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Abstract. The Gain-form of Local Ensemble Transform
Kalman Filter (LGETKF) has been implemented in the Joint
Effort for Data assimilation Integration (JEDI) with the
Model for Prediction Across Scales — Atmosphere (MPAS-
A) (i.e., MPAS-JEDI). LGETKEF applies vertical localization
in model space and is particularly convenient for assimilat-
ing satellite radiances that do not have an explicit vertical
height assigned to each channel. Additional efforts are made
to optimize the ensemble analysis procedure and improve the
computational efficiency of MPAS-JEDI’s LGETKEF. This is
the first application of JEDI-based LGETKF for assimilating
radiance data in all-weather situations with a global MPAS
configuration. The system is first tuned for covariance infla-
tion and horizontal localization settings. It is found that using
a combination of relaxation to prior perturbation (RTPP) and
relaxation to prior spread (RTPS) outperforms using RTPP or
RTPS alone, and using a smaller horizontal localization scale
for all-sky radiances is preferable. With the optimized infla-
tion and localization settings, assimilating all-sky radiances
of the Advanced Microwave Sounding Unit — A (AMSU-A)
window channels with an 80-member LGETKF improved
the forecasts of moisture, wind, clouds, and precipitation
fields, when compared to the benchmark experiment with-
out assimilation of all-sky AMSU-A radiances. The positive
forecast impact of all-sky AMSU-A radiances is the largest
over the tropical regions up to 7 d. Some degradation in the
temperature forecasts is seen over certain regions, where the
model forecast is likely biased, causing deficiencies for as-
similating all-sky data. The LGETKEF capability is available

in the recent public release of MPAS-JEDI and is ready for
research and operational explorations.

1 Introduction

The Joint Effort for Data assimilation Integration (JEDI)
is a new data assimilation (DA) framework with model-
agnostic components that can be interfaced to multiple mod-
els (Trémolet and Auligné, 2020). The development of JEDI
is led by the Joint Center for Satellite Data Assimilation
(JCSDA) with partners from several research and opera-
tional institutes. Considerable efforts at the National Cen-
ter for Atmospheric Research (NCAR) have been devoted
to the development of a JEDI-based DA system for the
Model for Prediction Across Scales — Atmosphere (MPAS-
A; Skamarock et al., 2012), which we will call MPAS-
JEDI. (For historical reasons, this system has been previ-
ously referred to as JEDI-MPAS, such as in Liu et al., 2022.)
Variational DA approaches have been successfully imple-
mented into MPAS-JEDI for deterministic analysis, includ-
ing the three-dimensional variational (3DVar) method, the
ensemble-variational (EnVar) method, and hybrid variants of
EnVar (Liu et al., 2022; Jung et al., 2024).

Ensemble DA plays a vital role in numerical weather pre-
diction (NWP) by providing initial conditions for ensemble
forecasts, which can also be used as input for determinis-
tic EnVar analyses to form flow-dependent background error
covariances (BECs). There are two general classes of ensem-
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ble DA methods, the ensemble of data assimilations (EDA;
Houtekamer et al., 1996) and various versions of the En-
semble Kalman Filter (EnKF; Evensen, 2003). For MPAS-
JEDI, Guerrette et al. (2023) implemented EDA that per-
forms an ensemble of 3DEnVar analysis with perturbed ob-
servations. They demonstrated a comparable or superior per-
formance for EDA when compared to the Ensemble Ad-
justment Kalman Filter (EAKF; Anderson, 2001) within the
Data Assimilation of Research Testbed (DART; Anderson et
al., 2009; Ha et al., 2017), but with a substantially larger
computational cost than the EAKF. Therefore, it is worth
implementing an EnKF-based ensemble DA capability for
MPAS-JEDI.

Frolov et al. (2024) implemented two EnKF-based meth-
ods within the JEDI framework, including the Local Ensem-
ble Transform Kalman Filter (LETKF; Hunt et al., 2007)
and the gain-form LETKF (LGETKF; Bishop et al., 2017).
Frolov et al. (2024) provided a comprehensive description
of both methods and demonstrated their successful appli-
cation to different components of the Earth system model.
Park et al. (2023) showed that the limited-area FV3-JEDI’s
LETKF and LGETKEF have a comparable performance in the
convective-scale radar DA when compared to the Ensemble
Square Root Filter (EnSRF; Whitaker and Hamill, 2002; Tip-
pett and Anderson, 2003) in the Gridpoint Statistical Inter-
polation (GSI; Shao et al., 2016) DA system. Compared to
the LETKF, the LGETKF has the advantage in performing
vertical localization in model space (Bishop et al., 2017),
making it particularly suitable for the assimilation of satel-
lite radiances that are column-integrated measurements and
are hard to define their vertical coordinates. Various stud-
ies have proven that the model space vertical localization
generally outperforms observation space vertical localization
(Campbell et al., 2010; Bishop et al., 2017; Lei et al., 2018).
Given the feasibility of the LGETKF algorithm within the
JEDI framework, implementing it to MPAS-JEDI is a worth-
while endeavour, as it better handles the vertical localization
of satellite radiance assimilation.

The cloud- and precipitation-affected satellite radiances
from microwave (MW) instruments have been operationally
assimilated in the global NWP models in recent decades
(e.g., Bauer et al., 2010; Zhu et al., 2016, 2019; Geer et
al., 2017, 2018; Migliorini and Candy, 2019; Shahabadi
and Buehner, 2024) with the variational-based DA systems.
EnKF-based methods were also employed to assimilate all-
sky infrared radiances for case studies with regional models
(e.g., Zhang et al., 2016; Minamide and Zhang, 2018; Honda
et al., 2018; Zhang et al., 2019; Okamoto et al., 2019; Chan
et al., 2020; Zhu et al., 2023). Fewer studies, however, have
explored all-sky assimilation of MW radiances using EnKF-
based methods for global models. Bonavita et al. (2020) pre-
sented a comprehensive evaluation of the all-sky MW ra-
diance assimilation with the European Centre for Medium-
Range Weather Forecasts (ECMWF)’s EnKF system, and
their results showed that EnKF could properly extract wind
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information from all-sky radiance observations and brings
2 %—4 % improvement in forecast scores.

In this study, the LGETKF algorithm within the JEDI
framework is implemented in MPAS-JEDI, and its perfor-
mance is evaluated through the clear-sky and all-sky MW ra-
diance assimilation. As the first implementation of LGETKF
in MPAS-JEDI, we first tune the assimilation configurations
such as covariance inflation and localization, providing a ref-
erence for the community on achieving stable and robust
performance. We then assess the forecast impact of all-sky
assimilation of AMSU-A radiances over a month-long pe-
riod, offering deeper insight into the performance of MPAS-
JEDI's LGETKEF. The rest of the paper is organized as fol-
lows. In Sect. 2, the implementation of the LGETKF in
MPAS-JEDI is detailed. The MPAS model configuration, all-
sky radiance DA method, and experimental design are pro-
vided in Sect. 3. The results of tuning the covariance infla-
tion and horizontal localization are given in Sect. 4, followed
by our evaluation of all-sky AMSU-A radiance DA with the
LGETKEF in Sect. 5 and conclusions in Sect. 6.

