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Abstract. The assimilation of satellite spectral sounder data
requires fast and accurate radiative transfer models. This
study proposes a novel methodology to automatically pa-
rameterize atmospheric optical depths within the Radiative
Transfer for TOVS (RTTOV) version 13 scheme using sta-
tistical thresholds across pressure levels and Least Abso-
lute Shrinkage and Selection Operator (LASSO) regression
to induce sparsity. Numerical experiments with Visible In-
frared Imaging Radiometer Suite (VIIRS) infrared channels
demonstrate that this approach significantly reduces compu-
tational costs while maintaining accuracy. The sparsity also
facilitates the automatic selection of absorbing gases and pre-
dictors by channel and pressure level, making it particularly
effective for multispectral instruments with numerous atmo-
spheric variables. These findings highlight the potential of
sparse regression methods to enhance the efficiency of radia-
tive transfer models for satellite data assimilation.

1 Introduction

In satellite data assimilation and remote sensing retrievals,
as well as their applications in numerical weather predic-
tion (NWP), the radiative transfer equation (RT) is the main
model used to retrieve global atmospheric variables, such as
temperature and trace gases concentrations, including water
vapor, ozone, carbon dioxide, and other atmospheric con-
stituents. This is achieved by utilizing top of the atmosphere
(TOA) radiance measurements from satellite sounders oper-
ating across different channels of the electromagnetic spec-
trum. The numerical implementation of the RT equation as
a forward model can primarily be carried out using two

approaches: Line-by-Line (LBL) Radiative Transfer models
and Fast Radiative Transfer models (Fast-RT).

Line-by-line models simulate satellite radiance by rigor-
ously integrating atmospheric physics and chemical phenom-
ena. These models are highly accurate in replicating the pre-
cision of modern instruments, such as hyperspectral sounders
like AIRS, CrIS and IASI. However, they are character-
ized by significant computational demands in terms of CPU
time and memory, making them impractical for use in op-
erational data assimilation. Some of the most well-known
models in this category include: LBLRTM, developed at At-
mospheric and Environmental Research, Inc. (AER) (Clough
et al., 1992; Clough and Iacono, 1995; Clough et al., 2005);
AMSUTRAN, developed at the Met Office (UK) (Turner
et al., 2019); and GENLN2, developed at the National Cen-
ter for Atmospheric Research (NCAR) (Edwards, 1992). A
comparison between LBLRTM and GENLN2 is presented
in Matricardi (2007). Another software worth mentioning is
kCARTA (DeSouza-Machado et al., 2020), a pseudo Line-
by-Line model that uses precomputed and compressed phys-
ically intensive processes in RT model to compute radiances
more quickly while maintaining accuracy.

On the other hand, the most common Fast-RT models esti-
mate the expected radiance in a channel (what a sensor ac-
tually measures) and are typically based on statistical ap-
proaches. In these models, the complex and computationally
costly physical processes of RT modeling, the calculation of
atmospheric transmittances, are parameterized using statisti-
cal models and trained with output from Line-by-Line soft-
ware on real atmospheric profile databases. The parameters
are adjusted using standard linear regression models or other
machine learning techniques. While these methods sacrifice
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a small degree of accuracy, they significantly reduce compu-
tational costs, making them practical for use in operational
data assimilation. Some of the most well-known models in
this category include: OPTRAN, developed by the NESDIS-
NCEP community (McMillin et al., 1995; Kleespies et al.,
2004; McMillin et al., 2006); the Joint Center for Satellite
Data Assimilation (JCSDA) Community Radiative Transfer
Model (CRTM) (Han et al., 2006; Chen et al., 2008); and the
RTTOV model, see (Saunders et al., 2018) and the references
therein. Other studies using statistical approaches include
Matricardi (2010), which incorporates principal component
analysis in RTTOV, as well as (Liu et al., 2009; Krishnan
et al., 2012; Cao et al., 2021; Stegmann et al., 2022; Mauceri
et al., 2022; Su et al., 2023), which apply machine learning
techniques for parametrization, feature reduction, and sam-
pling strategies.

