Articles | Volume 18, issue 22
https://doi.org/10.5194/gmd-18-8703-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-8703-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of annual trends in carbon cycle variables simulated by CMIP6 Earth system models in China
Ziyang Li
Institute of Applied Artificial Intelligence of The Guangdong-Hongkong-Macao Greater Bay, Shenzhen Polytechnic University, Shenzhen 518055, China
School of Artificial Intelligence, Shenzhen Polytechnic University, Shenzhen 518055, China
School of Mining and Geomatics, Hebei University of Engineering, Handan 056038, China
Lidong Zou
CORRESPONDING AUTHOR
Institute of Applied Artificial Intelligence of The Guangdong-Hongkong-Macao Greater Bay, Shenzhen Polytechnic University, Shenzhen 518055, China
School of Artificial Intelligence, Shenzhen Polytechnic University, Shenzhen 518055, China
Anzhou Zhao
CORRESPONDING AUTHOR
School of Mining and Geomatics, Hebei University of Engineering, Handan 056038, China
Haigang Zhang
Institute of Applied Artificial Intelligence of The Guangdong-Hongkong-Macao Greater Bay, Shenzhen Polytechnic University, Shenzhen 518055, China
Feng Yue
School of Architecture and Urban Planning, Guangdong University of Technology, Guangzhou 510062, China
Zhe Luo
School of Artificial Intelligence, Shenzhen Polytechnic University, Shenzhen 518055, China
Rui Bian
School of Mining and Geomatics, Hebei University of Engineering, Handan 056038, China
Ruihao Xu
School of Mining and Geomatics, Hebei University of Engineering, Handan 056038, China
Related authors
Anzhou Zhao, Ziyang Li, Lidong Zou, Jiansheng Wu, Kayla Stan, and Arturo Sanchez-Azofeifa
Earth Syst. Dynam., 16, 1935–1957, https://doi.org/10.5194/esd-16-1935-2025, https://doi.org/10.5194/esd-16-1935-2025, 2025
Short summary
Short summary
In this context, we used satellite observations of vegetation to evaluate long-term trends (2003–2019) in China simulated by dynamic global vegetation models (DGVMs). While these models capture the seasonal patterns of leaf area index (LAI) and gross primary production (GPP), they cannot accurately spatially represent the trend performance of LAI and GPP. The models tend to underestimate forests, overestimate grasslands, and struggle to represent cropland changes accurately.
Anzhou Zhao, Ziyang Li, Lidong Zou, Jiansheng Wu, Kayla Stan, and Arturo Sanchez-Azofeifa
Earth Syst. Dynam., 16, 1935–1957, https://doi.org/10.5194/esd-16-1935-2025, https://doi.org/10.5194/esd-16-1935-2025, 2025
Short summary
Short summary
In this context, we used satellite observations of vegetation to evaluate long-term trends (2003–2019) in China simulated by dynamic global vegetation models (DGVMs). While these models capture the seasonal patterns of leaf area index (LAI) and gross primary production (GPP), they cannot accurately spatially represent the trend performance of LAI and GPP. The models tend to underestimate forests, overestimate grasslands, and struggle to represent cropland changes accurately.
Cited articles
Allen, M., Dube, O. P., Solecki, W., Aragón-Durand, F., Cramer, W., Humphreys, S., and Kainuma, M.: Special report: Global warming of 1.5 °C, Intergovernmental Panel on Climate Change (IPCC), (https://www.ipcc.ch/sr15/, last access: 14 November 2025), 2018.
Amthor, J. S.: The McCree–de Wit–Penning de Vries–Thornley Respiration Paradigms: 30 Years Later, Annals of Botany, 86, 1–20, https://doi.org/10.1006/anbo.2000.1175, 2000.
Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P., Jones, C., Jung, M., Myneni, R., and Zhu, Z.: Evaluating the land and ocean components of the global carbon cycle in the CMIP5 earth system models, Journal of Climate, 26, 6801–6843, https://doi.org/10.1175/JCLI-D-12-00417.1, 2013.
Araza, A., de Bruin, S., Hein, L., and Herold, M.: Spatial predictions and uncertainties of forest carbon fluxes for carbon accounting, Scientific Reports, 13, 12704, https://doi.org/10.1038/s41598-023-38935-8, 2023.
Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P., Schwinger, J., Bopp, L., Boucher, O., Cadule, P., Chamberlain, M. A., Christian, J. R., Delire, C., Fisher, R. A., Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, M., Koven, C. D., Krasting, J. P., Law, R. M., Lawrence, D. M., Lenton, A., Lindsay, K., Pongratz, J., Raddatz, T., Séférian, R., Tachiiri, K., Tjiputra, J. F., Wiltshire, A., Wu, T., and Ziehn, T.: Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models, Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, 2020.
Aspinwall, M., Jacob, V., Blackman, C., Smith, R., Tjoelker, M., and Tissue, D.: The temperature response of leaf dark respiration in 15 provenances of Eucalyptus grandis grown in ambient and elevated CO2, Functional Plant Biology, 44, 1075–1086, https://doi.org/10.1071/FP17110, 2017.
Bao, Y., Song, Z., and Qiao, F.: FIO-ESM version 2.0: Model description and evaluation, Journal of Geophysical Research: Oceans, 125, e2019JC016036, https://doi.org/10.1029/2019JC016036, 2020.
Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., Fuchs, R., Brovkin, V., Ciais, P., and Fensholt, R.: China and India lead in greening of the world through land-use management, Nature Sustainability, 2, 122–129, https://doi.org/10.1038/s41893-019-0220-7, 2019.
Collalti, A. and Prentice, I. C.: Is NPP proportional to GPP? Waring's hypothesis 20 years on, Tree Physiology, 39, 1473–1483, https://doi.org/10.1093/treephys/tpz034, 2019.
DeLucia, E. H., Drake, J. E., Thomas, R. B., and Gonzalez-Meler, M.: Forest carbon use efficiency: is respiration a constant fraction of gross primary production?, Global Change Biology, 13, 1157–1167, https://doi.org/10.1111/j.1365-2486.2007.01365.x, 2007.
Dewar, R. C., Medlyn, B. E., and McMurtrie, R. E.: A mechanistic analysis of light and carbon use efficiencies, Plant, Cell & Environment, 21, 573–588, https://doi.org/10.1046/j.1365-3040.1998.00311.x, 1998.
DiMiceli, C., Carroll, M., Sohlberg, R., Kim, D.-H., Kelly, M., and Townshend, J.: MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250 m SIN Grid V006, NASA Land Processes Distributed Active Archive Center [data set], https://doi.org/10.5067/MODIS/MOD44B.006, 2015.
Duan, S.-B., Li, Z.-L., Li, H., Göttsche, F.-M., Wu, H., Zhao, W., Leng, P., Zhang, X., and Coll, C.: Validation of Collection 6 MODIS land surface temperature product using in situ measurements, Remote Sensing of Environment, 225, 16–29, https://doi.org/10.1016/j.rse.2019.02.020, 2019.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Fang, J., Ke, J., Tang, Z., and Chen, A.: Implications and Estimations of four Terrestrial Productivity Parameters, Chinese Journal of Plant Ecology, 25, 414–419, https://doi.org/10.1371/journal.pone.0252149, 2001.
Frankenberg, C., O'Dell, C., Berry, J., Guanter, L., Joiner, J., Köhler, P., Pollock, R., and Taylor, T. E.: Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2, Remote Sensing of Environment, 147, 1–12, https://doi.org/10.1016/j.rse.2014.02.007, 2014.
Fu, Z., Ciais, P., Prentice, I. C., Gentine, P., Makowski, D., Bastos, A., Luo, X., Green, J. K., Stoy, P. C., and Yang, H.: Atmospheric dryness reduces photosynthesis along a large range of soil water deficits, Nature Communications, 13, 989, https://doi.org/10.1038/s41467-022-28652-7, 2022.
Gifford, R. M.: Whole plant respiration and photosynthesis of wheat under increased CO2 concentration and temperature: long-term vs. short-term distinctions for modelling, Global Change Biology, 1, 385–396, https://doi.org/10.1111/j.1365-2486.1995.tb00037.x, 1995.
Hollmann, R., Merchant, C. J., Saunders, R., Downy, C., Buchwitz, M., Cazenave, A., Chuvieco, E., Defourny, P., de Leeuw, G., Forsberg, R., Holzer-Popp, T., Paul, F., Sandven, S., Sathyendranath, S., van Roozendael, M., and Wagner, W.: The ESA Climate Change Initiative: Satellite Data Records for Essential Climate Variables, Bulletin of the American Meteorological Society, 94, 1541–1552, https://doi.org/10.1175/BAMS-D-11-00254.1, 2013.
