Cao, C., Xiong, X. J., Wolfe, R., DeLuccia, F., Liu, Q. M., Blonski, S., Lin, G. G., Nishihama, M., Pogorzala, D., Oudrari, H., and Hillger, D.: Visible Infrared Imaging Radiometer Suite (VIIRS) Sensor Data Record (SDR) User’s Guide (Version 1.3), Noaa technical report nesdis 142, NOAA, U.S. Department of Commerce, National Oceanic and Atmospheric Administration,
https://ncc.nesdis.noaa.gov/documents/documentation/viirs-users-guide-tech-report-142a-v1.3.pdf (last access: 1 July 2025), 2017.
a,
b,
c
Chen, Y., Weng, F., Han, Y., and Liu, Q.: Validatio
n of the Community Radiative Transfer Model by using CloudSat data, Journal of Geophysical Research: Atmospheres, 113, D00A03,
https://doi.org/10.1029/2007JD009561, 2008.
a
Clough, S. A. and Iacono, M. J.: Line-by-line calculation of atmospheric fluxes and cooling rates: 2. Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons, Journal of Geophysical Research, 100, 16519–16535,
https://doi.org/10.1029/95JD01386, 1995.
a
Clough, S. A., Iacono, M. J., and Moncet, J.-L.: Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor, Journal of Geophysical Research, 97, 15761–15785,
https://doi.org/10.1029/92JD01419, 1992.
a
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, Journal of Quantitative Spectroscopy and Radiative Transfer, 91, 233–244, 2005. a
De los Reyes, J. C.: Bilevel imaging learning problems as mathematical programs with complementarity constraints: Reformulation and theory, SIAM Journal on Imaging Sciences, 16, 1655–1686, 2023.
a,
b
De los Reyes, J. C. and Villacís, D.: Bilevel optimization methods in imaging, in: Handbook of mathematical models and algorithms in computer vision and imaging: Mathematical imaging and vision, Springer, 1–34,
https://doi.org/10.1007/978-3-030-03009-4_66-1, 2022.
a,
b
DeSouza-Machado, S., Strow, L. L., Motteler, H., and Hannon, S.: kCARTA: a fast pseudo line-by-line radiative transfer algorithm with analytic Jacobians, fluxes, nonlocal thermodynamic equilibrium, and scattering for the infrared, Atmos. Meas. Tech., 13, 323–339,
https://doi.org/10.5194/amt-13-323-2020, 2020.
a
Edwards, D.: GENLN2: A General Line-by-Line Atmospheric Transmittance and Radiance Model, Version 3.0 Description and Users Guide, Technical note ncar/tn-367-str, NCAR, National Center for Atmospheric Research, Boulder,
https://opensky.ucar.edu/islandora/object/technotes:134 (last access: 7 November 2024), 1992. a
Fleming, H. E. and McMillin, L. M.: Atmospheric transmittance of an absorbing gas 2: a computationally fast and accurate transmittance model for slant paths at different zenith angles, Applied Optics, 16, 1366–1370, 1977. a
Garand, L., Turner, D. S., Larocque, M., Bates, J., Boukabara, S., Brunel, P., Chevallier, F., Deblonde, G., Engelen, R., Hollingshead, M., Jackson, D., Jedlovec, G., Joiner, J., Kleespies, T., McKague, D. S., McMillin, L., Moncet, J.-L., Pardo, J. R., Rayer, P. J., Salathé, E., Saunders, R., Scott, N. A., Delst, P. V., and Woolf, H.: Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels, Journal of Geophysical Research: Atmospheres, 106, 24017–24031,
https://doi.org/10.1029/2000JD000184, 2001.
a
Gordon, I. E., Rothman, L. S., Hill, C., Kochanov, R. V., Tan, Y., Bernath, P. F., Birk, M., Boudon, V., Campargue, A., Chance, K. V., Drouin, B. J., Flaud, J.-M., Gamache, R. R., Hodges, J. T., Jacquemart, D., Perevalov, V. I., Perrin, A., Shine, K. P., Smith, M.-A. H., and Zak, E. J.: The HITRAN2016 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, 203, 3–69,
https://doi.org/10.1016/j.jqsrt.2017.06.038, 2017.
a
Han, Y., van Delst, P., Liu, Q., Weng, F., Yan, B., Treadon, R., and Derber, J.: JCSDA Community Radiative Transfer Model (CRTM) – Version 1, Technical report nesdis 122, NOAA, NOAA, Camp Springs, MD,
https://repository.library.noaa.gov/view/noaa/1157 (last access: 7 November 2024), 2006. a
Heilemann, J., Marx, A., Klassert, C., Boeing, F., Samaniego, L., Klauer, B., Thober, S., and Gawel, E.: Projecting impacts of extreme weather events on crop yields using LASSO regression, Weather and Climate Extremes, 46, 100738,
https://doi.org/10.1016/j.wace.2024.100738, 2024.
