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Abstract. Systematic evaluation of the carbon cycle physi-
cal and biological variables simulated in Earth System Model
(ESM) participating in the Coupled Model Intercomparison
Project Phase 6 (CMIP 6) is fundamental to the understand-
ing of terrestrial ecosystems, as well as to future projections.
Leaf Area Index (LAI), Gross Primary Productivity (GPP),
Net Primary Productivity (NPP), Net Ecosystem Productiv-
ity (NEP) and Land Surface Temperature (LST) as key in-
dicators of carbon cycle performance in ESM outputs, play
a critical role in evaluating ecosystem functions. Assess-
ing these metrics can provide valuable insights into the bi-
ases in model-simulated ecosystems and offer guidance for
model improvement. In this study, we assessed the interan-
nual trends performance of LAI, GPP, NPP, NEP and LST
simulated by 12 CMIP6 ESMs during the historical period
by using satellite LAI, NPP, NEP, LST and CSIF data as ob-
servations. The findings indicate that: (1) There are signifi-
cant uncertainties in the overall trends and interannual vari-
ability in LAI, NPP, and LST captured by the CMIP6 ESM.
Meanwhile, simulated GPP and NEP trends were lower than
observations with discrepancies reaching 0.03 yr~! for GPP
and 2.46 gCm~2yr~! for NEP. (2) Spatially, CMIP6 ESMs
exhibited widespread underestimation of trends in LAI, GPP,
NPP, and NEP across China. The MME underestimated these
variables in 46.29 % (LAI), 43.47 % (GPP), 49.81 % (NPP),
and 61.34 % (NEP) of the study area. Meanwhile, the simu-
lated LST trend is underestimated in northern China, while
its overestimations in western and southern China. (3) ESMs
inadequate responsiveness to anthropogenic and environ-

mental forcing and incomplete mechanistic representation of
plant respiration pathways struggled accurate simulation of
trends in LAI, GPP, NPP, NEP and LST.

1 Introduction

Since the Industrial Revolution, human activities have sig-
nificantly altered the structure of the atmosphere and terres-
trial biosphere, leading to profound changes in the structure
and functioning of terrestrial ecosystems (Allen et al., 2018).
Vegetation, as a key component of the biosphere, regulates
the exchange of carbon, water, momentum, and energy be-
tween the land and the atmosphere (Wu et al., 2020). Veg-
etations maximize water-use efficiency at the leaf scale by
dynamically regulating stomatal conductance to effectively
respond to rising atmospheric CO, concentrations and global
warming (Fu et al., 2022). However, due to its high sensitiv-
ity to environmental conditions (Jung et al., 2017; Nemani
et al., 2003), vegetation has undergone notable changes. The
response of vegetation to global change has attracted signif-
icant attention in recent years (Chen et al., 2019; Hovenden
et al., 2019; Zhu et al., 2016).

To capture the responses and feedbacks of terrestrial
ecosystems to global environmental change, several Earth
System Models (ESMs) in Coupled Model Intercompari-
son Project Phase 6 (CMIP6) simulate terrestrial vegetation
structure and photosynthetic capacity (Song et al., 2021).
Four key outputs of ESMs, which describe canopy struc-
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ture and photosynthetic capacity — Leaf Area Index (LAI),
Gross Primary Productivity (GPP), Net Primary Productivity
(NPP), Net Ecosystem Productivity (NEP) — are critical com-
ponents of the terrestrial carbon cycle (Le Quéré et al., 2009;
Wang et al., 2015), and the main physical factors — Land Sur-
face Temperature (LST) — controlling the land carbon bal-
ance (Anav et al., 2013; Piao et al., 2009). The relationship
between LAI, GPP, and environmental factors is complex, as
environmental drivers significantly influence LAI dynamics
and collectively determine vegetation photosynthetic perfor-
mance (Zhao et al., 2022, 2020). Vegetation productivity can
be directly estimated using canopy parameters, resulting in a
high coupling between GPP and LAI (Walther et al., 2019;
Tian et al., 2024).

The LAI defined as the total one-sided leaf area per unit
ground surface area, is a key parameter of vegetation canopy
structure that directly influences light interception, transpi-
ration, and the spatial heterogeneity of GPP. GPP refers to
the total amount of carbon dioxide fixed into organic com-
pounds by vegetation through photosynthesis, serving as a
core indicator of an ecosystem’s carbon sequestration capac-
ity. NPP represents the net carbon accumulation after sub-
tracting autotrophic respiration from total photosynthetic fix-
ation, reflecting the primary production potential and health
of ecosystems as influenced by GPP and plant physiological
regulation. NEP denotes the net carbon exchange between
the ecosystem and the atmosphere by further subtracting het-
erotrophic respiration from NPP, making it a crucial measure
for assessing regional carbon source/sink status under the in-
fluence of environmental factors such as atmospheric CO;
and climate (Fang et al., 2001). LST is the thermodynamic
temperature at the land-atmosphere interface, playing a key
role in surface energy and water exchange while jointly af-
fecting ecological processes through interactions with solar
radiation, soil properties, vegetation, and atmospheric condi-
tions (Li et al., 2023). In-depth research on LST facilitates
a deeper understanding of surface-atmosphere exchange pro-
cesses at global and regional scales and provides high-quality
quantitative indicators of surface conditions for scientific ap-
plications. Consequently, LST has been designated as an in-
dispensable observation indicator for the International Geo-
sphere and Biosphere Program (IGBP) and the Global Cli-
mate Observing System (GCOS) (Townshend et al., 1994;
Hollmann et al., 2013).

Both remote sensing and ecosystem models can be effec-
tive in investigating large-scale vegetation dynamics (Zhao et
al., 2020). Ecosystem models offer an advantage in attribut-
ing vegetation growth changes by addressing limitations in-
herent in traditional statistical models, such as the inability
to distinguish correlation from causation and to capture non-
linear relationships (Piao et al., 2006; Zhu et al., 2016). Earth
System Models (ESMs), which simulate the physical, chemi-
cal, and biological processes and their interactions within the
atmosphere, land, ocean, biosphere, and cryosphere (Ziehn
et al., 2017; Wu et al., 2019; Bao et al., 2020; Zhang et al.,
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2020), are critical tools for modeling terrestrial ecosystems
(Li et al., 2019a; Lawrence, 2020).