Hovenden, M. J., Leuzinger, S., Newton, P. C., Fletcher, A., Fatichi, S., Lüscher, A., Reich, P. B., Andresen, L. C., Beier, C., and Blumenthal, D. M.: Globally consistent influences of seasonal precipitation limit grassland biomass response to elevated CO2, Nature Plants, 5, 167–173, https://doi.org/10.1038/s41477-018-0356-x, 2019.
Huang, M., Piao, S., Janssens, I. A., Zhu, Z., Wang, T., Wu, D., Ciais, P., Myneni, R. B., Peaucelle, M., and Peng, S.: Velocity of change in vegetation productivity over northern high latitudes, Nature Ecology & Evolution, 1, 1649–1654, https://doi.org/10.1038/s41559-017-0328-y, 2017.
Huang, X., Ma, M., Wang, X., Tang, X., and Yang, H.: The uncertainty analysis of the MODIS GPP product in global maize croplands, Frontiers of Earth Science, 12, 739–749, https://doi.org/10.1007/s11707-018-0716-x, 2018.
Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S., Ahlström, A., Arneth, A., Camps-Valls, G., Ciais, P., and Friedlingstein, P.: Compensatory water effects link yearly global land CO2 sink changes to temperature, Nature, 541, 516–520, https://doi.org/10.1038/nature20780, 2017.
Kim, D., Lee, M.-I., Jeong, S.-J., Im, J., Cha, D. H., and Lee, S.: Intercomparison of terrestrial carbon fluxes and carbon use efficiency simulated by CMIP5 earth system models, Asia-Pacific Journal of Atmospheric Sciences, 54, 145–163, https://doi.org/10.1007/s13143-017-0066-8, 2018.
Lawrence, D.: Technical description of version 5.0 of the Community Land Model (CLM), 329, https://doi.org/10.1029/2018MS001583, 2020.
Lehmann, J. and Kleber, M.: The contentious nature of soil organic matter, Nature, 528, 60–68, https://doi.org/10.1038/nature16069, 2015.
Le Quéré, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L., Ciais, P., Conway, T. J., Doney, S. C., Feely, R. A., and Foster, P.: Trends in the sources and sinks of carbon dioxide, Nature Geoscience, 2, 831–836, https://doi.org/10.1038/ngeo689, 2009.
Li, W., Zhang, Y., Shi, X., Zhou, W., Huang, A., Mu, M., Qiu, B., and Ji, J.: Development of land surface model BCC_AVIM2. 0 and its preliminary performance in LS3MIP/CMIP6, Journal of Meteorological Research, 33, 851–869, https://doi.org/10.1007/s13351-019-9016-y, 2019a.
Li, Y., Zhao, M., Motesharrei, S., Mu, Q., Kalnay, E., and Li, S.: Local cooling and warming effects of forests based on satellite observations, Nature Communications, 6, 6603, https://doi.org/10.1038/ncomms7603, 2015.
Li, Y., Piao, S., Chen, A., Ciais, P., and Li, L. Z. X.: Local and teleconnected temperature effects of afforestation and vegetation greening in China, National Science Review, 7, 897–912, https://doi.org/10.1093/nsr/nwz132, 2019b.
Li, Z., Wu, H., Duan, S., Zhao, W., Liu, X., Leng, P., Tang, R., Ye, X., Zhu, J., Sun, Y., Si, M., Liu, M., Li, J., Zhang, X., Shang, G., Yan, G., and Zhou, C.: Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and Applications, Reviews of Geophysics, 61, https://doi.org/10.1029/2022RG000777, 2023.
Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V., Carvalhais, N., Chappell, A., Ciais, P., Davidson, E. A., Finzi, A., Georgiou, K., Guenet, B., Hararuk, O., Harden, J. W., He, Y., Hopkins, F., Jiang, L., Koven, C., Jackson, R. B., Jones, C. D., Lara, M. J., Liang, J., McGuire, A. D., Parton, W., Peng, C., Randerson, J. T., Salazar, A., Sierra, C. A., Smith, M. J., Tian, H., Todd-Brown, K. E. O., Torn, M., van Groenigen, K. J., Wang, Y. P., West, T. O., Wei, Y., Wieder, W. R., Xia, J., Xu, X., Xu, X., and Zhou, T.: Toward more realistic projections of soil carbon dynamics by Earth system models, Global Biogeochemical Cycles, 30, 40–56, https://doi.org/10.1002/2015GB005239, 2016.