2 Methodology
2.1 LGETKEF in MPAS-JEDI
2.1.1 Implementation of LGETKF in MPAS-JEDI

The local volume solvers developed by Frolov et al. (2024),
which are part of the Object-Oriented Prediction System
(OOPS), the DA solver component of JEDI, have been im-
plemented in MPAS-JEDI. Both the LETKF and LGETKF
are now available in MPAS-JEDI, with the latter being the
focus of this study. In the LGETKEF, the model states within
a local volume (i.e., a vertical column of a horizontal grid
point) are updated using the surrounding observations, and
the updates in each volume occur simultaneously and inde-
pendently from other volumes. When computing the Kalman
gain, the LGETKF employs perturbations from an expanded
ensemble, which is obtained by modulating the original en-
semble with the eigenvectors of the vertical localization ma-
trix (Bishop et al., 2017). Thus, the LGETKF has the ad-
vantage of performing vertical localization in model space
and is particularly suitable for assimilating non-local obser-
vations such as satellite radiances (Lei et al., 2018). For a de-
tailed description of the LGETKEF algorithm within OOPS,
see Frolov et al. (2024).

The analysis variables of MPAS-JEDI’s LGETKF include
temperature (7'), horizontal wind components (U, V), sur-
face pressure (Ps), and specific humidity (Q). For all-sky
radiance assimilation, additional five hydrometeor analysis
variables are introduced: the mixing ratios of cloud wa-
ter (Q.), cloud ice (Qj), rainwater (Qy), snow (Qs), and
graupel (Qg). Following Guerrette et al. (2023) and Jung
et al. (2024), linearized hydrostatic balance constraint is
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used when computing increments of dry-air density (pq) and
three-dimensional pressure (P) from the increments of T, Q,
and Ps. After the ensemble update, the analysis variables are
transformed to MPAS-A’s prognostic variables.

2.1.2 Covariance inflation

There are three multiplicative covariance inflation schemes
available within JEDI, including one prior inflation scheme
and two posterior inflation schemes with the relaxation to
prior perturbation (RTPP; Zhang et al., 2004) and the relax-
ation to prior spread (RTPS; Whitaker and Hamill, 2012).

The prior inflation scheme multiplies the background error
covariance by a factor o > 1:

X?nf(Xlianf)T = anri (Xgri)T’ (1)

where X is the matrix whose columns are deviation of the en-
semble members from the ensemble mean, and the subscript
pri and inf denote prior (i.e., before inflation) and inflated,
respectively. The RTPP scheme blends the background and
analysis ensemble perturbations as

X3 = otrapp X+ (1 — etrpp) X, )

where superscripts a and b denote analysis and background
quantities, and oy denotes the relaxation parameter of
RTPP. In the RTPS scheme, the analysis perturbations are
inflated as

o .
X0 _ <a“1’s" O+ (1~ anp)o ™ ) X200, 3)

inf — Ga(,’)

where oyps is the relaxation parameter of RTPS, the super-
script (i) indicates a quantity relevant to the ith element of
the state vector x, and o is the ensemble spread. The infla-
tion parameter « in both RTPP and RTPS is between 0 and 1,
where o = 0 indicates no inflation and o = 1 corresponds to
relaxing to the background ensemble spread. Within MPAS-
JEDI's LGETKEF, the three inflation schemes can be em-
ployed either individually or in various combinations. Pos-
terior inflation is used in this study.

2.1.3 Covariance localization

The R-localization approach (Hunt et al., 2007) is em-
ployed for the observation-space horizontal localization in
LGETKEF. In this approach, the observation error covari-
ance, R, is inflated as a function of the distance between
the analysed local volume and surrounding observation loca-
tions. The localization is typically performed by multiplying
the inverse of a correlation-like function, such as Box Car,
Gaspari-Cohn (Gaspari and Cohn, 1999), or the second or-
der auto regressive (SOAR), to the diagonal elements of R.
Consequently, the influence of observations to the state vari-
ables within a local volume decreases smoothly with increas-
ing distance, and observations beyond the specified horizon-
tal localization scale have no influence on the model state up-
date. To speed up the horizontal localization operation, only a
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limited number of observations (e.g., 1000 used in this study)
closest to a local volume is included in the horizontal local-
ization. Additionally, different horizontal localization scales
can be applied for different observation types.

The vertical localization in LGETKF is done in model
space through the modulated ensemble members it intro-
duces. There are several vertical coordinate options available
for vertical localization, including the model level, height,
and scale height (log(P)). To reduce the computational cost,
itis a common practice, when constructing the modulated en-
semble, to approximate the vertical localization matrix using
only its first several dominant eigenvectors. In this study, we
retain 11 eigenvectors (and thus 11 modulated members for
each original ensemble member), which explain ~ 95 % of
the variance of our chosen Gaspari-Cohn localization matrix
with a 6 km scale.

2.2 LGETKEF analysis procedure

As shown in Fig. 1, the LGETKEF analysis procedure is split
into three steps: the Observer step for the ensemble back-
ground, the Solver step for ensemble update, and the Ob-
server step for ensemble analysis. In the Observer step for the
ensemble background (denoted “OMB”), the model equiv-
alent of the observations (hereafter HofX) is computed for
both the original ensemble background members and their
corresponding modulated members and then written out into
separate files for each ensemble member. The OMB step is
carried out with multiple simultaneous jobs, in which the
HofX application is looping for a trunk of original and mod-
ulated members. The Solver step with a single job then reads
in the outputs from the OMB step to solve the LGETKEF, gen-
erating ensemble analysis members. In the Observer step for
the ensemble analysis (denoted as “OMA”), HofX calcula-
tions are performed solely for the original analysis members,
omitting the modulated members. Both OMB and OMA
steps employ the “Round robin” observation distribution, en-
suring an effective load balancing of observations across par-
allel processing elements (PEs). The “Halo” observation dis-
tribution must be utilized in the Solver step, storing over-
lapping sets of observations on each PE and eliminating the
need for inter-PE communications by ensuring all required
observations for updating model states within a PE available
locally. More details on “Round robin” and “Halo” can refer
to Frolov et al. (2024).

Note that the OMB and Solver steps can be configured
to run within a single job execution. In that case, the OMB
step must also use the “Halo” distribution and the HofX ap-
plications for all original and modulated members will have
to be run one by one, which leads to a much longer time-
to-completion of LGETKF, when compared to the separate
job strategy described above. The observation count is an-
other important factor for the memory use and computa-
tional speed of both the Observer and Solver steps. To fur-
ther improve the computational efficiency, a quality control
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Figure 1. Flow chart of the analysis procedure of LGETKE.