Understanding vegetation responses to past global envi-
ronmental changes is crucial for improving predictions of
future spatiotemporal changes in global vegetation (Zhao et
al., 2020). However, numerous studies have evaluated and
projected variables simulated by ESMs, revealing a gen-
eral overestimation trend for model simulations (Anav et
al., 2013; Mahowald et al., 2016; Kim et al., 2018; Zeng
et al., 2016; Park and Jeong, 2021). Anav et al. (2013) re-
ported that half of the models overestimated LAI trends from
1986 to 2005. Ziehn et al. (2017) found that the ACCESS-
ESM1 model overestimated the seasonal mean and peak
amplitude of global LAI during historical periods. Zhu et
al. (2019) observed that ELMv1-ECA significantly overesti-
mated LAT across most terrestrial surfaces, particularly in the
tropics, while underestimating GPP in boreal forest systems
and tropical ecosystems. Song et al. (2021) evaluated multi-
ple ESMs and concluded that global LAI overestimation pri-
marily stemmed from overestimated LAI in non-forest areas,
with peak LAI in some regions occurring 1-2 months later
than observed.

China’s carbon sink accounts for approximately 10 %-—
31 % of the global terrestrial ecosystem carbon sink (Piao
et al., 2022). More accurate simulations of terrestrial ecosys-
tems using CMIP ESM models are highly valuable for both
scientific research and policy development. Currently, CMIP
has progressed to its sixth phase (CMIP6). Compared to
CMIPS5, CMIP6 models feature significantly improved reso-
lution, incorporate more comprehensive biogeochemical pro-
cesses (Eyring et al., 2016), and consider more plausible fu-
ture scenarios (O’Neill et al., 2016), an advancement that will
enhance the potential for simulating terrestrial ecosystems.
However, research evaluating the outputs of CMIP6 mod-
els remains limited compared to CMIP5 evaluations. In ex-
isting evaluation studies, researchers have made significant
progress in assessing the performance of ESMs. For exam-
ple, Zhao et al. (2020) focused on the temporal variability of
LAI in CMIP6 models, while Song et al. (2021) evaluated
global LAI and tree height performance. However, limita-
tions in spatial resolution and geographical scope have left
gaps in the systematic evaluation of ESM simulations for
specific regions, such as China. Similarly, Sun et al. (2023)
conducted evaluations of LAI, GPP and NPP across Asia but
lacked a comprehensive methodology and finer-scale anal-
yses for historical periods. These gaps highlight the need
for more detailed and region-specific assessments of CMIP6
ESMs outputs.

Based on the current lack of multi-variable evaluations in
ESM assessment studies and the absence of systematic re-
gional evaluations in China, this study utilizes remote sens-
ing data as observational references to evaluate the interan-
nual trends performance of LAI, GPP, NPP, NEP and LST
simulated by 12 CMIP6 ESMs (ACCESS-ESM1-5, BCC-
CSM2-MR, CanESMS5, CESM2-WACCM, EC-Earth3-Veg,
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INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR, MPI-ESM1-
2-HR, MPI-ESM1-2-LR, NorESM2-LM, and NorESM2-
MM) in China. A 3 x 3 sliding window approach is applied
spatially to provide a more systematic assessment of trends
performance. Finally, remote sensing data of tree cover were
used to evaluate the simulated trends of tree distribution pat-
terns.

2 Data and method
2.1 The study area

China is situated at the intersection of East and Central
Asia, with a geographical range approximately between 18
and 53°N latitude and 73 and 135°E longitude. China ex-
hibits diverse topographical features, ranging from expansive
plains and hills in the east to high plateaus and mountains in
the west, with an overall terrain gradient sloping from west
to east. The monsoon region in the east has abundant precipi-
tation and a large temperature difference from north to south,
which is suitable for a wide variety of plants to grow, while
the arid region in the west has scarce precipitation and sparse
vegetation. Against this climatic background, China has de-
veloped a diversity of vegetation types ranging from humid
broad-leaved evergreen forests to arid desert grasslands, with
significant regional differences between seasonal and inter-
annual variations in vegetation (Fig. 1).

2.2 CMIP6 Earth system models

The Coupled Model Intercomparison Project (CMIP), or-
ganized under the auspices of the World Climate Research
Programme (WCRP) Working Group on Coupled Mod-
elling (WGCM), which enables the simulation of difficult-to-
observe early global coupled climate models by conducting
experiments using atmospheric models coupled to the dy-
namical ocean, a simple land surface, and thermodynamic
sea-ice (Meehl et al., 1997). CMIP6 adopts a novel, more
coordinated organizational structure (Eyring et al., 2016).

This study utilizes the outputs of LAI and GPP variables
from 12 CMIP6 models (ACCESS-ESM1-5, BCC-CSM2-
MR, CanESM5, CESM2-WACCM, EC-Earth3-Veg, INM-
CM4-8, INM-CM5-0, IPSL-CM6A-LR, MPI-ESM1-2-HR,
MPI-ESM1-2-LR, NorESM2-LM, and NorESM2-MM) un-
der five scenarios: historical, SSP1-26, SSP2-45, SSP3-70,
and SSP5-85 as the simulated values of the model. To ensure
consistency, the outputs from the first realization (rlilpl)
of each model were selected. Monthly data outputs from all
models were uniformly resampled to a spatial resolution of
0.5° x 0.5°. Additionally, based on whether the models in-
corporate a dynamic vegetation module, the 12 models were
classified into groups with and without dynamic vegetation
integration (Table 1).

To provide a more robust and integrated assessment than
any single model can offer, we primarily utilize the Multi-
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Model Ensemble (MME) mean, calculated as the arithmetic
mean of all available models, as a central benchmark for
evaluating the simulated spatial patterns and interannual vari-
ability of vegetation and climatic variables over China. The
MME mean-based approach, an established statistical inte-
gration technique, synthesizes outputs from diverse models
through averaging (Zeng et al., 2016). This approach com-
bines the true and noise signals, where the inter-model errors
are mitigated through model averaging, thereby amplifying
the underlying true signals.

2.3 Benchmark data

The 2003-2014 LAI data from the reprocessed MODIS prod-
uct in China (Yuan et al., 2011), were used to validate the LAI
outputs of 12 ESMs under the historical scenario. The repro-
cessed MODIS product refines the original MODIS LAI data
(MOD15A2H and MYD15A2H) using modified temporal-
spatial filtering (mTSF) technique to fill data gaps and cor-
rect low-quality data. Subsequently, the TIMESAT SG filter-
ing technique was applied for post-processing to produce the
final product. The reprocessed remote sensing LAI data were
then resampled to a 0.5° x 0.5° monthly grid for consistency
with the model outputs. The analysis period spans 2003 to
2014. This timeframe was selected to utilize the stable post-
launch era of the MODIS Terra-Aqua dual-satellite constel-
lation for vegetation monitoring, commencing after potential
initial sensor calibration transients, and to align with the end
year of the CMIP6 historical experiment simulations used for
comparison.