Ma, X., Huete, A., Cleverly, J., Eamus, D., Chevallier, F., Joiner, J., Poulter, B., Zhang, Y., Guanter, L., Meyer, W., Xie, Z., and Ponce-Campos, G.: Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia, Scientific Reports, 6, 37747, https://doi.org/10.1038/srep37747, 2016.
Ma, X., Jin, J., Zhu, L., and Liu, J.: Evaluating and improving simulations of diurnal variation in land surface temperature with the Community Land Model for the Tibetan Plateau, PeerJ, 9, e11040, https://doi.org/10.7717/peerj.11040, 2021.
Mahowald, N., Lo, F., Zheng, Y., Harrison, L., Funk, C., Lombardozzi, D., and Goodale, C.: Projections of leaf area index in earth system models, Earth Syst. Dynam., 7, 211–229, https://doi.org/10.5194/esd-7-211-2016, 2016.
Meehl, G. A., Boer, G. J., Covey, C., Latif, M., and Stouffer, R. J.: Intercomparison makes for a better climate model, Eos, Transactions American Geophysical Union, 78, 445–451, https://doi.org/10.1029/97EO00276, 1997.
Mohammed, G. H., Colombo, R., Middleton, E. M., Rascher, U., van der Tol, C., Nedbal, L., Goulas, Y., Pérez-Priego, O., Damm, A., Meroni, M., Joiner, J., Cogliati, S., Verhoef, W., Malenovský, Z., Gastellu-Etchegorry, J.-P., Miller, J. R., Guanter, L., Moreno, J., Moya, I., Berry, J. A., Frankenberg, C., and Zarco-Tejada, P. J.: Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress, Remote Sensing of Environment, 231, 111177, https://doi.org/10.1016/j.rse.2019.04.030, 2019.
Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., and Running, S. W.: Climate-driven increases in global terrestrial net primary production from 1982 to 1999, Science, 300, 1560–1563, https://doi.org/10.1126/science.1082750, 2003.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Pan, X., Chen, D., Pan, B., Huang, X., Yang, K., Piao, S., Zhou, T., Dai, Y., Chen, F., and Li, X.: Evolution and prospects of Earth system models: Challenges and opportunities, Earth-Science Reviews, 260, 104986, https://doi.org/10.1016/j.earscirev.2024.104986, 2025.
Park, H. and Jeong, S.: Leaf area index in Earth system models: how the key variable of vegetation seasonality works in climate projections, Environmental Research Letters, 16, 034027, https://doi.org/10.1088/1748-9326/abe2cf, 2021.
Piao, S., Friedlingstein, P., Ciais, P., Zhou, L., and Chen, A.: Effect of climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades, Geophysical Research Letters, 33, https://doi.org/10.1029/2006GL028205, 2006.
Piao, S., Ciais, P., Friedlingstein, P., de Noblet-Ducoudré, N., Cadule, P., Viovy, N., and Wang, T.: Spatiotemporal patterns of terrestrial carbon cycle during the 20th century, Global Biogeochemical Cycles, 23, https://doi.org/10.1029/2008GB003339, 2009.
Piao, S., He, Y., Wang, X., and Chen, F.: Estimation of China's terrestrial ecosystem carbon sink: Methods, progress and prospects, Science China Earth Sciences, 65, 641–651, https://doi.org/10.1007/s11430-021-9892-6, 2022.
Reich, P. B., Hobbie, S. E., and Lee, T. D.: Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation, Nature Geoscience, 7, 920–924, 2014.
Running, S., Mu, Q., and Zhao, M.: MOD17A3H MODIS/Terra Net Primary Production Yearly L4 Global 500 m SIN Grid V006, NASA Land Processes Distributed Active Archive Center [data set], https://doi.org/10.5067/MODIS/MOD17A3H.006, 2015.
Schuur, E. A. G., Chadwick, O. A., and Matson, P. A.: Carbon Cycling and Soil Carbon Storage in Mesic to Wet Hawaiian Montane Forests, Ecology, 82, 3182–3196, https://doi.org/10.1890/0012-9658(2001)082[3182:CCASCS]2.0.CO;2, 2001.
Slot, M. and Kitajima, K.: General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types, Oecologia, 177, 885–900, https://doi.org/10.1007/s00442-014-3159-4, 2015.
Smith, N. G. and Dukes, J. S.: Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and 2, Global Change Biology, 19, 45–63, https://doi.org/10.1111/j.1365-2486.2012.02797.x, 2013.