Even though RTTOV is more efficient than line-by-line
models, it remains prohibitively expensive for operational
use cases1. Indeed, in current Fast RT models based on linear
regression, such as OPTRAN and RTTOV, training is per-
formed separately for each gas type and pressure level, re-
sulting in an over-parametrization of the RT model. To re-
duce the number of parameters and make the evaluation of
the trained RT model less computationally expensive, it is es-
sential to carefully select the most significant gases for each
spectral channel of each instrument type, reduce the num-
ber of pressure levels, and implement other ad hoc strategies.
These decisions must account for the large number of possi-
ble combinations and trade-offs, and are typically made by
expert teams.

One promising approach to reducing the number of pa-
rameters without relying on expert committees is the use
of optimization methods that induce sparsity in the param-
eters. In particular, the use of LASSO regression, a regular-
ization method that penalizes the regression coefficients with
the `1-norm, has proven effective for variable selection and
model complexity reduction in various large-scale applica-
tions (see, e.g., Heilemann et al., 2024; Pak et al., 2025). In
the context of radiative transfer, LASSO regression was ap-
plied by Cardall et al. (2023) to estimate water quality param-
eters such as clarity, temperature, and chlorophyll a, based on
correlations with in-situ measurements and near-coincident
Landsat spectral data, with a focus on model explainabil-
ity. In Li et al. (2020), the authors proposed an algorithm
for detecting hazardous clouds using passive infrared remote
sensing technology with variable selection. Other studies that
combine or compare LASSO with machine learning methods
for remote sensing include: the removal of redundant features
in PolSAR and optical images (Hong and Kong, 2021); es-
timation of aboveground forest biomass with variable selec-
tion (Wang et al., 2022a); identification of important environ-
mental variables for retrieving soil moisture content (Wang

1This is the case for Ecuador’s METEO operational system,
which currently relies on an HPC with only 700 cores.

et al., 2022b); evaluation of the accuracy and generalization
capacity of grassland models (Smith et al., 2023); and a com-
parison of different machine learning methods for predicting
soybean yield (Joshi et al., 2023).

Building on this approach, in this paper we target the au-
tomatic selection of gases and optical depth predictors in
Fast RT models by inducing sparsity in the weight predic-
tors using LASSO regression. We propose a parametrization
of transmittances based on statistical thresholds to automat-
ically select the appropriate gases by channel and pressure
level, and to induce sparsity in the parameters by replac-
ing the classical regression problem with a LASSO problem
within the RTTOV framework. The proposed methodology
is tested with VIIRS infrared channels, and the results are
compared with the standard RTTOV model. To the best of
the authors’ knowledge, this is the first time that LASSO re-
gression has been applied to the RTTOV model to automate
the selection of gases and parameters.

One of the key aspects in LASSO models is the choice of
the regularization weight in front of the `1-norm. This weight
controls the trade-off between fitting the training data well
and keeping the model simple by reducing the number of
non-zero coefficients. In our context, selecting an appropriate
regularization weight is crucial for effectively identifying the
most relevant gases and optical depth predictors while avoid-
ing overfitting. To establish a rigorous criterion for choosing
this parameter – rather than relying on a tedious trial-and-
error process – we propose a bilevel optimization approach
(see, e.g., De los Reyes and Villacís, 2022; De los Reyes,
2023). The idea is to formulate an upper-level optimization
problem that encodes a model quality criterion, while the
LASSO problem serves as the lower-level constraint. In this
article, we successfully test two types of loss functions: the
first, based on an `0 seminorm that prescribes the number of
non-zero predictors; and the second, inspired by a Bayesian
Information Criterion-type objective.

This manuscript is organized as follows: Sect. 2 outlines
the theoretical framework for the RT equation in Line-By-
Line models and details the general scheme of Fast-RT meth-
ods, focusing on RTTOV. Section 3 introduces the proposed
transmittance parametrization using statistical inference and
LASSO regression model, as well as the bilevel optimiza-
tion approach for selecting the regularization weight. Sec-
tion 4 presents the experimental settings and numerical re-
sults comparing RTTOV with the proposed method. Finally,
Sect. 5 offers conclusions of the performance of the proposed
approach.