Solar-Induced Chlorophyll Fluorescence (SIF), which in-
tegrates the complex physiological functions of plants and
can directly reflect the dynamic changes in plants’ actual
photosynthetic process, exhibits a strong linear relationship
with GPP, thereby serving as a direct observational indi-
cator for GPP (Mohammed et al., 2019; Frankenberg et
al., 2014; Walther et al., 2016). Compared with GOSIF-
GPP and FLUXCOM-GPP, CSIF exhibits higher temporal
resolution and more robust spatial data gap-filling capabil-
ity. Therefore, the CSIF dataset was used to validate the
GPP outputs of the models under the historical scenario.
CSIF data are generated by using surface reflectance data
from MODIS C6 (MCD43C1) as input (Zhang et al., 2018),
trained with daily SIF observations derived from the Orbiting
Carbon Observatory-2 using a machine learning algorithm.
CSIF effectively captures the seasonal dynamics of satellite-
observed SIF and shows a strong correlation with ecosystem
GPP, making it a suitable proxy for GPP in vegetation phe-
nology analysis. The CSIF data were aggregated from 4 d to
monthly scale data, and the spatial resolution was sampled
into a 0.5° x 0.5° grid using mean aggregation.

The NPP dataset was derived from the MOD17A3HGF
Version 6 product of MODIS, featuring a spatial resolution of
500m x 500 m and a temporal resolution of 8 d. Annual NPP
values were calculated as the cumulative sum of 8 d Net Pho-
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Figure 1. Distribution of vegetation types in China.

Table 1. Spatial resolution of selected CMIP6 models and variables information.

Model name Spatial resolution LAI GPP NPP NEP LST TCF
ACCESS-ESM1-5  1.875°x 1.25° J Vv Vv i Vv v
BCC-CSM2-MR 1.125° x 1.125° J J v i v X
CanESMS5 2.8°x2.8° Vv J J Vv J J
CESM2-WACCM  0.9° x 1.25° J Vv N i Vv N
EC-Earth3-Veg 0.7° x 0.7° 4 J v i J v
INM-CM4-8 2°x 1.5° Vv J J X J J
INM-CMS5-0 2°x 1.5° i Vv N X Vv v
IPSL-CM6A-LR 2.5°x 1.27° i v VA i Vv Vv
MPI-ESM1-2-HR  0.9° x 0.9° Vv J J X J J
MPI-ESM1-2-LR  1.875° x 1.875° J J N i J v
NorESM2-LM 2.5°x 1.9° J Vv Vv i v A
NorESM2-MM 1.25°x 0.9° Vv J J Vv J J

tosynthesis (PSN) products for each year. The reprocessed
remote sensing NPP data were then resampled to a 0.5°x0.5°
monthly grid for consistency with the model outputs.

The NEP dataset was obtained from the reprocessed an-
nual NEP data based on MOD17A3HGF V6 products, pro-
vided by the Loess Plateau Subcenter of the National Earth
System Science Data Center. This dataset retains a spatial
resolution of 500 m x 500 m, the study resampled the remote
sensing NEP data to 0.5° x 0.5° monthly grid.

The LST data were sourced from the Global Daily 0.05°
Spatiotemporally Continuous LST dataset hosted by the Na-
tional Tibetan Plateau Data Center. The dataset reconstructs
clear-sky LST by applying an Empirical Orthogonal Func-
tion (EOF) interpolation method to MODIS Terra/Aqua LST

Geosci. Model Dev., 18, 8703-8722, 2025

products. It further integrates ERAS5-Land climate reanal-
ysis data using a Cumulative Distribution Function (CDF)
matching method, generating high-quality global spatiotem-
porally continuous LST data under both clear-sky and all-
weather conditions. The final product has a spatial resolution
of 0.05° x 0.05°, while the remote sensing LST dataset were
resampled to 0.5° x 0.5° monthly grid in this study.

Tree cover fraction (TCF) were extracted from the MODIS
Terra Vegetation Continuous Fields (VCF) product (https://
www.earthdata.nasa.gov/data/catalog/lpcloud-mod44b-061,
last access: 14 November 2025), providing global tree cover
fraction at a 500 m x 500 m spatial resolution. To consistency
with the model output, the remote sensing TCF data were
resampled to a 0.5° x 0.5° monthly grid.
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To verify the accuracy of CMIP6 ESMs in simu-
lating climate data (temperature, precipitation, and
solar radiation), we employed historical tempera-
ture and precipitation data sourced from the rean-
alyzed CRUNCEP dataset. Specifically, we utilized
monthly data from the atmospheric stress component
of CRUNCEP (https://gdex.ucar.edu/datasets/d314003/,
last access: 14 November 2025) and standardized its
spatial resolution to 0.5°x 0.5°. Given that CRUN-
CEP does not include solar radiation data, this study
also uses monthly-scale net solar radiation data
from ERAS  (https://cds.climate.copernicus.eu/datasets/
reanalysis-eraS-land-monthly-means?tab=download,  last
access: 14 November 2025), with its spatial resolution
resampled to 0.5° x 0.5°.

2.4 Auxiliary data

The IGBP classification scheme from the MODIS
MCDI12Q1 product was used to categorize the vegeta-
tion in China into four land cover types: forest (Tree Cover),
grassland (Grassland), cropland (Crop), and non-vegetated
areas (Non-Vegetable). Specifically, evergreen coniferous
forest, evergreen broadleaf forest, deciduous coniferous for-
est, deciduous broadleaf forest, mixed forest, woody savanna
and savanna are combined to be classified as Tree Cover;
closed shrubland, open shrubland, grassland and permanent
wetland are combined to be classified as Grassland; farmland
and agricultural land (with natural vegetation) are classified
as Cropland; and urban and built-up land, permanent snow
and ice, unutilized land, and water are combined to be
classified as Non-Vegetable areas. The specific classification
details are summarized in Table S1 in the Supplement.

2.5 Analysis

The Theil-Sen Median method was employed to estimate the
interannual trends of observed and simulated LAI, GPP, NPP,
NEP and LST from 2003 to 2014, while the Mann-Kendall
(MK) test was applied to assess the statistical significance
of these trends. Additionally, the performance of each model
in simulating the interannual LAI, GPP, NPP, NEP and LST
time series was quantified using the standard deviation (SD)
of interannual time series, correlation coefficient (r), and root
mean square error (RMSE).

Observed LAI and CSIF trends were used to validate the
spatial trends of simulated LAI and GPP, providing a com-
prehensive spatial assessment of model performance. At the
pixel scale, a 3 x 3 sliding window approach was applied to
extract paired pixel value sequences from model simulations
and satellite observations. These paired sequences were sta-
tistically compared using a paired f¢-test (also known as a
dependent or correlated ¢-test). This method compares the
means and standard deviations of two related groups to de-
termine whether significant differences exist between them.
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The hypotheses for the paired ¢-test are formulated as fol-
lows: Hg: m =0 (null hypothesis, where m is the mean of
differences between paired samples); Hy: m # O (alternative
hypothesis).

m

N v
n N2
i Zi:1di 3)

Here,i = 1,2,...,n. Where m represents the mean of paired
sample differences, S denotes the standard deviation of these
differences, and n is the number of paired samples. The criti-
cal #-value is determined by degrees of freedom (df) and sig-
nificance level («). If the calculated ¢-value is less than the
critical value at «-level (P), this indicates P > «, leading to
acceptance of Hy and rejection of Hj at the « significance
level. Conversely, if the calculated 7-value exceeds the criti-
cal value, Hy is rejected in favor of Hj.