(QC) step applying HofX to the ensemble mean background
is run before the ensemble OMB step. This QC step writes
out HofX files (one file for one observation type) with QC
flags indicating bad and thinned observations, and then an
offline program reads these HofX files and writes out new
size-reduced observation files by excluding observations that
fail QC or are not used after data thinning. The smaller ob-
servation files are then used in the subsequent OMB, Solver,
and OMA steps. Note that the OMA step is mainly for anal-
ysis diagnostics, e.g., comparing the analysis fit to observa-
tions with the background fit to observations. Therefore, the
ensemble forecast step for proceeding to the next cycle can
begin before launching the OMA step. Recently, a new func-
tion named “reduce obs space” has been introduced in UFO.
This function filters out observations that fail pre-processing
checks (e.g., thinning, domain checks) directly in memory
during runtime, avoiding unnecessary HofX calculation and
storage. Its application is worth exploring as a way to elim-
inate the separate QC step in the current workflow. In addi-
tion, the linear operator is now available for computing en-
semble HofXs, following Lei et al. (2018), which is expected
to significantly accelerate the Observer step.

The 80-member MPAS-JEDI's LGETKF experiments
configured with a global quasi-uniform grid spacing of 60 km
(see Sect. 3) are conducted on the NCAR’s supercomputer
Derecho. Table 1 summarizes the wall-clock times of the
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three job steps of LGETKF at the first analysis time. The
QC step, involving HofX of the ensemble-mean background
and the processing of more than 3 million observations, takes
about 5.5 minutes when using 4 nodes and 128 cores per
node. For each ensemble member, the OMB step consists
of HofXs of that background member and its 11 modulated
members for the remaining 563 197 observations; these cal-
culations need about 5 min when using a single node. The
Solver step updating all 80 members together takes about
25 min when using 12 nodes and 64 cores per node. Without
these modifications to the analysis procedure, the OMB step
takes over 90 min to finish the calculation of HofXs for all
members and their modulated members, and the Solver step
takes about 32 min due to the larger observation file read-in.
This demonstrates the effectiveness of the improved analysis
procedure in MPAS-JEDI’s LGETKF. However, the Solver
step remains relatively slow and may be not yet feasible for
potential operational applications. While using more proces-
sors could reduce the run time, the increasing I/O burden for
reading observation files limits the achievable performance
gains. Active development is ongoing to further improve the
computational efficiency of JEDI in general and we antici-
pate that the time-to-completion of MPAS-JEDI’'s LGETKF
will be further reduced in future versions.

3 MPAS-A model configuration, observations, and
experimental design

3.1 MPAS-A model configuration

A modified version of MPAS-A version 7.1 is employed as
the NWP model in this study, similar to that used by Liu
et al. (2022). MPAS-A is a non-hydrostatic model, which is
discretized on an unstructured centroidal Voronoi horizontal
mesh with C-grid staggering of the state variables for both
global and regional applications (Skamarock et al., 2012,
2018). The quasi-uniform global mesh at a grid spacing of
~ 60 km is used in this study with 163 842 horizontal cells,
55 vertical levels, and a model top height of 30 km. The time
step is 360s. The “mesoscale reference” suite is employed
for physical parameterizations, utilizing the parameterization
schemes detailed in Table 2 in Liu et al. (2022).

3.2 Observations

A variety of observations are assimilated in this study, includ-
ing radiosondes (temperature, zonal and meridional wind
components, specific humidity), aircraft (temperature, zonal
and meridional wind components, specific humidity), sur-
face pressure, satellite-derived atmospheric motion vectors
(AMYV; zonal and meridional wind components), Global
Navigation Satellite System Radio Occultation (GNSS RO)
bending angle, as well as satellite radiances of selected
channels from the Advanced Microwave Sounding Unit-A
(AMSUA-A) and Microwave Humidity Sounder (MHS). Use
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Table 1. Computational resources for different steps of LGETKF at 00:00 UTC 15 April 2018.

Key steps of

Nodes/
cores per code  Time

Wall-clock  Total number of
obs. locations

QC step 4/128 3445 3087116
OMB step for one original and eleven modulated members 1/128 2865 563197
Solver step 12/64 14705 563197

of GNSS RO bending angle instead of refractivity is a com-
mon practice at operational centres (Healy and Thépaut,
2006; Rennie, 2010; Cucurull et al., 2013) and improves on
the assimilation of refractivity that was employed in pre-
vious MPAS-JEDI studies (Ivette, personal communication
2024). All experiments assimilate clear-sky AMSU-A radi-
ances from six satellites (NOAA-15/18/19, Aqua, Metop-
A/B) and clear-sky MHS radiances from 4 satellites (NOAA-
18/19, Metop-A/B). In addition, AMSU-A window-channel
radiances from five satellites are assimilated over the water
using the all-sky approach in the all-sky radiance DA exper-
iments. The assimilated clear-sky and all-sky channels for
different sensors and satellites are summarized in Table 2.

The experiments of Liu et al. (2022), Guerrette et
al. (2023), and Jung et al. (2024) assimilated observations
that were taken from so-called “GSI-ncdiag” files and had
been pre-processed by the GSI DA system, including QC, ra-
diance thinning, and radiance bias correction. Here, we begin
from the raw observations (except for MHS radiances) and
perform QC, observation error modelling, and bias correc-
tion of satellite radiances within MPAS-JEDI using the func-
tions from JEDI’s Unified Forward Operators (UFO) config-
ured to mimic the QC procedures in GSI. The MHS satel-
lite radiance observations are still taken from the GSI-ncdiag
files, but the bias correction is done within MPAS-JEDI. Ob-
servations are converted to IODA from their native format
using obs2ioda (https://github.com/NCAR/obs2ioda, last ac-
cess: 17 October 2025).

3.2.1 Quality control

For all observations, the “PreQC” and “Background Check”
filters are applied. The “PreQC” filter discards observations
whose “PreQC” quality flags (provided in the observation
conversion step for most observations or by GSI for MHS
radiance data) are greater than zero for radiance data and 3
for other types of observations. The “Background Check”
is employed to reject the observations whose absolute de-
parture from the background exceeds three times the obser-
vation error standard deviation. For the surface pressure, a
terrain correction scheme (Ingleby, 2014) is applied to cor-
rect the model-diagnosed surface pressure to the height of
the surface station, and an additional QC is applied to re-
ject observations where the differences between surface sta-
tion height and model terrain height exceed 200 m. GNSS
RO bending angle observations are only assimilated below
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the 30 km model top and use height- and regionally depen-
dent error variances estimated within UFO via the method of
Desroziers et al. (2005). Satellite radiances and AMVs are
thinned to 145 km spacing to reduce the spatial correlations.
Following Guerrette et al. (2023), the observation errors of
satellite AMVs are height dependent.