2 Radiative Transfer Equation

The monochromatic radiative transfer equation for the up-
welling radiance in a clear sky, without solar radiation con-
tribution, for a non-scattering atmosphere and in local ther-
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modynamic equilibrium, is given by:

I (ν,θ)= τs(ν,θ)εs(ν,θ)B(ν,Ts)+

1∫
τs

B(ν,T (p)) dτ

+ (1− εs(ν,θ))τ
2
s (ν,θ)

1∫
τs

B(ν,T (p))

τ 2 dτ, (1)

where I (ν,θ) is the monochromatic TOA radiance at
wavenumber ν and satellite zenith angle θ ; B(ν,T ) is the
Planck function at temperature T ; τ(ν,θ,p,T ,q) denotes the
layer-to-space transmittance dependent on pressure p, tem-
perature T , and gas concentration q. Here, Ts, εs, and τs
represent surface skin temperature, emissivity, and transmit-
tance respectively, (Weinreb et al., 1981).

The terms correspond to surface emission, upward atmo-
spheric emission, and downward atmospheric emission re-
flected at the surface (assuming specular reflection). Surface
emissivity can be close to 1 for ν between 714–1250 cm−1

and for surfaces such as bodies of water, ice and healthy plant
leaves, carbon powder, allowing the last term to be discarded.

The model described above, computed for each wavenum-
ber ν is called the Line-by-Line model, and the resulting ra-
diance is monochromatic.

Satellite-measured radiance is polychromatic, simulated
by convolving Eq. (1) with the instrument’s Normalized
Spectral Response Function (NSRF):

I (ν∗,θ)=

νb∫
νa

φ(ν,ν∗)I (ν,θ) dν, (2)

where φ(ν,ν∗) is the NSRF, representing the sensitivity to
radiance within the spectral channel [νa,νb], with ν∗ repre-
senting the centroid of the response. Using the expression (2)
in Eq. (1), the polychromatic radiance for the spectral chan-
nel identified with ν∗, assuming εs = 1, can be written as (see
Weinreb et al., 1981):

I (ν∗,θ)= τ s(ν
∗,θ)B(ν,Tes)+

1∫
τs

B(ν∗,Te(p)) dτ , (3)

where Tes and Te are empirical effective temperatures ob-
tained via regression. The polychromatic transmittance is
given by:

τ(ν∗,θ,p,T ,q)=

νb∫
νa

φ(ν,ν∗)τ (ν,θ,p,T ,q)dν. (4)

Transmittance follows Beer-Lambert law τ = e−d , with
optical depth d(ν,θ,p,T ,q) accounting for absorption by
gases (e.g., H2O, O3, CO2, CH4) and continuum effects. The

monochromatic optical depth for a set of gases g1, . . .,gs is:

d(ν,θ,p,T ,q)=−
sec(θ)
g

s∑
l=1

p∫
0

Kgl (ν,p′,T (p′))qgl (p′)dp′, (5)

where g is gravitational acceleration, Kgl is the absorption
function modeled via Voigt profiles (see Lavrentieva et al.,
2011).

2.1 Fast Radiative Transfer Model

Fast RT models discretize the atmosphere into L layers:

p0 < p1 < · · ·< pL,

where p0 is the top-of-atmosphere and pL the surface pres-
sure. Polychromatic radiance Eq. (3) is computed numeri-
cally, requiring parameterization of polychromatic transmit-
tance to reduce computational cost. In Fast-RT models, the
polychromatic optical depth is parameterized and fitted via
linear regression to approximate Eq. (5), following ideas
from McMillin and Fleming (McMillin and Fleming, 1976;
Fleming and McMillin, 1977; McMillin et al., 1979).

The polychromatic optical depth from layer i to the top of
the atmosphere, for a single channel and gas gl , is:

d
gl
i = d

gl
i−1+

ml∑
j=1

w
gl
ij X

gl
ij , d

gl
0 = 0, i = 1, . . .,L, (6)

where Xgl
ij are predictors depending on view angle, temper-

ature, and gas concentration. The parameters wgl
ij define the

model. Appendix B provides details on the RTTOV v13 pre-
dictors, and further information can be found in Saunders
et al. (2017).