To enable a comparison between the trends of CSIF and
GPP, it is necessary to normalize the annual-scale CSIF data
and the GPP outputs from the ESMs. Normalization ensures
that both datasets are brought to a comparable scale, facili-
tating a more accurate and meaningful trend analysis.

X; —mean
x=2t “4)
std
where X is the annual normalized CSIF or GPP data, X; is
the annual unnormalized data, mean is the average of the
multi-year annual data, and std is the standard deviation of
the multi-year annual data.

3 Results
3.1 Trend of observed variables in China

From 2003 to 2014, most regions across China exhibited in-
creasing trends in MODIS LAI (82.60 % of the area; Fig. S1
in the Supplement) and CSIF (86.50 %; Fig. S2), with sig-
nificant increases covering 44.10 % for LAI and 48.34 % for
CSIF concentrated in southern forests, northeastern China,
and the Loess Plateau. Notably, CSIF demonstrated stronger
rising trends than LAI in the North China Plain. MODIS
NPP trends (Fig. S3) showed minimal significant changes,
as 84.57 % of the area exhibited non-significant variabil-
ity, while significant increases and decreases covered only
15.23 % and 0.20 % respectively. These patterns closely mir-
rored MODIS NEP trends (Fig. S4), where 85.07 % of the
area showed non-significant changes with merely 0.28 %
significant decreases. For MODIS LST during 2003-2019
(Fig. S5), 47.34 % and 52.66 % of the study area exhib-
ited increasing and decreasing LST trends, respectively, yet
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97.89 % of the area showed non-significant changes, with
significant warming limited to 0.78 %.

Spatially coherent trends emerged across northwestern
China (Xinjiang grasslands/croplands, central Inner Mongo-
lia, Tibetan Plateau), where declining LAI and CSIF aligned
with significant LST increases, while vegetation productivity
declines were also observed in parts of southern Tibet. Con-
versely, northeastern China consistently exhibited significant
increases in LAI, CSIF, NPP, and NEP, coinciding with de-
clining LST trends. The Loess Plateau (northern Shaanxi/N-
ingxia) similarly demonstrated concurrent increases in LAI,
CSIF, NPP, and NEP. Southern forested regions showed LAI
and CSIF gains, though central Yunnan experienced notable
CSIF reductions alongside NPP and NEP declines. Contrast-
ing patterns characterized eastern China: the North China
Plain had significant CSIF increases but prominent CSIF
reductions later, alongside NEP declines and LST warm-
ing, while southeastern provinces (Guangdong, Fujian) and
the Yangtze River Delta featured NPP and NEP reductions
alongside localized CSIF decreases.

3.2 [Evaluating the overall trends and interannual
variability of CMIP6 variables

As shown in the bar chart comparing observed LAI trends
with MME simulated LAI (Fig. 2a), the MODIS LAI exhib-
ited a trend of 0.11 m2 m—2 yr- ! which falls within the MME
uncertainty range (0.0060 & 0.0058 m?> m~2 yr~!). This indi-
cates that, overall, the models are capable of capturing the
observed LAI trend. However, it is worth noting that the trend
values simulated by individual models vary significantly,
ranging from —0.0021yr~! (INM-CM5-0) to 0.019 yr~!
(NorESM2-MM), contributing to substantial uncertainties in
trends of simulated LAIL

A similar analysis was conducted for the normalized inter-
annual trends of observed CSIF and simulated GPP in China
during 2003-2014 (Fig. 2c). The observed CSIF exhibited a
significant trend of 0.13 yr~!, which substantially exceeded
all model simulations, including the MME. Simulated GPP
trends ranged from —0.020 yr~! (INM-CM5-0) to 0.10 yr~!
(MME). These results demonstrate a systematic underesti-
mation of GPP trends in China by DGVMs.

The Taylor diagram (Fig. 2b and d) is employed to evalu-
ate and compare the interannual variations of LAI and GPP
among individual models, the MME, and observations. Ac-
cording to the reference observational data, the standard de-
viation (SD) of the interannual time series for LAI and CSIF
over the Chinese region during 2003-2014 is 0.041 and 0.49,
respectively. The SD of ESM-simulated LAI ranges from
0.011 (MPI-ESM1-2-LR) to 0.089 (NorESM2-MM), while
that of GPP ranges from 0.139 (ACCESS-ESM1-5) to 0.515
(INM-CM4-8). The MME-simulated SD for LAI and GPP
are 0.021 and 0.425, respectively. The root mean square de-
viation (RMSD) of the models for LAI ranges from 0.024
(NorESM2-LM) to 0.063 (NorESM2-MM), and for GPP,
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from 0.334 (EC-Earth3-Veg) to 0.697 (INM-CM5-0). The
MME-simulated RMSD for LAI and GPP are 0.022 and
0.249, respectively. Generally, the MME-simulated SD and
RMSD for both LAI and GPP are smaller than those of most
individual models. The correlation coefficients between the
ESM-simulated interannual LAI time series and the observed
LAI range from —0.409 (INM-CM5-0) to 0.855 (NorESM2-
LM). The correlation coefficient for the MME-simulated LAI
is 0.922, exceeding that of any individual model. Similarly,
the correlation coefficients between the ESM-simulated GPP
and observed CSIF time series range from —0.207 (INM-
CM5-0) to 0.809 (NorESM2-MM), with the MME-simulated
GPP showing a correlation coefficient of 0.847, which is
higher than that of all individual models.

Figure 3a illustrates the observed NPP exhibited a trend
of 2.70gCm~2yr~!, which lies within the uncertainty
range of the MME trend (1.19+1.53gCm™2yr™ "), in-
dicating that models broadly captured the direction of
NPP changes. However, three models — ACCESS-ESM1-
5(—0.49gCm~2yr~ ), INM-CM5-0 (—1.42gCm~2yr 1),
and MPI-ESM1-2-LR (—0.27 gCm~2yr~!) — simulated de-
clining NPP trends. In contrast, MODIS NPP showed a
statistically significant increasing trend during 2003-2014,
whereas only INM-CM4-8, NorESM2-LM, and the MME
produced significant positive trends among the models.
The observed NEP exhibited a statistically significant in-
creasing trend (2.66 gCm~2yr~!), whereas simulated NEP
trends were systematically lower than observations (Fig. 3c).
The MME simulated NEP trend of 0.20 4+ 0.64 gCm 2 yr~!
— substantially below the observed value — with excep-
tionally large model simulations uncertainties. Specifically,
ACCESS-ESM1-5 (—0.05gCm~2yr~!), BCC-CSM2-MR
(—0.21gCm~2yr~ 1), CanESM5 (—0.76 gCm~2yr~ 1), and
MPI-ESM2-LR (—0.14gCm™2yr~!") simulated declining
NEP trends, highlighting the models’ underestimation of car-
bon sink intensification.