Quality control for clear-sky AMSU-A radiances follows
Zhu et al. (2016). First, the cloud liquid water (CLW) con-
tent is retrieved from AMSU-A channels 1 and 2, follow-
ing Grody et al. (2001). Pixels with CLW contents exceeding
Okgm™2 are excluded in channels 5 and 6. Next, a thick-
cloud filter is applied to remove radiances affected by thick
clouds, which are identified through the differences between
observations and background in both CLW and radiances. Fi-
nally, radiances affected by precipitation are identified and
filtered out using the scattering index (Grody et al., 1999).
More details of AMSU-A quality control procedures can be
found in Zhu et al. (2016).

3.2.2 Radiance bias correction

The radiance bias b of each channel at different locations is
modelled within UFO as a weighed sum of predictors:

b=po+ Y . Bk @)

where By is the constant offset, py the kth predictor, and Bi
the corresponding bias correction coefficient. The bias pre-
dictors used in this study are the temperature lapse rate and
its square, surface emissivity, and sensor scan angle and its
second, third, and fourth powers. In this study, the bias cor-
rection coefficients at each LGETKF analysis cycle are ob-
tained from an existing 1-month cycling hybrid-3DEnVar ex-
periment, in which the bias correction coefficients are up-
dated across the DA cycles with the variational bias correc-
tion (VarBC; Dee and Uppala, 2009) technique.

3.2.3 All-sky radiance assimilation

The LGETKF of MPAS-JEDI has the capability of assimilat-
ing radiances using the all-sky approach, following the same
procedures described by Liu et al. (2022) for MPAS-JEDI’s
variational DA methods. Three key ingredients for all-sky ra-
diance DA include the introduction of hydrometeors as part
of analysis variables, the cloudy radiance observation opera-
tor via Community Radiative Transfer Model (CRTM; John-
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Table 2. AMSU-A and MHS channels (frequency, GHz) assimilated using clear-sky or all-sky approach.

Satellite Sensor Clear-sky channels (Frequency, GHz) All-sky channels (Frequency, GHz)

Aqua AMSU-A  8(55.5), 9 (57.290344) -

NOAA-15 AMSU-A  5(53.596£0.115), 7 (54.94), 8 (55.5), 9 (57.290344) 1(23.8),3(31.4),4(52.8), 15 (89 £ 1.00)

NOAA-18 AMSU-A  5(53.596+0.115), 6 (54.4), 7 (54.94), 8 (55.5), 9 1(23.8),3(31.4),4(52.8), 15 (89 £ 1.00)

(57.290344)

MHS 3(183.311£1.00), 4 (183.311 £ 3.00), 5 (190.311) -

NOAA-19 AMSU-A  5(53.596 £0.115), 6 (54.4), 7 (54.94), 9 (57.290344) 1(23.8),3(31.4),4(52.8), 15 (89 £ 1.00)
MHS 3(183.311 £1.00), 4 (183.311£3.00), 5 (190.311) -

Metop-A  AMSU-A  5(53.596 £0.115), 6 (54.4), 9 (57.290344) 1(23.8),3(31.4),4(52.8), 15 (89 £ 1.00)
MHS 3 (183.311£1.00), 4 (183.311£3.00), 5 (190.311) -

Metop-B AMSU-A  8(55.5), 9 (57.290344) 1(23.8),3(31.4),4(52.8), 15 (89 £ 1.00)
MHS 3(183.311£1.00), 4 (183.311 £3.00), 5 (190.311) -

son et al., 2023), and situation-dependent all-sky observa-
tion error models (Geer and Bauer, 2011). Since the WSM6
microphysics scheme is employed, the mixing ratios of Qc,
Qi, Or, Os, and Q, are used as the hydrometeor analysis
variables. For the window channels assimilated using the
all-sky approach, only over-water radiances are assimilated
due to the large uncertainty of surface emissivity over the
land, snow, and ice surfaces. As in Liu et al. (2022), the
all-sky observation error for each AMSU-A window chan-
nel is modelled as a piecewise linear ramp function of the
average of cloud liquid water (CLW) path retrieved from the
observed and CRTM-simulated (from the background) radi-
ances of AMSU-A channels 1 and 2. For each channel, two
CLW thresholds are defined. Observations with an averaged
CLW below the lower threshold are treated as clear-sky and
assigned the clear-sky observation error, while those above
the upper threshold use the all-sky observation error. For
averaged CLW values between the thresholds, the observa-
tion error increases linearly from the clear-sky to the all-sky
observation error as the averaged CLW increases. This ap-
proach makes the all-sky observation error cloud-dependent,
accounting for cloud-related uncertainties arising from both
the observations and the background. More details about the
all-sky observation error model are given by Liu et al. (2022).

3.3 Experimental design

Six 6-hourly cycled 80-member ensemble analysis and fore-
casting experiments are conducted as summarized in Table
3. Experiment AlISky serves to evaluate the impact of all-
sky radiance DA compared to ClrSky, the clear-sky radiance
DA experiment. The other four experiments explore different
settings for covariance inflation and localization, and moti-
vate the specific combination of the inflation and localization
used in ClrSky and AlISky.

Geosci. Model Dev., 18, 8569-8587, 2025

All experiments begin from a time-lagged ensemble back-
ground valid at 00:00UTC on 15 April 2018. The time-
lagged ensemble background is generated using four sets of
20-member ensemble forecasts of different lead times (24,
18, 12, and 6 h), initialized from Global Ensemble Forecast
System (GEFS) ensemble analyses valid at 00:00, 06:00,
12:00, and 18:00 UTC on 14 April 2018, respectively. The
assimilation period for the experiments ClrSky and All-
Sky is nearly one month, with the last analysis cycle being
12:00 UTC on 14 May 2018, while the other experiments
span the first 10 d of that period.

In ClrSky, the non-radiance observations and clear-sky ra-
diances from AMSU-A temperature sounder channels and
MHS water vapor channels are assimilated (see Table 2). For
the rest of the experiments, radiances from AMSU-A win-
dow channels under all-weather situations are assimilated in
addition to those assimilated in ClrSky.

The AlISky-RTPS, AllSky-RTPP, and AlISky are con-
ducted to evaluate the sensitivity to the covariance inflation
with the same setting for the covariance localization. Fol-
lowing Guerrette et al. (2023), the RTPS is employed in
AllSky-RTPS with artps = 1.0, and RTPP is used in AllSky-
RTPP with arpp = 0.7. Following Met Office’s EDA sys-
tem (Bowler et al., 2017), RTPP and RTPS are applied se-
quentially in AlISky, with arTpp = 0.5 and arTps = 0.9. The
AllSky, AllSky-L1200, and AllSky-L600 use the same set-
ting for the inflation but use horizontal localization scales of
300, 1200, and 600 km, respectively, for all-sky AMSU-A
channels. In all experiments, the horizontal localization scale
is set to 1200km for the non-radiance data and clear-sky
AMSU-A and MHS radiances, following Liu et al. (2022)
and Guerrette et al. (2023), while the vertical localization
scale is set to 6 km.
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Table 3. Inflation and horizontal localization configurations for six experiments.

