Supplement of Geosci. Model Dev., 18, 8703–8722, 2025 https://doi.org/10.5194/gmd-18-8703-2025-supplement © Author(s) 2025. CC BY 4.0 License.

Supplement of

Evaluation of annual trends in carbon cycle variables simulated by CMIP6 Earth system models in China

Ziyang Li et al.

Correspondence to: Lidong Zou (lidongzou@szpu.edu.cn) and Anzhou Zhao (zhaoanzhou@hebeu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1: Summary of the classification of vegetation and land use types in China.

Name	Vegetation or land use type	Classification type	area proportion (%)
ENF	Evergreen Needleleaf Forests	Tree Cover	0.77
EBF	Evergreen Broadleaf Forests	Tree Cover	2.37
DNF	Deciduous Needleleaf Forests	Tree Cover	0.15
DBF	Deciduous Broadleaf Forests	Tree Cover	3.29
MF	Mixed Forests	Tree Cover	2.75
CS	Closed Shrublands	Grassland	0.04
OS	Open Shrublands	Grassland	0.08
WS	Woody Savannas	Tree Cover	10.01
Sa	Savannas	Tree Cover	7.96
Gr	Grasslands	Grassland	30.04
PW	Permanent Wetlands	Grassland	0.21
Cr	Croplands	Crop	12.92
UBL	Urban and Built-up Lands	Non Vegetable	1.25
C/NVM	Cropland/Natural Vegetation Mosaics	Crop	2.02
PSI	Permanent Snow and Ice	Non Vegetable	0.33
Ba	Barren	Non Vegetable	24.82
WB	Water Bodies	Non Vegetable	0.99

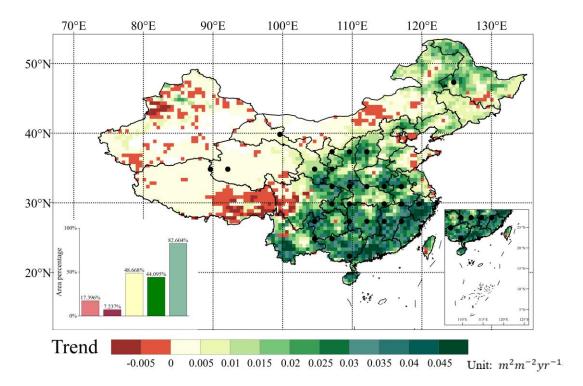


Figure S1: The observed annual MODIS LAI trend during 2003~2014 in China. Pink color represents the percentage of area of decreasing regions (DE), red color represents the percentage of area of significantly decreasing regions (SD), yellow color represents the percentage of area of regions with no significant change (N), green color represents the percentage of area of significantly increasing regions (SI), and light green color represents the percentage of area of increasing regions (IN). The dot indicated the significant trend (p<0.05).

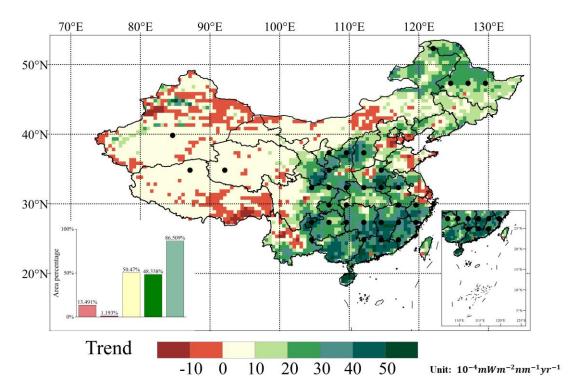


Figure S2: The observed annual CSIF trend during $2003\sim2014$ in China. Pink color represents the percentage of area of decreasing regions (DE), red color represents the percentage of area of significantly decreasing regions (SD), yellow color represents the percentage of area of regions with no significant change (N), green color represents the percentage of area of significantly increasing regions (SI), and light green color represents the percentage of area of increasing regions (IN). The dot indicated the significant trend (p<0.05).



Figure S3: The observed annual MODIS NPP trend during 2003~2014 in China. Pink color represents the percentage of area of decreasing regions (DE), red color represents the percentage of area of significantly decreasing regions (SD), yellow color represents the percentage of area of regions with no significant change (N), green color represents the percentage of area of significantly increasing regions (SI), and light green color represents the percentage of area of increasing regions (IN). The dot indicated the significant trend (p<0.05).

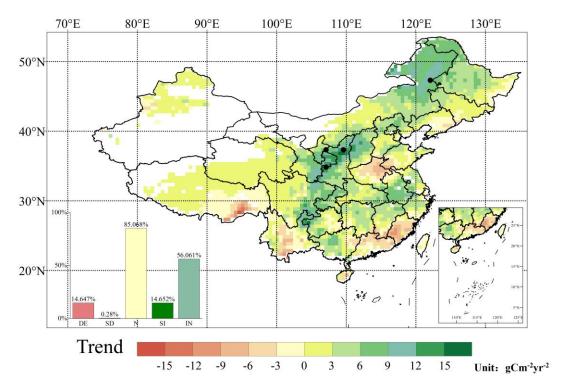


Figure S4: The observed annual MODIS NPP trend during 2003~2014 in China. Pink color represents the percentage of area of decreasing regions (DE), red color represents the percentage of area of significantly decreasing regions (SD), yellow color represents the percentage of area of regions with no significant change (N), green color represents the percentage of area of significantly increasing regions (SI), and light green color represents the percentage of area of increasing regions (IN). The dot indicated the significant trend (p<0.05).