The Taylor diagram (Fig. 3b and d) evaluates interan-
nual variations of NPP and NEP across individual mod-
els, the MME, and observations. The SD of ESM-simulated
NPP ranges from 7.70 (ACCESS-ESM1-5) to 24.95 (BCC-
CSM2-MR), while RMSD values span from 8.82 (INM-
CM4-8) to 25.66 (INM-CM5-0). For NEP, SD ranges from
9.19 (CanESM5) to 20.24 (BCC-CSM2-MR) with RMSD
values between 13.55 (IPSL-CM6A-LR) and 21.41 (BCC-
CSM2-MR). The MME demonstrates notably lower variabil-
ity, with SD values of 5.65 for NPP and 6.19 for NEP, and
RMSD values of 9.71 for NPP and 11.28 for NEP. Gener-
ally, the MME-simulated SD and RMSD for both variables
are lower than those of all individual models.

The observed LST exhibited a declining trend of
—0.0045°Cm~2yr~! in China during 2003-2014 (Fig. 4a),
which lies within the uncertainty range of the MME sim-
ulated a positive LST trend (0.0088 +0.035°Cm~2yr1).
Notably, only five models — ACCESS-ESM1-5, CESM2-
WACCM, INM-CM5-0, MPI-ESM1-2-HR, and NorESM2-

https://doi.org/10.5194/gmd-18-8703-2025
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Figure 2. Overall annual average (a) LAI and (¢) GPP trends in China during 2003-2014. The asterisk (*) indicates the significant trend
(p < 0.05). The Taylor diagrams compare the remotely-sensed and model-simulated annual mean (b) LAI and (d) GPP for the historical
period (2003-2014). The standard deviation shows the interannual variability of the observed and simulated LAI. The dashed green lines
show centered root mean square difference (RMSD) between model simulations and satellite observations.

MM - captured negative LST trends, whereas all others sim-
ulated positive LST trends. The NorESM2-LM model pro-
duced a statistically significant positive LST trend.

The Taylor diagram evaluates interannual variations of
LST across individual models, the MME, and observa-
tions (Fig. 4). The SD of ESM-simulated LST ranges from
0.20 INM-CM4-8) to 0.48 (IPSL-CM6A-LR), while RMSD
values span from 0.30 (MPI-ESM1-2-HR) to 0.59 (IPSL-
CM6A-LR). The MME demonstrates notably lower variabil-
ity and error, with an SD of 0.10 and RMSD of 0.36.

3.3 Assessment of spatial patterns and trends in
CMIP6 variables

From a spatial perspective, a comparison between simu-
lated and observed LAI trends reveals that most models

https://doi.org/10.5194/gmd-18-8703-2025

exhibit significant overestimation and underestimation in
China (Fig. 5). The MME overestimated, underestimated,
and simulated well with observed LAI trends in 21.71 %,
46.29 %, and 32.00 % in China, respectively. Specifically, the
MME predominantly underestimated LAI trends in regions
with statistically significant observed increases — particularly
southern China, the Loess Plateau, and northeastern China —
while overestimating trends in areas with declining or non-
significant LAI changes (e.g., northwestern Xinjiang, the Ti-
betan Plateau, and parts of the North China Plain). Among
individual models, EC-Earth3-Veg exhibited relatively bet-
ter performance, but even this model aligns with 40.36 %
of its simulated LAI trends matching observations (Fig. 5f).
However, most models showed dominant underestimation
patterns: CanESMS5 (62.97 %), INM-CM4-8 (60.09 %), and

Geosci. Model Dev., 18, 8703-8722, 2025
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period (2003-2014). The standard deviation shows the interannual variability of the observed and simulated LAI. The dashed green lines
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INM-CMS5-0 (63.50 %) had the largest proportions of under-
estimated LAI trends.

The spatial distribution of normalized GPP trend dis-
crepancies between simulated and observed CSIF exhib-
ited similar patterns to that of the model LAI performance
(Fig. 6). For the MME, overestimated, underestimated, and
simulated well GPP trends accounted for 20.26 %, 43.47 %,
and 36.26 % in China, respectively (Fig. 6a). Regions with
overestimated GPP trends were predominantly distributed in
Yunnan Province, the Sichuan-Tibet Plateau, and northwest-
ern border areas. Among individual models, INM-CM4-8 ex-
hibited the largest proportion of overestimated GPP trends
(18.06 %), alongside 55.62 % underestimated areas (Fig. 6g).
In contrast, MPI-ESM1-2-LR showed extreme underestima-
tion biases, with 75.47 % of its simulated GPP trends being
lower than observations — the highest underestimation pro-

Geosci. Model Dev., 18, 8703-8722, 2025

portion among all models — while only 7.68 % of areas were
overestimated (Fig. 6k).

The spatial patterns of discrepancies between simulated
and MODIS NPP trends during 2003-2014 are shown in
Fig. 7. Simulated NPP trends were generally overestimated
in southwestern and southern China but underestimated
across most other regions (Fig. 7). For the MME, overesti-
mated, underestimated, and simulated well NPP trends occu-
pied 28.62 %, 49.81 %, and 21.57 % of the study area, respec-
tively. Overestimated regions were predominantly concen-
trated in the Central Plains, Sichuan-Tibet Plateau, and Yun-
nan Province (Fig. 7a). Notably, the NorESM2-LM model
showed the highest proportion of overestimated NPP trends
(47.46 %) among all models, with underestimated and simu-
lated well areas covering 33.84 % and 18.70 %, respectively.
Its overestimations spanned southwestern China, southern

https://doi.org/10.5194/gmd-18-8703-2025
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China, the North China Plain, the middle Yangtze River
Basin, and parts of northeastern China (Fig. 71). Two other
models — MPI-ESM1-2-HR and NorESM2-MM - also ex-
hibited substantial overestimation (42.88 % and 46.07 %, re-
spectively), while their underestimation proportions reached
29.86 % and 28.30 %. In contrast, CanESMS5 and INM-CMS5-
0 displayed most underestimation biases, with 62.27 % and
69.85 % of their simulated NPP trends falling below obser-
vations.