Experiments Inflation Horizontal localization scale (km)
Clear-sky channel ~ All-sky channel
ClrSky arTps = 0.9, arTpp = 0.5 1200 /
AllSky arTps = 0.9, arTpPp = 0.5 1200 300
AlISky-RTPS  agtps = 1.0 1200 300
AllSky-RTPP  arTpp =0.7 1200 300
AllSky-L.1200  arTps = 0.9, arTPP = 0.5 1200 1200
AllSky-L600 artps = 0.9, arTpp = 0.5 1200 600

4 Results from inflation and localization sensitivity
experiments

Due to the limited ensemble size, the EnKF-based methods
suffer from sampling errors, which can lead to filter diver-
gence and degraded analysis. To combat the sampling errors,
the covariance inflation and localization techniques are com-
monly employed in the EnKF-based methods. In this section,
we provide the results for the sensitivity to the covariance in-
flation setting first and then for the sensitivity to the horizon-
tal localization setting for all-sky AMSU-A radiances.

4.1 Sensitivity to covariance inflation configuration

Many studies have emphasized the sensitivity of analy-
sis performance to the choice of inflation parameters (e.g.,
Whitaker and Hamill, 2012; Nerger, 2015). Kotsuki et
al. (2017) found that using either RTPP or RTPS alone could
lead to an over-dispersive ensemble in certain regions, and
that this behavior could be resolved by using a combination
of additive and multiplicative inflations. Bowler et al. (2017)
found that a combination of RTPS and RTPP could maintain
ensemble spread and reduce forecast errors in the Met Of-
fice’s EDA system. Given that the additive inflation is not
implemented yet in the current JEDI system, we only ex-
amine the multiplicative inflation techniques with RTPP or
RTPS alone in AllSky-RTPP and AllSky-RTPS, or with a
combination of RTPP and RTPS in AllSky.

Figure 2 shows the time series of the model-space en-
semble spread and ensemble-mean root-mean-square error
(RMSE) of the background 6h forecast for the vertically-
averaged U, V, T, and water vapor mixing ratio (Qy) fields
of the three experiments, with the GFS analyses treated as the
truth. Due to the temperature bias near the model top (Liu et
al., 2022), the evaluation of T is limited to below model level
50 (~25kma.g.l.). Both AllSky-RTPP and AllSky-RTPS,
applying RTPP or RTPS alone, present a consistent trend
that the ensemble spread (solid black and blue curves) grad-
ually decreases with assimilation cycles for all the four vari-
ables. Consequently, the ensemble-mean RMSE gradually
increases over time. In contrast, the ensemble spread in All-
Sky with a combination of RTPP and RTPS is the largest and
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well maintained over time, with the corresponding ensemble-
mean RMSE being the smallest among the three experi-
ments. This result is consistent with Bowler et al. (2017) us-
ing an EDA system.

The benefits of employing a combination of RTPP and
RTPS are also evident when verified against observations.
Figure 3 shows the vertical profiles of the observation-space
total spread (i.e., square root of the sum of the ensemble
variance and observation error variance) and ensemble-mean
RMSE of the background, verified against radiosonde obser-
vations. For a good ensemble DA system, the total spread is
expected to be comparable with the ensemble-mean RMSE.
AllSky outperforms AllSky-RTPP and AllSky-RTPS by pro-
ducing the largest total spread and the smallest ensemble-
mean RMSEs in all observed variables at almost all levels.
However, the total spread smaller than the ensemble-mean
RMSE for certain levels of U, V, and T also suggests that
further improvement is needed by tuning observation errors
and/or inflation/localization settings in a future study. This
issue has also been observed in MPAS-JEDI’s EDA system
(Guerrette et al., 2023).

It is worth mentioning that the model errors are not taken
into account due to the lack of stochastics physics parameter-
ization schemes (Buizza et al., 1999; Berner et al., 2009) in
the current MPAS-A model. It is anticipated that the ensem-
ble DA performance with MPAS-JEDI could be improved by
introducing stochastics physics or using a multi-physics ap-
proach in the ensemble forecast step. In addition, optimal in-
flation configurations may depend on factors such as ensem-
ble size, mesh resolution, and other DA settings. Developing
robust and generally applicable inflation strategies therefore
requires further systematic investigation.

4.2 Sensitivity to horizontal localization scale for
all-sky radiances

In the global EnKF-based systems, it is a common prac-
tice to use a relatively large horizontal localization scale
for satellite radiances (e.g., 1200km in Lei et al., 2020 and
1000km in Bonavita et al., 2020). Previous studies also
show the benefits of using a shorter horizontal localization
scale for all-sky satellite radiances in the regional EnKF-
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Figure 2. Time series of the model-space ensemble spread (solid lines) and ensemble-mean RMSE (dashed lines) of the background 6 h
forecast verified against the GFS analyses for the vertically-averaged (a) U, (b) V, (¢) T, and (d) Qy fields from the three experiments.
Statistics are calculated globally below model level 50 between 00:00 UTC 18 April and 00:00 UTC 25 April 2018 at an interval of 6 h.

based systems. Okamoto et al. (2019) found that using a
horizontal localization scale of 365 km for Himawari-8 ra-
diance assimilation improved the fit of the background to
radiosonde observations compared to using a horizontal lo-
calization scale of 730 km in their regional LETKF system.
Bonavita et al. (2020) also showed that reducing the hori-
zontal localization scale for all-sky satellite radiances from
2000 to 1000 km produced ~ 1 % improvement in ECMWF’s
global EnKF system. Therefore, we further evaluate the sen-
sitivity of horizontal localization scales for AMSU-A win-
dow channel all-sky radiances by comparing AllSky-L.1200,
AllSky-L600, and AllSky.

Figure 4 illustrates the percentage difference in the
ensemble-mean RMSE of U, V, T, and Q,, verified against
the GFS analyses, for AllSky-L600 and AllSky relative to
AllSky-L1200, at different model level and latitude bins.
Following Guerrette et al. (2023), the bootstrap resampling
method is employed to calculate the confidence intervals of
the differences. The samples are resampled 10 000 times with
replacement, and the 95 % confidence intervals are obtained
using the percentile method (Gilleland et al., 2018), corre-
sponding to the 2.5th and 97.5th percentiles of the boot-
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strap distribution. It can be clearly seen that using a 600 km
localization scale in AllSky-L600 reduced RMSEs for all
the four variables at most latitude bins and model levels,
with a larger improvement over the southern hemisphere,
when compared to AllSky-L1200 with a 1200 km localiza-
tion scale. Decreasing the localization scale to 300 km in All-
Sky further improved the short-term forecasts as indicated by
model/latitude bins with darker blue colour in the right col-
umn of Fig. 4. Given the overall superior performance of us-
ing 300 km localization scale, and considering that 300 km
is sufficiently small relative to the model mesh resolution of
60 km, we did not further test shorter horizontal localization
scales, even though they might offer further improvements.
Consequently, the AllSky experiment was extended to cover
the full month and is compared with the ClrSky experiment
in the next section.