Song, X., Wang, D.-Y., Li, F., and Zeng, X.-D.: Evaluating the performance of CMIP6 Earth system models in simulating global vegetation structure and distribution, Advances in Climate Change Research, 12, 584–595, 2021.
Spafford, L. and MacDougall, A. H.: Validation of terrestrial biogeochemistry in CMIP6 Earth system models: a review, Geosci. Model Dev., 14, 5863–5889, https://doi.org/10.5194/gmd-14-5863-2021, 2021.
Sun, J., Yue, Y., and Niu, H.: Evaluation of NPP using three models compared with MODIS-NPP data over China, PloS one, 16, e0252149, https://doi.org/10.1371/journal.pone.0252149, 2021.
Sun, X., Xie, W., and Zhou, B.: CMIP6 evaluation and projection of terrestrial ecosystem over Asia, Advances in Climate Change Research, 19, 49, https://doi.org/10.12006/j.issn.1673-1719.2022.045, 2023.
Tang, X., Pei, X., Lei, N., Luo, X., Liu, L., Shi, L., Chen, G., and Liang, J.: Global patterns of soil autotrophic respiration and its relation to climate, soil and vegetation characteristics, Geoderma, 369, 114339, https://doi.org/10.1016/j.geoderma.2020.114339, 2020.
Tian, F., Zhu, Z., Cao, S., Zhao, W., Li, M., and Wu, J.: Satellite-observed increasing coupling between vegetation productivity and greenness in the semiarid Loess Plateau of China is not captured by process-based models, Science of the Total Environment, 906, 167664, https://doi.org/10.1016/j.scitotenv.2023.167664, 2024.
Townshend, J. R. G., Justice, C. O., Skole, D., Malingreau, J. P., Cihlar, J., Teillet, P., Sadowski, F., and Ruttenberg, S.: The 1 km resolution global data set: needs of the International Geosphere Biosphere Programme, International Journal of Remote Sensing, 15, 3417–3441, https://doi.org/10.1080/01431169408954338, 1994.
Verger, A., Filella, I., Baret, F., and Peñuelas, J.: Vegetation baseline phenology from kilometric global LAI satellite products, Remote Sensing of Environment, 178, 1–14, https://doi.org/10.1016/j.rse.2016.02.057, 2016.
Walther, S., Voigt, M., Thum, T., Gonsamo, A., Zhang, Y., Köhler, P., Jung, M., Varlagin, A., and Guanter, L.: Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests, Glob. Chang. Biol., 22, 2979–2996, https://doi.org/10.1111/gcb.13200, 2016.
Walther, S., Duveiller, G., Jung, M., Guanter, L., Cescatti, A., and Camps-Valls, G.: Satellite observations of the contrasting response of trees and grasses to variations in water availability, Geophysical Research Letters, 46, 1429–1440, https://doi.org/10.1029/2018GL080535, 2019.
Wan, Z., Zhang, Y., Zhang, Q., and Li, Z.-L.: Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data, Remote Sensing of Environment, 83, 163–180, https://doi.org/10.1016/S0034-4257(02)00093-7, 2002.
Wang, Q., Zheng, H., Zhu, X., and Yu, G.: Primary estimation of Chinese terrestrial carbon sequestration during 2001–2010, Science Bulletin, 60, 577–590, https://doi.org/10.1007/s11434-015-0736-9, 2015.
Wang, X., Piao, S., Ciais, P., Friedlingstein, P., Myneni, R. B., Cox, P., Heimann, M., Miller, J., Peng, S., and Wang, T.: A two-fold increase of carbon cycle sensitivity to tropical temperature variations, Nature, 506, 212–215, https://doi.org/10.1038/nature12915, 2014.
Wu, D., Piao, S., Zhu, D., Wang, X., Ciais, P., Bastos, A., Xu, X., and Xu, W.: Accelerated terrestrial ecosystem carbon turnover and its drivers, Global Change Biology, 26, 5052–5062, https://doi.org/10.1111/gcb.15224, 2020.
Wu, T., Lu, Y., Fang, Y., Xin, X., Li, L., Li, W., Jie, W., Zhang, J., Liu, Y., Zhang, L., Zhang, F., Zhang, Y., Wu, F., Li, J., Chu, M., Wang, Z., Shi, X., Liu, X., Wei, M., Huang, A., Zhang, Y., and Liu, X.: The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6, Geosci. Model Dev., 12, 1573–1600, https://doi.org/10.5194/gmd-12-1573-2019, 2019.