Figure 8 displays spatial discrepancies between simu-
lated and MODIS NEP trends across China during 2003—
2014. The MME underestimated, overestimated, and simu-
lated well NEP trends in 61.34 %, 16.60 %, and 22.06 % in
China, respectively (Fig. 8a), with spatial patterns similar
to that of the simulated NPP trend spatial performance, in-
dicating systemic uncertainties in coupled carbon flux sim-
ulations. Among individual models, NorESM2-LM exhib-
ited the highest proportion of overestimated NEP trends
(29.72 %), alongside 49.38 % underestimation and 20.90 %
simulated well (Fig. 8i), while NorESM2-MM showed the
lowest underestimation rate (35.38 %) with 27.12 % overes-
timation and 37.51 % simulated well (Fig. 8j). In contrast,
all other models underestimated NEP trends in over 50 % of
the region, with CanESMS displaying the most severe under-
estimation bias (65.61 % underestimated, 12.33 % overesti-
mated) (Fig. 8e).

Figure 9 illustrates spatial differences between simulated
and observed LST trends in China during 2003-2014. Most
models overestimated LST trends, with the MME overesti-
mating, underestimating, and simulating well observations
in 54.57 %, 28.02%, and 17.42% of the study area, re-
spectively (Fig. 9a). Spatially, the MME overestimated LST
trends in southern China, northeastern China, Xinjiang, the
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Tibetan Plateau, and the Shaanxi-Gansu region compared to
observations. While some models’ proportion of underesti-
mated LST trend — including ACCESS-ESM1-5 (45.36 %),
CESM2-WACCM (46.19 %), INM-CM5-0 (63.99 %), and
NorESM2-MM (59.59 %) — showed substantial underestima-
tion biases, the majority of models still exhibited larger over-
estimated areas. Notably, NorESM2-LM displayed the most
extreme overestimation, with 84.38 % of its simulated LST
trends exceeding observations, except in localized underesti-
mations over the North China Plain, central Inner Mongolia,
and parts of Yunnan (Fig. 91).

4 Discussion
4.1 ESM captures CMIP6 variables trends in China

Previous studies have found that, whether for CMIP5 or
CMIP6, models have not effectively captured the long-term
trends of vegetation (Anav et al., 2013; Song et al., 2021).
Overestimations of LAI, GPP, and NPP are more common
in the mid-latitude regions of Asia (Sun et al., 2023). This
study also reveals that the models have misrepresented the
trends of LAI and GPP in the China region, with significant
underestimation of LAI and GPP growth in the forested ar-
eas of central and southern China, and overestimation of LAI
and GPP trends in grassland areas of eastern Inner Mongo-
lia and the Tibetan Plateau, where the growth or decline of
LAI and GPP is less significant. Ecosystem models suggest
that the global greening of vegetation is mainly driven by the
increase in atmospheric CO; concentrations, while climate
change and land-use changes are strong regional drivers of
vegetation dynamics (Chen et al., 2019; Zhu et al., 2016).

Geosci. Model Dev., 18, 8703-8722, 2025
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Figure 5. Evaluation of the LAI trend performance of the CMIP6 ESMs from 2003 to 2014 in China. A paired 7-test with a sample size
of 9 was conducted using a 3 x 3 sliding window to determine whether the model simulated a trend that was not significantly different
from the observed data (Good), significantly smaller than the observed data (Underestimate), or significantly larger than the observed data
(Overestimate). U, G, and O represent “Underestimate”, “Good”, and “Overestimate”, respectively.

The misrepresentation of LAI and GPP trends in the mod-
els can be attributed to unreasonable parameter settings and
missing mechanisms (Song et al., 2021). The overestimation
of the growing season length (GSL) (Verger et al., 2016) in
the models is a key factor contributing to the widespread

Geosci. Model Dev., 18, 8703-8722, 2025

overestimation of LAI in northern and temperate regions.
Additionally, in the models, the reduction in water limita-
tion mechanisms results in the overestimation of LAI in non-
forest areas (Song et al., 2021). The overestimation of max-
imum carboxylation rates in the models leads to excessive

https://doi.org/10.5194/gmd-18-8703-2025
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Figure 6. Evaluation of the normalized GPP trend performance of the CMIP6 ESMs from 2003 to 2014 in China. A paired 7-test with a
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biomass allocation to leaves, further overestimating LAI in
some regions, compounded by missing mechanisms (Li et
al., 2019a). The lack of adequate mechanisms for soil mois-
ture and nutrient limitations in the models results in an over-
estimation of the positive drivers for increased LAI caused by
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elevated atmospheric CO; concentrations, temperature rise,
and woody plant invasions (Huang et al., 2017; Reich et al.,
2014; Wang et al., 2014).

Despite substantial progress in understanding vegetation
autotrophic respiration through field experiments and ob-

Geosci. Model Dev., 18, 8703-8722, 2025
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servational studies, significant challenges remain in simu-
lating respiratory processes and their responses to environ-
mental changes due to inherent physiological complexities
(Smith and Dukes, 2013; Yuan et al., 2024). Empirical stud-
ies suggest that the ratio of NPP to GPP often converges to-

Geosci. Model Dev., 18, 8703-8722, 2025

ward a constant value across regions, and vegetation adapts
photorespiration to changes in photosynthesis through self-
regulation (Gifford, 1995; Dewar et al., 1998; Collalti and
Prentice, 2019). However, respiratory processes are inher-
ently harder to quantify than photosynthesis, leading mod-

https://doi.org/10.5194/gmd-18-8703-2025



Z. Li et al.: Evaluation of annual trends in carbon cycle variables simulated by CMIP6 Earth system models 8715

80°E  90°E  100°E 110°E 120°E 130°E 80°E

z
<
)

°N  40°N  50°N

30°N

Percentage of area

22.056%

90°E  100°E 110°E 120°E  130°E 80°E  90°E  100°E 110°E 120°E 130°E

°N  40°N  50°N  20°N

30°N

Percentage of area

50°N  20°N

30°N  40°N

Percentage of area

20°N

% g

Percentage of area

20°N

Figure 8. Evaluation of the NEP trend performance of the CMIP6 ESMs from 2003 to 2014 in China. A paired ¢-test with a sample size
of 9 was conducted using a 3 x 3 sliding window to determine whether the model simulated a trend that was not significantly different
from the observed data (Good), significantly smaller than the observed data (Underestimate), or significantly larger than the observed data
(Overestimate). U, G, and O represent “Underestimate”, “Good”, and “Overestimate”, respectively.