5 Impact of all-sky radiance DA

This section evaluates the impact of all-sky AMSU-A radi-
ance DA for the short-term background forecasts (i.e., 6h

https://doi.org/10.5194/gmd-18-8569-2025
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Figure 3. Vertical profiles of the observation-space ensemble total spread (solid lines) and ensemble-mean RMSE (dashed lines) of the
background verified against radiosonde (a) U, (b) V, (¢) T, and (d) Q observations. Statistics are calculated globally from the ensemble
background between 00:00 UTC 18 April and 00:00 UTC 25 April 2018 at an interval of 12 h.

lead time) first and then for the extended-range forecasts up
to 7d.

5.1 6h forecasts

Figure 5 shows the percent RMSE difference of the ensem-
ble mean of 6h forecasts for U, V, T, and O, of AllSky
relative to ClrSky, when verified against the GFS analyses.
Positive impacts (model level/latitude bins with blue colour)
occur for U, V, and Qy almost everywhere between 50° S
and 50° N, with largest improvements in the tropics. There
are some degradations for these three variables at the high
latitudes and below the model level 30 (for U and V) or 20
(for Qy) over the southern hemisphere. Largest degradation
is seen in T in the latitude band of 50-60°S and between
model levels 5 and 15.

Additional evidence of temperature degradation associated
with all-sky radiance assimilation is observed when veri-
fied against clear-sky radiances. Figure 6 shows the latitude-
binned RMS and mean of ensemble mean background minus
observations for bias-corrected clear-sky radiances from five
AMSU-A temperature sounding channels aboard NOAA 18.
Assimilation of AMSU-A window channels produces more
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noticeable differences between ClrSky and AllSky in chan-
nels 5, 6, and 7, which are sensitive to lower and middle at-
mospheric levels where clouds and precipitation are preva-
lent. As expected, AllSky reduces the mean value statis-
tics in these channels because the inclusion of more cloud-
affected observations reduces the simulated brightness tem-
peratures. Notably, at lower latitudes, AllSky yields slightly
smaller RMS values and mean OMB values closer to zero,
indicating benefits of all-sky assimilation. However, between
50 and 70°S, AlISky exhibits a more pronounced cold bias
than ClrSky in channel 5, accompanied by a marked RMS
increase, consistent with the temperature degradation high-
lighted in Fig. 5. In contrast, channels 8 and 9, which are
less sensitive to cloud-affected layers, show only minor dif-
ferences between both experiments.

The temperature degradation in the southern midlatitudes
aligns with challenges documented in other systems. A sim-
ilar pattern was reported in the ECMWF’s 4DVar system
when assimilating all-sky AMSU-A channel 4 radiances
(Weston et al., 2019). Lonitz and Geer (2015) attributed such
issue to model deficiencies in representing liquid water in
cold-sector clouds over the Southern oceans — a microphys-

Geosci. Model Dev., 18, 8569-8587, 2025



8578

T. Sun et al.: MPAS-JEDI LGETKF

(a) AliSky-L1200 (b) AllSky-L600 (c) AllSky
U U U
8 8
| ° B0 0000 0 0 N ® 000 0 0 O 7S
s0 8 s0 0 000 0000 54 s0 ) 00 00 54 o
_ 7 _ o 00 oo o0 [0 36 2 _ o [0oooo 00 6 2
g) 40 6 ’% g 40 0 00000 (0] 2 g 40 00 0000 00 O 2
k] s 5 k] 00000 00 o[ 8< k] o 0o o 0 18«
T ® .2 T 00 0 oo £ T ® @ 000 0 0 0 O oo E
3 7 g 00000000 e € 3 0 000@ 00 o e £
g s g 000000 0 O . e op@oo0000 000 ¥
0 2 10 0000000 0 0 O ] 10 00000 0oo o [ Rl
1 00000 0 o -s4 R o@ooooo o o0 a4 X
0 0 00000 0 O o @ 0 oPdo 0000 o @
T T T ° T T 72 g 72 €
£ E
-50 0 50 -50 o 50 -50 0 50
latitude (°) latitude (°) latitude (°)
(d) AllISky-L1200 (e) AllISky-L600 (f) AllSky
\% \ ° \% °
. o o
a8 0 0 000 0 72 O 00 00 00 72 O
50 42 50 00 00 3 50 ofgo oooo 2
_ _ ) 000 48 %‘ _ 0[000000 48 %‘
g, %0 36 'Ez g 40 000 00 00 e 2 g 40 0 0000000 OO 24 =
k] 0 5 1] 0000000 000 < 2 0 000 o o o <
3 ® 24 & 3 * 7 o oooo00 o oo § G ®o 00000 0 O o0 §
3 @ 3 00 000000 & 3 00000000000 &=
g 18 £ g 0000000 000 0 [ 24y g o§l80000 00 00 24
1 12 0 -0 0 0o 0 00 s 1 48 S
06 00 00 00000 O B E
0 | o 000000 0000 00 -12 o 12
0o T T T £ £
£ £
=50 0 50 =50 ] 50 -50 0 50
latitude (°) latitude (°) latitude (°)
(g) AllSky-L1200 (h) AlSky-L600 (i) AlISky
T T T
(=3 o
1 8 72 I 72 Q
00 000 0000 O 5] 00 0000 000 00000 N
50 7 50 | 000000 000 00| 4 ;‘ s0 4000 00 O 00000 5.4 ;’
_ 6 _ 0000 000000 o 36 & _ 0 000060000 o 36 2
g 3 0 4w~ 00 00 o0 0 ] g w0 00000 00 o ]
K 5K k] 00 0 (000000 ol i @ 00 000000 8 <
s ® 4 8 3 * 7 000 000000 0o § G ® 00 000000 o0 §
° Q ° o o 00000 o 18 & ° 00000000 o 9 1 &
o 20 3 g O 20 —f 18 % o 2 18 %
e £ g 00 0000 © . e 00 000000 (000 £
0 2 10 - ©Oloooo0000000 “36 o 0 ) 0 0oooo@oo R
1 o 0000 0 54 X 0000000 0 0 00 -4 X
o | o -4 000 0000 0 @ o oo 00000 9 @
[ T T T 7.2 E T T 7.2 E
=50 0 50 =50 [ 50 =50 0 50
latitude (°) latitude (°) latitude (°)
(j) AllSky-L1200 (k) AllSky-L600 (1) AllSky
Qv v ° Qv °
2.1 o o
00 0 000000 48 O 000 0 0 0 000 48 O
50 = 18 s0 0 0 00 0 00 36 1 0o 40 0 0000 0 00 00 3 7
_ _ 0000 000000 000 e 2 _ o o oo00 00000 e 2
g w0 o 15 3 ¢ 40 —oo o 00 0 - a 0 w0 oo 00 ofg oo 00| il
] 12§ 2 00 00000 o 00 1z < ] 0 o 00 000 o@o0] 2 <
3 © £ 3 0 Wbooold @o of 0.0 g o ® © o000 o o o [0 0.0 E
3 09 G b [ ©oo@oocoo o 12 & 3 o @ooboo © o of 12 &
g * 0s E g 0000000 [@0 e E g 0ooPo [0 e E
10 - Ll 10 48 © 0000 o 0 s 10 J808 000 0000 “ s
03 0 o 00 o oo of -3 R 00 0 000 00 00 -6 R
0 - 0 =40 0 0000 O [o) -48 U 0 o o -48 U
T T T o0 T T T ) 3 E
=50 0 50 =50 [ 50 =50 0 50
latitude (°) latitude (°) latitude (°)