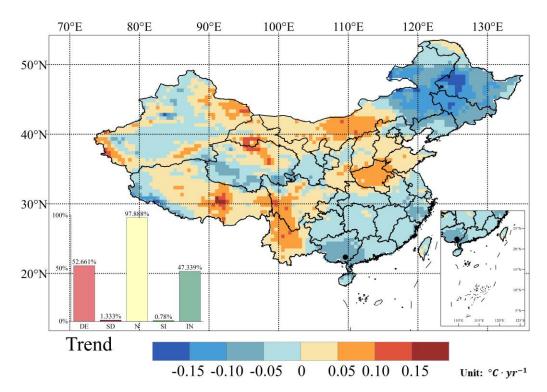


Figure S5: The observed annual MODIS LST trend during 2003~2014 in China. Pink color represents the percentage of area of decreasing regions (DE), red color represents the percentage of area of significantly decreasing regions (SD), yellow color represents the percentage of area of regions with no significant change (N), green color represents the percentage of area of significantly increasing regions (SI), and light green color represents the percentage of area of increasing regions (IN). The dot indicated the significant trend (p<0.05).

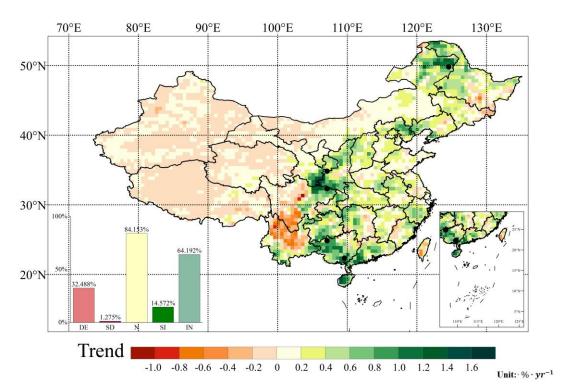


Figure S6: The observed annual CSIF, (c) MODIS NPP, (d) MODIS NEP, (e) MODIS LST and (f) MODIS TCF trend during 2003~2014 in China. Pink color represents the percentage of area of decreasing regions (DE), red color represents the percentage of area of significantly decreasing regions (SD), yellow color represents the percentage of area of regions with no significant change (N), green color represents the percentage of area of significantly increasing regions (SI), and light green color represents the percentage of area of increasing regions (IN). The dot indicated the significant trend (p<0.05).

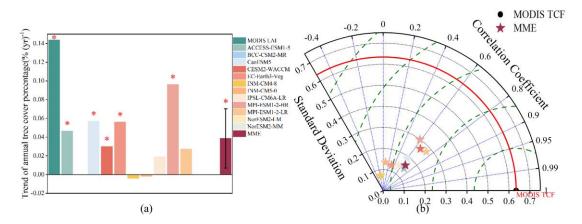


Figure S7: (a) Overall annual average TCF trends in China during 2003-2014. The asterisk (*) indicated the significant trend (p<0.05). (b) The Taylor diagrams compare the remotely-sensed and model-simulated global annual mean TCF for the historical period (2003-2014). The standard deviation shows the interannual variability of the observed and simulated LAI. The dashed green lines show centered root mean square difference (RMSD) between model simulations and satellite observations.

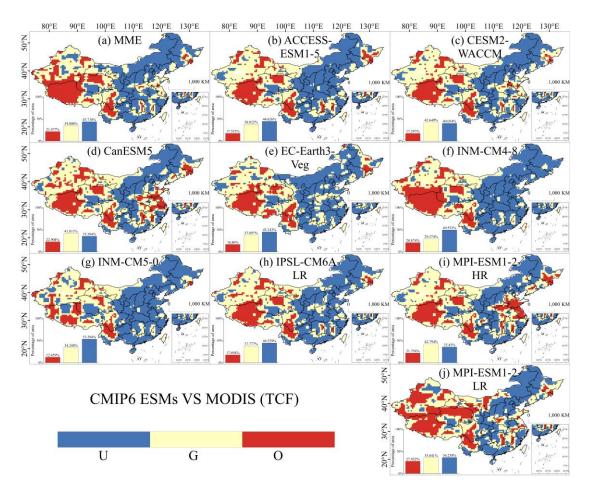


Figure S8: Evaluation of the tree cover percentage trend performance of the CMIP6 ESM from 2003 to 2014 in China. A paired t-test with a sample size of 9 was conducted using a 3×3 sliding window to determine whether the model simulated a trend that was not significantly different from the observed data (Good), significantly smaller than the observed data (Underestimate), or significantly larger than the observed data (Overestimate). U, G, and O represent 'Underestimate', 'Good', and 'Overestimate', respectively.