els to rely heavily on empirical functions for simulating
NPP and NEP. Such parameterizations often fail to capture
real-world vegetation respiratory acclimation. Spatial dis-
crepancies in ESM simulated NPP trends (Fig. 7) mirror
those of GPP trends (Fig. 6), with systematic underestima-
tions in northeastern forested areas, the Loess Plateau, Inner
Mongolian grasslands, and the middle-lower Yangtze River
Basin, alongside overestimations over Tibetan Plateau grass-
lands. These biases indicate that ESMs primarily misrepre-
sent trends in photosynthetic capacity, which leads to mises-
timation in simulated NPP. Satellite observations reveal pro-
nounced NPP declines in Guangdong and Fujian provinces
during 2003-2014 (Fig. 2c), yet models paradoxically over-
estimate NPP trends in these regions. Critically, the NPP and
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GPP ratio is not static but varies across ecosystems and re-
sponds to environmental drivers (Zhang et al., 2009; Amthor,
2000; DeLucia et al., 2007). For instance, temperature, pre-
cipitation, and rising CO; levels can enhance plant carbon-
use efficiency by reducing photorespiration, thereby increas-
ing NPP (Slot and Kitajima, 2015; Schuur et al., 2001; As-
pinwall et al., 2017), leads to changes of the ratio of NPP
and GPP (Zhang et al., 2009). Schuur et al. (2001) demon-
strated that excessive rainfall in warm-humid regions (e.g.,
southern China) may leach nutrients, reduce light availabil-
ity, and impair soil oxygen diffusion — all suppressing NPP.
Current ESMs inadequately represent these nuanced respira-
tory responses to environmental, particularly in regions like
Guangdong and Fujian.

Geosci. Model Dev., 18, 8703-8722, 2025
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Figure 9. Evaluation of the LST trend performance of the CMIP6 ESMs from 2003 to 2014 in China. A paired ¢-test with a sample size
of 9 was conducted using a 3 x 3 sliding window to determine whether the model simulated a trend that was not significantly different
from the observed data (Good), significantly smaller than the observed data (Underestimate), or significantly larger than the observed data
(Overestimate). U, G, and O represent “Underestimate”, “Good”, and “Overestimate”, respectively.

ESMs face critical limitations in representing soil carbon-
atmosphere interactions and respiratory mechanisms, largely
due to insufficient understanding of large-scale vegetation
autoregulatory respiration and soil heterotrophic respiration
processes (Zhao et al., 2019; Tang et al., 2020). These models
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often lack mechanistic descriptions of soil respiration (Tang
et al., 2020) and struggle to simulate soil carbon-climate
feedbacks (Lehmann and Kleber, 2015). The spatial discrep-
ancies between simulated and observed NEP trends in China
(Fig. 8) closely resemble those of NPP trends (Fig. 7), as
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NEP - calculated as the difference between NPP and soil
heterotrophic respiration — inherits biases from both com-
ponents. Models fail to capture regional heterogeneity in
soil respiration, and misestimation in simulated NPP (e.g.,
underestimation in afforestation zones or overestimation in
grasslands) propagate directly into NEP biases. For instance,
systematic underestimation of NPP in northeastern forests
and the Loess Plateau (Fig. 8), combined with oversimpli-
fied soil respiration parameterizations, leads to misestima-
tion in simulated NEP. This highlights a fundamental issue:
current models cannot disentangle uncertainties in photosyn-
thesis and respiration, nor represent their spatially divergent
responses to environmental drivers. These limitations under-
score the urgent need for mechanistic advancements in sim-
ulating soil-vegetation-atmosphere continuum dynamics.

In southern China and northeastern forested regions, sim-
ulated LST trends were significantly higher than observed
values (Fig. 9), coinciding with systematic underestimation
of LAI trends in these areas (Fig. 5). This contradiction
highlights a critical model bias: increased LAI in forested
ecosystems reduces LST through enhanced shortwave radia-
tion interception, modified albedo, and altered aerodynamic
and surface resistances (Li et al., 2015, 2019b). Vegetation
growth typically cools surface temperatures by improving
canopy shading and evapotranspiration efficiency — mecha-
nisms poorly represented in current parameterizations. The
models’ failure to capture LAI increases thus leads to simu-
lated LST warming trends, underscoring the necessity for im-
proved representation of biophysical feedbacks in land sur-
face.

The large inter-model spread and the model-observation
mismatch in carbon cycle trends can be attributed to two
primary sources: biases in the simulated climate and dif-
ferences in model structure/parameterization. Our evaluation
of the models’ climatic outputs (Fig. S9 and Table S2) re-
veals that models did not accurately reproduce the observed
climate over China for 2003-2014, generally overestimat-
ing mean temperature while underestimating mean precipi-
tation and solar radiation. The high RMSD values, particu-
larly for precipitation and radiation, indicate substantial er-
rors in the simulated climatic drivers that propagate into the
carbon cycle simulations. Furthermore, parameterization and
model structure are fundamental for ecosystem models to
generate realistic projections, playing a critical role in their
accuracy (Luo et al., 2016). As synthesized from previous
studies (Table S3), the selected ESMs exhibit considerable
diversity in their key land surface components and related
parameters (Spafford and Macdougall, 2021; Arora et al.,
2020; Pan et al., 2025). This structural and parametric het-
erogeneity is a major factor contributing to the divergent per-
formances in simulating the trends of carbon-cycle variables
among the models. However, it is important to note that while
this study focused on evaluating model performance in cap-
turing interannual trends and variability, the assessment of
seasonal cycle dynamics (e.g., phenological timing, ampli-
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tude of seasonal fluctuations) across China’s diverse regions
represents a critical avenue for future research to further re-
fine our understanding of model capabilities in simulating
terrestrial carbon cycle processes.

4.2 Potential anthropogenic impact for ESM
inaccuracy

A series of ecological engineering initiatives, such as af-
forestation, reforestation, and grassland restoration in south-
ern China and the Loess Plateau, have greatly promoted veg-
etation growth. However, the models may fail to capture the
effects of these human activities. ESMs likely fail to ade-
quately represent these anthropogenic impacts.

To better investigate the promoting effects of human ac-
tivities, such as afforestation and the Grain-for-Green Pro-
gram, on vegetation growth, we analysed the spatial trends of
MODIS TCF changes in China during 2003-2014 (Fig. S6).
The results indicate that 64.19 % and 32.49 % of the study
area exhibited increasing and decreasing TCF trends, re-
spectively. Among these, statistically significant increases
and decreases accounted for 14.57 % and 1.28 % of the to-
tal area, while 84.15 % showed no significant trend. Most
tree-abundant regions in eastern and central China displayed
TCF gains. In contrast, declining TCF trends were ob-
served in western China, where natural conditions are un-
suitable for tree growth and land cover is predominantly
grassland or non-vegetated areas. Significant TCF increases
were concentrated in the Shaanxi-Gansu-Ningxia region, the
Greater Khingan Mountains region in northeastern China,
and Guizhou, Guangdong, and Guangxi provinces.