a
Hocking, J., Vidot, J., Brunel, P., Roquet, P., Silveira, B., Turner, E., and Lupu, C.: A new gas absorption optical depth parameterisation for RTTOV version 13, Geosci. Model Dev., 14, 2899–2915,
https://doi.org/10.5194/gmd-14-2899-2021, 2021.
a
Hong, F. and Kong, Y.: Random Forest Fusion Classification of Remote Sensing PolSAR and Optical Image Based on LASSO and IM Factor, in: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, . 5048–5051,
https://doi.org/10.1109/IGARSS47720.2021.9553357, 2021.
a
Joshi, D. R., Clay, S. A., Sharma, P., Rekabdarkolaee, H. M., Kharel, T. P., Rizzo, D. M., Thapa, R., and Clay, D. E.: Artificial Intelligence and Satellite Based Remote Sensing can be used to Predict Soybean (Glycine max) Yield, Agronomy Journal, 116, 917–930,
https://doi.org/10.1002/agj2.21473, 2023.
a
Kleespies, T. J., van Delst, P., McMillin, L. M., and Derber, J.: Atmospheric transmittance of an absorbing gas: OPTRAN status report and introduction to the NESDIS/NCEP community radiative transfer model, Applied Optics, 43, 3103–3109,
https://doi.org/10.1364/AO.43.003103, 2004.
a
Krishnan, P., Srinivasa Ramanujam, K., and Balaji, C.: An artificial neural network based fast radiative transfer model for simulating infrared sounder radiances, Journal of Earth System Science, 121, 891–901,
https://doi.org/10.1007/s12040-012-0197-3, 2012.
a
Lavrentieva, N., Buldyreva, J., and Starikov, V.: Collisional line broadening and shifting of atmospheric gases: A practical guide for line shape modelling by current semi-classical approaches, Imperial College Press, ISBN 9781848165960, 184816596X, 2011. a
Li, D., Cui, F., Wang, A., Li, Y., Wu, J., and Qiao, Y.: Adaptive Detection Algorithm for Hazardous Clouds Based on Infrared Remote Sensing Spectroscopy and the LASSO Method, IEEE Transactions on Geoscience and Remote Sensing, 58, 8649–8664, 2020. a
Liu, X., Zhou, D. K., Larar, A. M., Smith, W. L., Schluessel, P., Newman, S. M., Taylor, J. P., and Wu, W.: Retrieval of atmospheric profiles and cloud properties from IASI spectra using super-channels, Atmos. Chem. Phys., 9, 9121–9142,
https://doi.org/10.5194/acp-9-9121-2009, 2009.
a
Mairal, J. and Yu, B.: Complexity Analysis of the Lasso Regularization Path, in: Proceedings of the 29th International Conference on Machine Learning (ICML), Omnipress, Edinburgh, Scotland, UK, 1835–1842,
https://dl.acm.org/doi/10.5555/3042573.3042807 (last access: 7 November 2024), 2012. a
Matricardi, M.: A Principal Component Based Version of the RTTOV Fast Radiative Transfer Model, Tech. Rep. 136(652), Quarterly Journal of the Royal Meteorological Society,
https://doi.org/10.1002/qj.680, 2010.
a
Mauceri, S., O'Dell, C. W., McGarragh, G., and Natraj, V.: Radiative Transfer Speed-Up Combining Optimal Spectral Sampling With a Machine Learning Approach, Frontiers in Remote Sensing, 3, 932548,
https://doi.org/10.3389/frsen.2022.932548, 2022.
a
McMillin, L. M. and Fleming, H. E.: Atmospheric transmittance of an absorbing gas: a computationally fast and accurate transmittance model for absorbing gases with constant mixing ratios in inhomogeneous atmospheres, Applied Optics, 15, 358–363, 1976. a
McMillin, L. M., Fleming, H. E., and Hill, M. L.: Atmospheric transmittance of an absorbing gas. 3: a computationally fast and accurate transmittance model for absorbing gases with variable mixing ratios, Applied Optics, 18, 1600–1606, 1979. a
McMillin, L. M., Crone, L. J., Goldberg, M. D., and Kleespies, T. J.: Atmospheric transmittance of an absorbing gas. 4. OPTRAN: a computationally fast and accurate transmittance model for absorbing gases with fixed and variable mixing ratios at variable viewing angles, Applied Optics, 34, 6269–6274, 1995. a
McMillin, L. M., Xiong, X., Han, Y., Kleespies, T. J., and van Delst, P.: Atmospheric transmittance of an absorbing gas. 7. Further improvements to the OPTRAN 6 approach, Applied Optics, 45, 2028–2034,
https://doi.org/10.1364/AO.45.002028, 2006.
