented sites CDP and CLB

T5m_obs Observed temperature at 5 m above the surface; measured at Nivose stations and at CLB

Ts_obs Observed temperature at the surface; measured at instrumented sites

Stations

CDP Instrumented site of the Col du Lac Blanc, located at 2720 m

CLB Instrumented site of the Col de Porte, located at 1325 m

Standard Automatic stations providing hourly surface data to Météo-France; sensors are 2 m above the
bare ground

Nivose Automatic stations designed for the mountains; sensors are 7 m above the bare ground

Experience

OPER Operational Arome forecast (Arome-OPER)

NO_VALLEY Numerical assimilation experiment in which observations of T2m and relative humidity at 2 m
(RHU2m) below 1100 m a.s.l. are excluded before entering the 3DVar.

NO_NIGHT Numerical assimilation experiment in which T2m and RHU2m are not assimilated at night,
i.e., when the solar angle is less than 10°

150M Numerical assimilation experiments which do not assimilate station data when their altitude
differs from more than 150 m from their grid point altitude in the Arome mode
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Appendix B: Diurnal cycles of surface, screen-level, and
5 m temperatures at the Col de Porte and Col du Lac
Blanc sites

Figure B1. Diurnal cycle of the 5 m, 2 m, and surface observed (OBS) and modeled (OPER) temperatures averaged over the winters of the
study period at the CDP and CLB research sites.

Code and data availability. The code used for the assimilation ex-
periments in Arome-France is owned by the members of the AC-
CORD consortium. This agreement allows each member of the
consortium to license the shared ACCORD codes to academic in-
stitutions in their home countries for non-commercial research.
Access to codes used for the figures can be obtained by con-
tacting the corresponding author. The main data from the Col
du Lac Blanc and Col de Porte instrumented sites are avail-
able at https://doi.osug.fr/public/ (last access: 27 October 2025)
(GLACIOCLIM-CLB, 2024; GLACIOCLIM_ CDP, 2023). Com-
plementary data for the CLB used in the present paper, namely the
interpolated 2 and 5 m temperatures and surface temperature com-
puted using incoming longwave radiation, have been made available
here: https://doi.org/10.5281/zenodo.14989735 (GLACIOCLIM-
CLB, 2025). Data from the Météo-France surface observation net-
work and from the operational Arome-FRANCE model (analyses
and forecasts) are freely available at https://portail-api.meteofrance.
fr/web/en/ (last access: 27 October 2025) (Météo-France, 2025).

Data from the numerical experiments performed within this study
are available at https://doi.org/10.5281/zenodo.16570743 (Préaux,
2025). All computations were performed with Python software ver-
sion 3.12.3. The codes handling the station data and the numer-
ical assimilation experiment are available from a Zenodo repos-
itory (https://doi.org/10.5281/zenodo.16570743; Préaux, 2025). It
notably includes the scripts for the following tasks: performing all
data preprocessing, reading the different data sources, statistical
analyses leading to the tables, and plotting the figures.
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