This parametrization includes a fixed gas mixture – whose
spatio-temporal variations minimally affect radiance – and
variable gases, primarily H2O, optionally including O3, CO2,
N2O, CO, CH4, and SO2, varying by channel. Water vapor
absorption may be split into line and continuum components.

The polychromatic transmittance of layer i for gas gl is
approximated by:

τ
gl
(i,0) = exp(−dgl

i ), (7)

and total transmittance approximated as:

τTOT
(i,0) =

s∏
l=1
τ

gl
(i,0). (8)

Parameters are fitted using a database of M vertical atmo-
spheric profiles:

(pi,Tij ,q
g1
ij , . . .,q

gs
ij ), i = 0, . . .,L, j = 1, . . .,M,
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with polychromatic transmittances computed with Line-by-
Line software for N view angles θk:

(τ
g1
ijk,. . ., τ

gs
ijk), i = 1, . . .,L,

j = 1, . . .,M, k = 1, . . .,N. (9)

Since total polychromatic transmittance is not simply
the product of individual gases transmittances (unlike the
monochromatic case), data (9) are corrected following
(Xiong and McMillin, 2005; McMillin et al., 2006), as in RT-
TOV v13 (Hocking et al., 2021), by introducing a corrective
term τCOR

(i,0) :

τTOT
(i,0) = τ

COR
(i,0)

s∏
l=1
τ

gl
(i,0), (10)

which is parameterized similarly to Eqs. (6) and (7). The cor-
rective transmittance for training is:

τCOR
ijk =

τTOT
ijk

τ̂TOT
ijk

,

where τTOT
ijk is the Line-by-Line polychromatic transmittance

including all absorbers, and τ̂TOT
ijk is the modeled transmit-

tance from Eq. (8).
The linear regression fitting problem for gas gl and layer i

is:

(LSgl ) min
w

gl
i ∈R

ml

1
2MN

∥∥Agl
i w

gl
i − y

gl
i

∥∥2
2, (11)

where Agl
i ∈ R

MN×ml contains predictors Xgl
ij for angles,

temperatures, and concentrations across profiles, and y
gl
i ∈

RMN the corresponding optical depths.
In RTTOV v13, parameter counts per channel reach nearly

11 000, considering variable and fixed gases, layers, and cor-
rections. Reduction is achieved by expert-based gas selec-
tion, layer thinning, and thresholding (see Saunders et al.,
2017).

3 A Sparse Parametrization of Optical Depths

In this section, we present a methodology to significantly
reduce the number of parameters used in optical depth
parametrization within the RTTOV v13 framework. The
methodology involves automatically selecting absorbing
gases per channel and pressure level, as well as identifying
the most important predictors for each atmospheric layer.
This approach induces sparsity in the regression parame-
ters by combining two tools: statistical inference to deter-
mine whether a given gas at a particular layer requires no
parametrization, a parametrization with a single predictor, or
a more complex parametrization as described in Eq. (6). In
the latter case, the classic linear regression problem is re-
placed with a LASSO regression problem to select predictors
and induce sparsity in the parameter vectors.

3.1 Parametrization Based on Statistical Inference

The aim here is to preprocess the data of the polychromatic
transmittances in a channel to determine which atmospheric
layers require optical depth parametrization and to automati-
cally exclude gases that do not significantly contribute to the
radiance absorption in that channel. To achieve this, we will
use confidence intervals to estimate the true polychromatic
transmittances.

