Articles | Volume 18, issue 22
https://doi.org/10.5194/gmd-18-8569-2025
https://doi.org/10.5194/gmd-18-8569-2025
Development and technical paper
 | 
14 Nov 2025
Development and technical paper |  | 14 Nov 2025

All-sky AMSU-A radiance data assimilation using the gain-form of Local Ensemble Transform Kalman filter within MPAS-JEDI-2.1.0: implementation, tuning, and evaluation

Tao Sun, Jonathan J. Guerrette, Zhiquan Liu, Junmei Ban, Byoung-Joo Jung, Ivette Hernandez Banos, and Chris Snyder

Related authors

Direct assimilation of ground-based microwave radiometer observations with machine learning bias correction based on developments of RTTOV-gb v1.0 and WRFDA v4.5
Qing Zheng, Wei Sun, Zhiquan Liu, Jiajia Mao, Jieying He, Jian Li, and Xingwen Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2025-12,https://doi.org/10.5194/egusphere-2025-12, 2025
Short summary
Incremental analysis update (IAU) in the Model for Prediction Across Scales coupled with the Joint Effort for Data assimilation Integration (MPAS–JEDI 2.0.0)
Soyoung Ha, Jonathan J. Guerrette, Ivette Hernández Baños, William C. Skamarock, and Michael G. Duda
Geosci. Model Dev., 17, 4199–4211, https://doi.org/10.5194/gmd-17-4199-2024,https://doi.org/10.5194/gmd-17-4199-2024, 2024
Short summary
Three-dimensional variational assimilation with a multivariate background error covariance for the Model for Prediction Across Scales – Atmosphere with the Joint Effort for Data assimilation Integration (JEDI-MPAS 2.0.0-beta)
Byoung-Joo Jung, Benjamin Ménétrier, Chris Snyder, Zhiquan Liu, Jonathan J. Guerrette, Junmei Ban, Ivette Hernández Baños, Yonggang G. Yu, and William C. Skamarock
Geosci. Model Dev., 17, 3879–3895, https://doi.org/10.5194/gmd-17-3879-2024,https://doi.org/10.5194/gmd-17-3879-2024, 2024
Short summary
Data assimilation for the Model for Prediction Across Scales – Atmosphere with the Joint Effort for Data assimilation Integration (JEDI-MPAS 2.0.0-beta): ensemble of 3D ensemble-variational (En-3DEnVar) assimilations
Jonathan J. Guerrette, Zhiquan Liu, Chris Snyder, Byoung-Joo Jung, Craig S. Schwartz, Junmei Ban, Steven Vahl, Yali Wu, Ivette Hernández Baños, Yonggang G. Yu, Soyoung Ha, Yannick Trémolet, Thomas Auligné, Clementine Gas, Benjamin Ménétrier, Anna Shlyaeva, Mark Miesch, Stephen Herbener, Emily Liu, Daniel Holdaway, and Benjamin T. Johnson
Geosci. Model Dev., 16, 7123–7142, https://doi.org/10.5194/gmd-16-7123-2023,https://doi.org/10.5194/gmd-16-7123-2023, 2023
Short summary
Data assimilation for the Model for Prediction Across Scales – Atmosphere with the Joint Effort for Data assimilation Integration (JEDI-MPAS 1.0.0): EnVar implementation and evaluation
Zhiquan Liu, Chris Snyder, Jonathan J. Guerrette, Byoung-Joo Jung, Junmei Ban, Steven Vahl, Yali Wu, Yannick Trémolet, Thomas Auligné, Benjamin Ménétrier, Anna Shlyaeva, Stephen Herbener, Emily Liu, Daniel Holdaway, and Benjamin T. Johnson
Geosci. Model Dev., 15, 7859–7878, https://doi.org/10.5194/gmd-15-7859-2022,https://doi.org/10.5194/gmd-15-7859-2022, 2022
Short summary

Cited articles

Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Avellano, A.: The Data Assimilation Research Testbed: A Community Facility, Bull. Amer. Meteor. Soc., 90, 1283–1296, https://doi.org/10.1175/2009BAMS2618.1, 2009. 
Anderson, J. L.: Spatially and temporally varying adaptive covariance inflation for ensemble filters, Tellus A, 61, 72–83, https://doi.org/10.1111/j.1600-0870.2008.00361.x, 2009. 
Anderson, J. L.: An Ensemble Adjustment Kalman Filter for Data Assimilation, Mon. Weather Rev., 129, 2884–2903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2, 2001. 
Bauer, P., Geer, A.  J., Lopez, P., and Salmond, D.: Direct 4D-Var assimilation of all-sky radiances, Quart. J. Roy. Meteor. Soc., 136, 1868–1885, https://doi.org/10.1002/qj.659, 2010. 
Berner, J., Shutts, G. J., Leutbecher M., and Palmer, T. N.: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system, J. Atmos. Sci., 66, 603–626, https://doi.org/10.1175/2008JAS2677.1, 2009. 
Download
Short summary
We evaluated a new ensemble data assimilation system that uses satellite observations in all weather conditions for global weather forecasts. The results show that including cloud- and precipitation-affected satellite data improves forecasts of moisture, wind, and clouds, especially in the tropics. This work highlights the potential of this new ensemble data assimilation system to enhance global weather forecasts.
Share