Figure 4. Left: RMSE of AllSky-L1200’s ensemble mean background for U, V, T, and Qv; Middle/Right: percent difference in RMSE for
AllISky-L600 and AlISky, relative to AllSky-L1200. The RMSEs are computed using the GFS analyses as the reference and the statistics
are binned with 5 model levels and 11° latitude bands. Inset black circles in individual bins indicate that the difference in RMSE between
experiments is statistically significant with a 95 % confidence interval, as determined via bootstrap resampling from 29 samples spanning

00:00 UTC 18 April to 00:00 UTC 25 April 2018 at 6 h intervals.

ical bias likely presents in other forecast systems as well
(Tong et al., 2020). Given these similarities, we suspect that
MPAS also suffers from similar microphysical bias. To ad-
dress this, a screening procedure for such cold-sector clouds,
following Lonitz and Geer (2015), could be developed for
MPAS-JEDI. Note that the current bias correction scheme
for all-sky radiances is still based upon the existing clear-sky
approach and updated by an independent cycling determin-
istic DA system, which is sub-optimal. We plan to introduce
cloud-/precipitation-related predictors for the bias correction
of all-sky radiance DA, which has been shown to improve

Geosci. Model Dev., 18, 8569-8587, 2025

all-sky infrared radiance DA (Okamoto et al., 2023). Imple-
mentation of an online bias correction method, where cor-
rection coefficients are included as part of the analysis vari-
ables (Fertig et al., 2009; Miyoshi et al., 2010; Chandramouli
et al., 2022), is also under consideration for MPAS-JEDI’s
LGETKF.

5.2 7d forecasts

We initialized 7 d forecasts from the ensemble mean analysis
at 00:00 UTC each day from 18 April to 14 May 2018, for

https://doi.org/10.5194/gmd-18-8569-2025
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a total of 27 forecasts. The first three days (15-17 April) are
treated as a spin-up period for the DA cycles to reach MPAS-
JEDI’s own cycling climatology and are excluded from the
extended forecast evaluation.

5.2.1 Model space verification

The relative RMSE differences of AllSky from ClrSky as
a function of forecast lead time, when verified against GFS
analyses for the vertically-averaged upper-air fields over dif-
ferent regions, are shown in Fig. 7. The largest percent
improvement from AllSky occurs for Q, with a 3 %—6 %
RMSE reduction for the day-1 forecast over the tropical re-
gions. The statistically significant improvement for Q lasts
up to 7d over the ITCZ and 5-6 d over northern and south-
ern tropical regions. A smaller positive impact of AllISky on
0y lasts up to 3d over the southern extratropic region with
a mostly neutral impact over the northern extratropic. Sim-
ilar positive impact of AllSky can also be seen for the U-
and V-wind components with the statistically significant im-
provement lasting up to 7 d for the U-wind component, but
only up to 5d for the V-wind component over the ITCZ and
northern tropical regions. Consistent with some short-term
forecast degradation in T (Fig. 5c) in AllSky, the negative
impact is also seen for the first 2-3 d, and then the impact be-
comes neutral and even positive over some regions, although
not statistically significant.
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Figure 8 shows the relative RMSE differences between
ClrSky and AllSky for surface variables verified against GFS
analyses. Consistent with the impact on the upper air vari-
ables in Fig. 7, the largest and most significant positive im-
pact from AllSky is on 2m Q. with a ~2.8 % RMSE reduc-
tion for the day-1 forecasts and a ~ 0.5 % RMSE reduction
still remaining for the day-6 forecasts. The positive impact of
AllSky on the 10 m U-wind component is also evident with
a smaller variation of the percent RMSE reduction (~ 0.5 %—
~ 1 %) for the first five days, but less significant than the im-
pact on Q. Similar to the upper-air T forecasts, the all-sky
DA also slightly degrades the 2m T forecasts for the first 4 d
and then improves forecasts from day-5. For the surface pres-
sure forecasts, the AllSky experiment mostly outperforms the
ClrSky experiment for all the forecast ranges, except for the
first day forecast, with a maximum improvement of 2 % at
day-5.

These model-space verification results for AllSky vs.
ClrSky are overall consistent with those of Liu et al. (2022),
who evaluated the impact of all-sky AMSU-A radiance DA
above the clear-sky AMSU-A radiances using MPAS-JEDI’s
3DEnVar. This study with MPAS-JEDI’'s LGETKEF evaluates
the impact of all-sky AMSU-A radiance DA above clear-sky
radiances from both AMSU-A and MHS, i.e., a more chal-
lenging impact assessment with more clear-sky radiance data

Geosci. Model Dev., 18, 8569-8587, 2025
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latitude bins.

in the benchmark experiment, leading to a smaller magnitude
of improvement than that of Liu et al. (2022).

5.2.2 Observation space verification

The forecast impacts of all-sky DA are further evaluated with
radiosonde observations and independent (i.e., not assimi-
lated) Advanced Technology Microwave Sounder (ATMS)
radiances in all-weather situations. Similar to the upper-air
model-space verification, all-sky AMSU-A radiance DA im-
proves the forecasts of U, V, and Q, but degrades the fore-
casts of T, when verified against the radiosonde observations
(Fig. 9). While all-sky AMSU-A radiances are assimilated
only over water, radiosonde data are mostly available over
land. It could take several days for the positive impacts to
propagate from the seas to the land areas, likely leading to
the positive impact being the largest in the day-5 or day-6 for
the forecasts of U, V, and Q, compared to the largest posi-
tive impacts observed in the first day in the global average in
Fig. 7.