For a gas gl or correction term in a fixed layer i, we con-
struct a confidence interval for the mean of the polychromatic
transmittances of the layer i. This is given by:[
τ

gl
i −E

gl
i ,τ

gl
i +E

gl
i

]
where

E
gl
i = Z1− α2

s
gl
i

√
NM

,

τ
gl
i is the mean polychromatic transmittance for layer i, con-

sidering N angles andM atmospheric profiles, sgli is the cor-
responding standard deviation, and Z1− α2

is the critical value
of a distribution for a confidence level of 1−α. Given that the
number of data points in each layer is NM , which is usually
sufficiently large (in our experiments, for N = 6 angles and
M = 83 profiles, NM = 498), the standard normal distribu-
tion is used to obtain the critical value. Thus, the absolute
error in approximating the true value of the polychromatic
transmittance of gas gl in layer i, with τgl

i is at most Egl
i ,

with a probability α that the absolute error exceeds this value.
In our case, the confidence level is set to α = 10−6.

Based on the above, the following statistical thresholds for
optical depth parametrizations are proposed. Let ε1 and ε2 be
positive and sufficiently small values, these will be used as
thresholds to determine whether τgl

i is close to the true value
or close to 1. Define the mean optical depth for layer i as
d

gl
i =− ln(τgl

i ), and consider the following three cases:

– Case I. If Egl
i > ε1, the polychromatic transmittance

due to gas gl in layer i has high variability with respect
to the value of the atmospheric variables in that layer. In
this case, the optical depth parametrization follows as in
Eq. (6) for layer i.

– Case II. If Egl
i ≤ ε1 and d

gl
i > ε2, unlike the previous

case, the polychromatic transmittance due to gas gl in
layer i has low variability with respect to the value of the
atmospheric variables in that layer, and can be estimated
by τgl

i , but is not close to 1. Thus, the optical depth can
be parameterized with a single predictor as follows:

d
gl
i = d

gl
i−1+w

gl
i0X

gl
i0 ,

where, X0i = 1 and wgl
i0 = d

gl
i . If this occurs in all lay-

ers, and since the parametrization does not depend on
atmospheric variables, the gas gl can be included with
fixed gases.
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– Case III. If Egl
i ≤ ε1 and d

gl
i ≤ ε2, the polychromatic

transmittance in layer i can not only be estimated by
τ

gl
i but is also close to 1, meaning that gas gl does not

cause significant absorbance in this layer. The relative
error of approximating τgl

i with 1 is given by:

1− τ i
τ i
= ed

gl
i − 1= d

gl
i e

ξ
≤ ε2e

ε2 ≈ ε2,

for some ξ ∈ (0,d
gl
i ). If this condition is met for all lay-

ers, then gas gl is automatically discarded.

To summarize the above, the parametrization of optical
depths based on statistical thresholds is as follows:

d
gl
0 = 0

d
gl
i = d

gl
i−1+


∑ml
j=1w

gl
ij X

gl
ij , E

gl
i > ε1,

d
gl
i , E

gl
i ≤ ε1 and d

gl
i > ε2,

0, otherwise,
(12)

for i = 1,2, . . .,L. The transmittances from layer i to the top
of the atmosphere are still calculated using Eq. (7).

The statistical threshold tolerances ε1 and ε2 should be suf-
ficiently small. In our experiments, we set ε2 = ε1 and eval-
uate the model performance for different small values of ε1.

3.2 LASSO Regression and optimal choice of
regularization parameter

After discarding parameter groups using the previous statis-
tical approach with Eq. (12), in Case I, the remaining pa-
rameters are typically estimated by solving an ordinary least
squares (OLS) problem, which involves a large number of
parameters.

To reduce the number of parameters, we propose to induce
sparsity in the parameter vector w

gl
i by solving the LASSO

problem. This is done by replacing the OLS problem (11)
with the following optimization problem:

(LASSOgl ) w
gl
i = arg min

w∈Rml
Lλ(w) (13)

where

Lλ(w)=
1
MN

∥∥Agl
i w− y

gl
i

∥∥2
2+ λ‖w‖1

and λ≥ 0 is the regularization parameter. As λ→+∞, high
sparsity is induced, and as λ→ 0, sparsity is low. Specifi-
cally, if λ= 0, the problem reduces to the least squares prob-
lem (11).