The observed TCF exhibited a significant increasing
trend of 0.14 % yr—! (Fig. S7a), whereas simulated trends
ranged from —0.0041 % yr~! (INM-CM4-8) to 0.096 % yr~!
(MPI-ESM1-2-HR), with the MME yielding a trend of
0.039 % 4 0.032 % yr~!. Critically, all models systemati-
cally underestimated TCF changes, and none captured the
significant increase observed in satellite data.

Figure S8 illustrates spatial differences between simu-
lated and observed TCF trends across China. While most
models showed reasonable TCF trend simulations in the
sparsely vegetated northwestern regions, they overestimated
trends on the Tibetan Plateau and underestimated trends
in eastern China. The MME underestimated, overestimated,
and simulated well TCF trends in 43.72 %, 21.47 %, and
34.81 % in China, respectively. CanESMS5 and MPI-ESM 1-
2-HR demonstrated relatively better simulated TCF trend
with observations, well simulating TCF trends in 41.81 %
and 42.79 % of the area, respectively, while overestimat-
ing 22.90 % and 21.76 % and underestimating 35.28 % and
35.45 % (Fig. S8d and i). However, both models still overes-
timated TCF changes in eastern coastal regions and parts of
the Central Plains. Notably, MPI-ESM1-2-LR exhibited the
highest proportion of overestimated TCF trends (27.92 %)
among all models, with 36.24 % underestimation. In con-
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trast, INM-CMS5-0 showed the most underestimation, under-
estimating TCF trends in 53.29 % of the area while overes-
timating 12.46 %. The underestimation in regions with ob-
served significant TCF increases (e.g., afforestation zones in
southern China and the Loess Plateau) suggests that CMIP6
models likely fail to adequately represent anthropogenic con-
tributions to vegetation growth, such as afforestation policies
and ecological engineering impacts.

4.3 Uncertain of the observed datasets in China

Accurate observational data are essential for determining and
improving the precision of models (Luo et al., 2016). In this
study, two remote sensing datasets that better reflect actual
vegetation growth, namely the reprocessed MODIS dataset
and the CSIF dataset, were selected for evaluation. However,
satellite remote sensing data in China are subject to consid-
erable uncertainty due to various factors. High cloud cover
during the rainy season and snow cover in high-latitude ar-
eas during winter can introduce inaccuracies. Additionally,
satellite sensors are prone to degradation over time, lead-
ing to reduced sensitivity. Although the reprocessed MODIS
and CSIF datasets utilize spatiotemporal filtering and ma-
chine learning techniques to enhance data quality (Zhang et
al., 2018; Yuan et al., 2011), significant uncertainties remain.
Similarly, limitations in satellite remote sensing-based car-
bon accounting (Araza et al., 2023), contribute to substan-
tial uncertainties in MODIS NPP and NEP products (Sun et
al., 2021; Huang et al., 2018; Ma et al., 2016). Concurrently,
studies attribute uncertainties in MODIS LST primarily to
spatial inconsistencies and surface emissivity uncertainties,
the latter resulting from inadequate global representativeness
in land cover classification (Ma et al., 2021; Wan et al., 2002;
Duan et al., 2019).

5 Conclusion

This study evaluates the trends in performance of CMIP6
ESM-simulated LAI, GPP, NPP, NEP and LST in China from
2003 to 2014 using MODIS (LAI, NPP, NEP and LST) and
CSIF, as observational references. Overall, ESMs fail to cap-
ture the trends of CMIP6 ESM-simulated variables in China.
In particular, the simulations overestimate and underestimate
that are spatially distributed over a large part of the area. The
12 CMIP6 ESMs revealed substantial errors in overall trends
in LAI, NPP, and LST, along with significant underestima-
tions in overall trends of GPP and NEP. Discrepancies be-
tween observed and simulated trends reached 0.03 yr~! for
GPP and 2.46 gCm~2 yr~! for NEP. Spatially, CMIP6 ESMs
underestimated trends in LAI, GPP, NPP, and NEP across
China. The MME underestimated these variables in 46.29 %
(LAI), 43.47 % (GPP), 49.81 % (NPP), and 61.34 % (NEP) of
the study area. Concurrently, models predominantly overes-
timated LST trends in southern China, while predominantly
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underestimating trends in northern China (MME overestima-
tion: 54.57 % and underestimation: 28.02 %).

The CMIP6 ESMs exhibit significant misestimation of
trends in carbon cycle physical and chemical variables, pri-
marily attributed to inadequate response of environmental
factor dynamics and insufficient consideration of anthro-
pogenic influences. This limitation is compounded by the
model’s failure to adequately represent ecosystem and soil
respiration mechanisms, which affects the simulation accu-
racy of NPP and NEP. Furthermore, systematic misestima-
tion of LAI trend prevents accurate reproduction of the in-
hibitory effect of LAI on LST. The model simulations exhibit
pronounced regional biases, including a systematic overes-
timation of ecological variables on the cold-arid Tibetan
Plateau, a general underestimation over the extensively veg-
etated Loess Plateau likely linked to misrepresented ecolog-
ical restoration processes, and widespread simulation errors
in the rapidly urbanizing Pearl River Basin, potentially due
to unaccounted-for anthropogenic pressures.

Code and data availability. The R code used for analysis
is publicly available. Required packages include rtrend,
terra and tidyverse, accessible via CRAN repositories at
https://cran.r-project.org/web/packages (last access: 14 Novem-
ber 2025). All data used in this study are publicly available.
The raw CMIP6 data (Eyring et al., 2016) can be downloaded
from the USA portal of the Earth System Grid Federation
(https://aims2.1Inl.gov/search/cmip6, last access: 14 Novem-
ber 2025). The MODIS LAI data (Yuan et al.,, 2011) can be
downloaded from Data Publisher for Earth & Environmental
Science: http://globalchange.bnu.edu.cn/research/laiv061
(last access: 14 November 2025). The CSIF data
(Zhang et al, 2018) can be accessed through Figshare:
https://doi.org/10.6084/m9.figshare.6387494.v2 (Zhang,
2018). The MODIS NPP data can be downloaded from
NASA Land Processes Distributed Active Archive Center:
https://doi.org/10.5067/MODIS/MOD17A3H.006 (Running et al.,
2015). The NEP data can be downloaded from Loess Plateau Sub-
Center, National Earth System Science Data Center, National Sci-
ence & Technology Infrastructure of China (https://loess.geodata.
cn/data/datadetails.html?dataguid=149029150608582&docld=>5,
last access: 18 November 2025). The LST data (Yu et al., 2022) can
be downloaded from National Tibetan Plateau/Third Pole Environ-
ment Data Center: https://doi.org/10.11888/Meteoro.tpdc.271663
(Zhao and Yu, 2021). The VCF data employed to describe the TCF
can be downloaded from NASA Land Processes Distributed Active
Archive Center: https://doi.org/10.5067/MODIS/MOD44B.006
(DiMiceli et al., 2015).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-8703-2025-supplement.
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