Yu, P., Zhao, T., Shi, J., Ran, Y., Jia, L., Ji, D., and Xue, H.: Global spatiotemporally continuous MODIS land surface temperature dataset, Scientific Data, 9, 143, https://doi.org/10.1038/s41597-022-01214-8, 2022.
Yuan, H., Dai, Y., Xiao, Z., Ji, D., and Shangguan, W.: Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling, Remote Sensing of Environment, 115, 1171–1187, https://doi.org/10.1016/j.rse.2011.01.001, 2011.
Yuan, W., Xia, J., Song, C., and Wang, Y.-P.: Simulating the land carbon sink: Progresses and challenges of terrestrial ecosystem models, Agricultural and Forest Meteorology, 358, 110264, https://doi.org/10.1016/j.agrformet.2024.110264, 2024.
Zeng, Z., Zhu, Z., Lian, X., Li, L. Z., Chen, A., He, X., and Piao, S.: Responses of land evapotranspiration to Earth's greening in CMIP5 Earth System Models, Environmental Research Letters, 11, 104006, https://doi.org/10.1088/1748-9326/11/10/104006, 2016.
Zhang, H., Zhang, M., Jin, J., Fei, K., Ji, D., Wu, C., Zhu, J., He, J., Chai, Z., and Xie, J.: Description and climate simulation performance of CAS-ESM version 2, Journal of Advances in Modeling Earth Systems, 12, e2020MS002210, https://doi.org/10.1029/2020MS002210, 2020.
Zhang, Y.: CSIF, figshare [data set], https://doi.org/10.6084/m9.figshare.6387494.v2, 2018.
Zhang, Y., Xu, M., Chen, H., and Adams, J.: Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate, Global Ecology and Biogeography, 18, 280–290, https://doi.org/10.1111/j.1466-8238.2008.00442.x, 2009.
Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S., and Gentine, P.: A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks, Biogeosciences, 15, 5779–5800, https://doi.org/10.5194/bg-15-5779-2018, 2018.
Zhao, B., Cao, J., Geng, Y., Zhao, X., and von Gadow, K.: Inconsistent responses of soil respiration and its components to thinning intensity in a Pinus tabuliformis plantation in northern China, Agricultural and Forest Meteorology, 265, 370–380, https://doi.org/10.1016/j.agrformet.2018.11.034, 2019.
Zhao, Q., Zhu, Z., Zeng, H., Zhao, W., and Myneni, R. B.: Future greening of the Earth may not be as large as previously predicted, Agricultural and Forest Meteorology, 292, 108111, https://doi.org/10.1016/j.agrformet.2020.108111, 2020.
Zhao, Q., Zhu, Z., Zeng, H., Myneni, R. B., Zhang, Y., Peñuelas, J., and Piao, S.: Seasonal peak photosynthesis is hindered by late canopy development in northern ecosystems, Nature Plants, 8, 1484–1492, https://doi.org/10.1038/s41477-022-01278-9, 2022.
Zhao, T. and Yu, P.: Global daily 0.05° spatiotemporal continuous land surface temperature dataset (2002–2022), National Tibetan Plateau Data Center [data set], https://doi.org/10.11888/Meteoro.tpdc.271663, 2021.
Zhu, Q., Riley, W. J., Tang, J., Collier, N., Hoffman, F. M., Yang, X., and Bisht, G.: Representing nitrogen, phosphorus, and carbon interactions in the E3SM land model: Development and global benchmarking, Journal of Advances in Modeling Earth Systems, 11, 2238–2258, https://doi.org/10.1029/2018MS001571, 2019.
Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y., Peng, S., Peñuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D., Viovy, N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., and Zeng, N.: Greening of the Earth and its drivers, Nature Climate Change, 6, 791–795, https://doi.org/10.1038/nclimate3004, 2016.
Ziehn, T., Lenton, A., Law, R. M., Matear, R. J., and Chamberlain, M. A.: The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) – Part 2: Historical simulations, Geosci. Model Dev., 10, 2591–2614, https://doi.org/10.5194/gmd-10-2591-2017, 2017.
Short summary
To understand how well current Earth system models simulate the natural world, we compared the models' outputs against measurements from satellites. Our results show these models struggle to accurately capture trends in variables related to carbon cycle, because the models can’t respond to human and environmental influences. This evaluation is crucial because improving these models will lead to more reliable forecasts of how ecosystems and the climate will change in the future.
To understand how well current Earth system models simulate the natural world, we compared the...