Figure 10 shows the relative forecast RMSE differences
between AllSky and ClrSky, when verified against bright-
ness temperatures of nine ATMS channels from NOAA-20.
The nine ATMS channels include three window channels (1,
2, and 3) sensitive to cloud and precipitation, three temper-
ature sounding channels (5, 7, and 9), and three water vapor

Geosci. Model Dev., 18, 8569-8587, 2025

channels (18, 19, and 20). The MPAS-JEDI’s HofX applica-
tion is employed to calculate the simulated brightness tem-
peratures using the cloudy CRTM operator with the day-1 to
day-7 forecasts as input. The verification statistics are calcu-
lated only over water for the three window channels and over
both water and land for the other six channels. The benefit of
assimilating all-sky AMSU-A radiances is larger on clouds
than on moisture as evidenced with a larger RMSE reduction
for the three window channels than for the three water va-
por channels. Interestingly, the positive impact of AllSky is
found for the three temperature channels throughout the 7d
forecasts, unlike the negative T impact in model space veri-
fication for the first 3 d forecasts in Fig. 7c. This discrepancy
should be caused by the model-space T verification being
vertically and globally averaged and the three ATMS tem-
perature channels sensing different layers of the atmosphere,
with the channel 5 for a layer around 850 hPa, the channel 7
around 400 hPa, and the channel 9 around 200 hPa.

6 Conclusions

In this study, the LGETKF algorithm within the JEDI frame-
work is implemented in MPAS-JEDI along with the capa-
bility of assimilating clear-sky and all-sky satellite radiance
data. As the first implementation and evaluation of MPAS-
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JEDI’s LGETKEF, this study investigates its computational
behaviour, optimal configuration, and performance through a
series of sensitivity experiments and 1-month cycled DA ex-
periments, demonstrating the stable and robust performance
of MPAS-JEDI’s LGETKF for community research and po-
tential operational applications.

The LGETKF performs vertical localization in model
space, making it suitable for assimilating nonlocal obser-
vations such as satellite radiances, but with additional cost
for the computation of HofXs related to the modulated en-
semble members. Performing the Observer and Solver steps
separately with different jobs allows the use of different par-
allelization strategies for the observation distribution across
processing elements, which improves the computational ef-
ficiency of MPAS-JEDI’'s LGETKF. Additionally, comput-
ing the HofX of each ensemble member in parallel further
reduces the overall time required to complete the LGETKF
analysis.

The impacts of assimilating over-water all-sky radiances
from AMSU-A window channels are investigated with a
global 80-member LGETKF at a quasi-uniform grid spac-
ing of 60km over a one-month period. The efforts are made
to tune the covariance inflation and horizontal localization
first. Results indicate that combining RTPS and RTPP for
the inflation is more effective than using RTPS or RTPP
alone in maintaining the ensemble spread over time and per-
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forms the best with the smallest RMSE of the ensemble mean
background. The sensitivity experiments also demonstrate
the benefits of using a smaller horizontal localization scale
for all-sky AMSU-A radiances. The model-space verifica-
tion shows the overall positive impacts of all-sky AMSU-
A radiance DA, when compared to the benchmark experi-
ment assimilating clear-sky AMSU-A and MHS radiances,
on the forecasts of moisture and wind fields with the largest
improvement over the tropical regions up to 7d. All-sky
AMSU-A DA also leads to an improved forecast fitting to
the ATMS window channels’ radiances, indicating a bet-
ter forecast of clouds and precipitation. All-sky AMSU-A
DA impact from this study is mostly consistent with Liu et
al. (2022) using MPAS-JEDI’s 3DEnVar.

One issue from all-sky AMSU-A DA, which was also seen
from previous studies, is the degradations of temperature
forecast, especially at the lower troposphere around 60°S
where the forecasts are likely biased due to the model de-
ficiency in simulating cold-air outbreaks. This issue could
be resolved by applying more strict quality control, improv-
ing physical parameterization of the model, enhancing ra-
diance bias correction scheme, or revisiting the all-sky ob-
servation error model. Despite the efforts for tuning the
inflation and the localization configurations, the ensemble
of LGETKEF is still sub-optimal with insufficient ensemble
spreads, especially in the upper troposphere and stratosphere.

Geosci. Model Dev., 18, 8569-8587, 2025
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Figure 10. Similar to Fig. 9, but verified the forecasts against brightness temperatures of nine ATMS channels from NOAA-20.

Further improvements could be made with spatially and tem-
porally adaptive inflation factors (Anderson, 2009) or scale-
dependent localization (Wang et al., 2021). A better specifi-
cation of the observation errors using the statistical method of
Desroziers et al. (2005) will also improve the analysis accu-
racy in general. Also, an ensemble-based forecast sensitivity
to observations (EFSO; Liu and Kalnay, 2008; Kalnay et al.,
2012) diagnosis tool has been developed for MPAS-JEDI’s
LGETKEF to estimate the impacts of assimilated observations
on short-term forecasts. This tool could be used to further
investigate the effects of all-sky assimilation and to enhance
the performance of MPAS-JEDI's LGETKF.

MPAS-JEDI’'s LGETKF has the capability to assimilate
all-sky radiance data from a wide range of microwave and in-
frared sensors, and we plan to explore them in future studies.
The regional DA capability of MPAS-JEDI is under active
development, and the application of the EnKF-based meth-
ods to convective-scale DA is already underway.
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Code and data availability. The source code of MPAS-JEDI 2.1.0
is available on Zenodo at https://doi.org/10.5281/zenodo.15201032
(Joint Center for Satellite Data Assimilation and National Cen-
ter for Atmospheric Research, 2023). Global Forecast Sys-
tem analyses are available from NCAR Research Data Archive
(RDA) https://gdex.ucar.edu/datasets/d084001/ (last access: 17
October 2025; National Centers for Environmental Predic-
tion/National Weather Service/NOAA/U.S. Department of Com-
merce, 2015). Global Ensemble Forecast System ensemble anal-
yses are downloaded from https://www.ncei.noaa.gov/products/
weather-climate-models/global-ensemble-forecast (last access: 17
October 2025; NOAA, 2025). Conventional and satellite obser-
vations assimilated are downloaded from NCAR RDA https://
rda.ucar.edu/datasets/d337000 (last access: 17 October 2025; Na-
tional Centers for Environmental Prediction/National Weather Ser-
vice/NOAA/U.S. Department of Commerce, 2008) and https://
rda.ucar.edu/datasets/d735000/ (last access: 17 October 2025; Na-
tional Centers for Environmental Prediction/National Weather Ser-
vice/NOAA/U.S. Department Of Commerce, 2009). ATMS ra-
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diance data used in the forecast verification are downloaded
from https://sounder.gesdisc.eosdis.nasa.gov/opendap (last access:
17 October 2025; NASA, 2025).
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