a,
b
Osborne, M., Presnell, B., and Turlach, B.: A new approach to variable selection in least squares problems, IMA Journal of Numerical Analysis, 20, 389–403,
https://doi.org/10.1093/imanum/20.3.389, 2000.
a
Pak, A., Rad, A. K., Nematollahi, M. J., and M Mahmoudi, M.: Application of the Lasso regularisation technique in mitigating overfitting in air quality prediction models, Scientific Reports, 15, 547,
https://doi.org/10.1038/s41598-024-84342-y, 2025.
a
Saunders, R., Hocking, J., Rundle, D., Rayer, P., Havemann, S., Matricardi, M., Geer, A., Lupu, C., Brunel, P., and Vidot, J.: RTTOV v12 science and validation report, Tech. rep., NWP SAF, EUMETSAT, 78 pp.,
https://www.nwpsaf.eu/site/download/documentation/rtm/docs_rttov12/rttov12_svr.pdf (last access: 7 November 2024), 2017.
a,
b,
c
Saunders, R., Hocking, J., Turner, E., Rayer, P., Rundle, D., Brunel, P., Vidot, J., Roquet, P., Matricardi, M., Geer, A., Bormann, N., and Lupu, C.: An update on the RTTOV fast radiative transfer model (currently at version 12), Geosci. Model Dev., 11, 2717–2737,
https://doi.org/10.5194/gmd-11-2717-2018, 2018.
a
Saunders, R., Hocking, J., Turner, E., Havemann, S., Geer, A., Lupu, C., Vidot, J., Chambon, P., Köpken-Watts, C., Scheck, L., Stiller, O., Stumpf, C., and Borbas, E.: RTTOV v13 Science and Validation Report, Tech. rep., NWP SAF,
https://nwp-saf.eumetsat.int/site/download/documentation/rtm/docs_rttov13/rttov13_svr.pdf (last access: 7 November 2024), 2020.
a,
b
Smith, H. D., Dubeux, J. C. B., Zare, A., and Wilson, C. H.: Assessing transferability of remote sensing pasture estimates using multiple machine learning algorithms and evaluation structures, Remote Sensing, 15, 2940,
https://doi.org/10.3390/rs15112940, 2023.
a
Stegmann, P. G., Johnson, B., Moradi, I., Karpowicz, B. M., and McCarty, W.: A Deep Learning Approach to Fast Radiative Transfer, Journal of Quantitative Spectroscopy and Radiative Transfer,
https://doi.org/10.1016/j.jqsrt.2022.108088, 2022.
a
Su, M. Y., Liu, C., Di, D., Le, T., Sun, Y., Li, J., Lu, F., Zhang, P., and Sohn, B. J.: A Multi-Domain Compression Radiative Transfer Model for the Fengyun-4 Geosynchronous Interferometric Infrared Sounder (GIIRS), Advances in Atmospheric Sciences, 40, 1844–1858,
https://doi.org/10.1007/s00376-023-2293-5, 2023.
a
Turner, E., Rayer, P., and Saunders, R.: AMSUTRAN: A microwave transmittance code for satellite remote sensing, Journal of Quantitative Spectroscopy and Radiative Transfer, 227, 117–129,
https://doi.org/10.1016/j.jqsrt.2019.02.013, 2019.
a
Vargas Jiménez, F. and De los Reyes, J. C.: Automatic Optical Depth Parametrization in Radiative Transfer Models via LASSO-Induced Sparsity: Code, Zenodo [code],
https://doi.org/10.5281/zenodo.17050361, 2025.
a
Wang, P., Tan, S., Zhang, G., Wang, S., and Wu, X.: Remote Sensing Estimation of Forest Aboveground Biomass Based on Lasso-SVR, Forests, 13, 1597,
https://doi.org/10.3390/f13101597, 2022a.
a
Wang, S., Wu, Y., Li, R., and Wang, X.: Remote sensing‐based retrieval of soil moisture content using stacking ensemble learning models, Land Degradation & Development, 34, 911–925, 2022b. a
Weinreb, M., Fleming, H., McMillin, L., and Neuendorffer, A.: NOAA Technical Report NESS 85: Vertical Sounder, Technical report, NOAA, Washington, D.C.,
https://repository.library.noaa.gov/view/noaa/13429 (last access: 15 December 2023), 1981.
a,
b
Xiong, X. and McMillin, L. M.: Alternative to the effective transmittance approach for the calculation of polychromatic transmittances in rapid transmittance models, Applied Optics, 44, 67–76, 2005. a