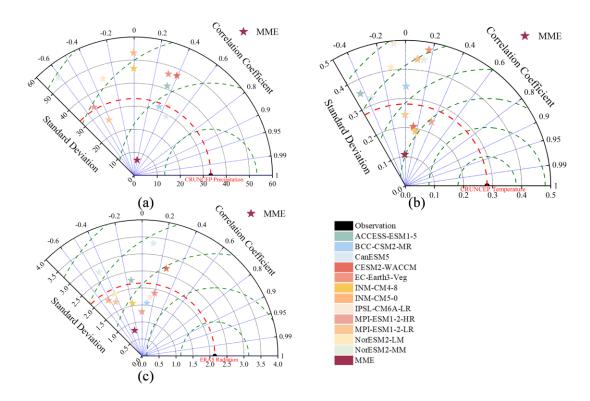


Figure S9: The Taylor diagram compares the observed and model-simulated annual means of climate factors (a) precipitation, (b) temperature, and (c) solar radiation for the historical period (2003-2014). The standard deviation shows the interannual variability of the observed and simulated LAI. The dashed green lines show centered root mean square difference (RMSD) between model simulations and satellite observations.

Table S2: Summary of Statistical Metrics (Mean, SD, RMSD) for Observed and Model-Simulated Annual Mean Precipitation, Temperature, and Radiation

	Precipitation(mm)		Те	Temperature(°C)		Radiation(W/m²)			
	Mean	SD	RMSD	Mean	SD	RMSD	Mean	SD	RMSD
Remote sensing	613.64806	33.26141	/	7.63093	0.28095	/	178.18524	2.14209	/
observation									
MME	867.4114	6.73035	31.29347	6.52192	0.10744	0.29024	194.01037	0.78118	2.3726
ACCESS-	1040.18351	41.31607	41.28819	7.16172	0.35231	0.51566	184.97961	2.2438	3.17482
ESM1-5									
BCC-CSM2-	727.37508	31.7226	35.76094	4.82402	0.34208	0.42253	183.79863	1.55593	2.42488
MR									
CanESM5	747.40222	29.02126	30.65384	3.78862	0.32382	0.47857	188.30924	3.32677	3.61066
CESM2-	931.57702	47.06833	43.754	8.61381	0.20517	0.31106	191.1325	2.66486	2.81495
WACCM									
EC-Earth3-Veg	697.68418	46.3696	45.6074	5.62987	0.4737	0.48608	190.16296	1.87844	2.44838
INM-CM4-8	1116.61609	46.36924	54.74785	7.04681	0.19034	0.29721	210.0205	1.56934	2.75106
INM-CM5-0	1082.96623	53.14569	60.16718	6.52697	0.4369	0.47534	210.44639	1.90865	3.38243
IPSL-CM6A-	738.0079	33.52197	33.67346	3.04972	0.49094	0.56015	201.9655	1.75335	2.47112
LR									
MPI-ESM1-2-	733.44302	34.4346	56.33748	7.25265	0.23723	0.27916	194.34585	1.30037	2.40424
HR									
MPI-ESM1-2-	794.64687	26.41971	48.19112	6.4484	0.24422	0.35745	186.96089	1.76221	3.17683
LR									
NorESM2-LM	851.89759	44.01298	60.15218	8.31717	0.41054	0.50303	193.13471	1.98927	3.31409
NorESM2-MM	834.14687	53.5992	75.2135	7.8185	0.43701	0.46347	197.56405	2.76213	4.02235

Table S3: Summary of key land surface components and related parameters for selected ESMs

ESM name	Modelling I	Land surface	Fire/N	Prognostic	Number of	Number of
		model	cycle/Dynamic	LAI/leaf	live&dead	
			vegetation	phenology	carbon pools	PFTs
ACCESS-	CCIDO	CABLE2.4	No/Yes/No	Yes/No	3 & 6	13
ESM1-5	CSIRO					
BCC-CSM2-	DCC	BCC-AVIM2	No/No/No	Yes/Yes(for	3 & 8	16
MR	BCC			deciduous)		
CanESM5	CCCma	CLASS- CTEM	No/No/No	Yes/Yes	3 & 2	9
CESM2- WACCM	CESM	CLM5	-/Yes/No	Yes/Yes	22 & 7	22
EC-Earth3-Veg	EC-Earth	H-TESSEL & LPJ-GUESS	-	-	-	-
INM-CM4-8	INM	-	-	-	-	-
INM-CM5-0	INM	-	-	-	-	-
IPSL-CM6A- LR	IPSL	ORCHIDEE v2.0	No/No/No	Yes/Yes	8 & 3	15
MPI-ESM1-2- HR	MPI	JSBACH3.2	Yes/Yes/Yes	Yes/Yes	3 & 18	13
MPI-ESM1-2- LR	MPI	JSBACH3.2	Yes/Yes/Yes	Yes/Yes	3 & 18	13
NorESM2-LM	NorESM	CLM5	Yes/Yes/No	Yes/Yes	22 & 7	22
NorESM2-MM	NorESM	CLM5	Yes/Yes/No	Yes/Yes	22 & 7	22