The regularization parameter λ has to be carefully selected
to ensure that the approximation of the transmittance in layer
i maintains a high level of accuracy relative to the least
squares solution (11), while achieving a model with fewer
parameters. Although standard techniques such as cross-
validation exist for tuning λ, they may not always be appro-
priate, especially when alternative loss criteria are more rel-
evant to the specific modeling goals. To address this choice,

we adopt a bilevel optimization approach (see, e.g., De los
Reyes and Villacís, 2022; De los Reyes, 2023), where the
LASSO problem forms the lower-level constraint and the
upper-level objective reflects a model quality criterion. This
results in the following bilevel problem:

min
λ∈R

F(w(λ))

s.t. w(λ)= arg min
w∈Rml

Lλ(w),

0≤ λ≤ λ0,

(14)

where λ0 > 0 is a given upper bound. In the following, we
show how to reduce this bilevel problem to a standard non-
linear optimization problem. For the sake of clarity, we omit
the indices corresponding to gas and pressure level.

Under the assumption that matrix A is full rank, prob-
lem (13) has a unique solution for each λ≥ 0, denoted by
w(λ). The collection of these solutions, as λ varies over
the positive real numbers, is called the regularization path
P = {w(λ) : λ > 0}. A key structural property of the regu-
larization path is that it is well-defined, unique, and contin-
uous piecewise linear. Moreover, it can be computed using
the homotopy algorithm for the LASSO problem (Osborne
et al., 2000), an algorithm with exponential complexity but
low computational cost, that returns the vertices of the regu-
larization path; both the properties and the algorithm are de-
scribed in Mairal and Yu (2012). The algorithm constructs a
finite, monotonically decreasing sequence of values {λk}rk=0,
with λ0 = ‖A

T y‖∞ and λr = 0. For each λk in this sequence,
the corresponding solution to the LASSO problem, w(λk), is
a vertex of the regularization path P , and it can be shown that
w(λ)= 0, for all λ≥ λ0. In each line segment of this path,
the sparsity pattern of w(λ) does not change; that is, the sup-
port set S(w(λ))= {j ∈ {1,2, . . .,ml} : wj (λ) 6= 0} remains
fixed for all λ ∈ (λk+1,λk].

These properties of the regularization path allow the
bilevel problem (14) to be reduced to a standard one-
dimensional optimization problem with bound constraints:

min
λ∈[0,λ0]

F(w(λ)). (15)

We still need to establish the upper-level loss function F ,
which serves as a model quality criterion for the LASSO reg-
ularization path. To this end, we propose two formulations
for empirical comparison: the first is based on the optimal
selection of the regularization parameter in the LASSO prob-
lem using an `0-regression cost function; the second is based
on a well-established statistical tool for optimal model selec-
tion, the Bayesian Information Criterion (BIC).

3.2.1 Bilevel formulation based on the `0 regression

The best subset selection problem (Bertsimas et al., 2016;
Miller, 2002) consists of solving a least squares formulation
that allows explicit control of sparsity through the choice of
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the number of predictors, this is:

min
w∈Rml

1
MN
‖Aw− y‖22

s.t. card(S(w))≤ k,
(16)

for k ∈ {1, . . .,ml} given. As this problem is NP-hard, the
computational loss can be prohibitive, especially when sev-
eral subset sizes must be tested without prior knowledge of
k. To mitigate this, more tractable relaxations have been pro-
posed, such as the `0 regression, obtained from a penalized
formulation of the problem (16):

min
w∈Rml

1
NM
‖Aw− y‖22+ γ

(
card(S(w))− k

)
,

where γ > 0 is the penalty parameter. Motivated by this
problem, we propose as the merit function

F`0(w)=
1

NvMv

‖Avw− yv‖
2
2+ γ (β)card(S(w)),

which is used in the bilevel problem (14) to assess LASSO
solutions on validation data, balancing generalization and
complexity through a weighting parameter β ∈ (0,1]. As a
reference, w(0) (the OLS solution) achieves the best fit but
maximum complexity (β = 1), while w(λ0)= 0 is the oppo-
site (β = 0). Consequently, the penalty is defined as

γ (β)=
1
NM

(
1
β
− 1

)(
‖y‖22−‖Aw(0)− y‖22

)
.

To prioritize model data fidelity over low complexity, β
should be close to 1. In our experimental setting, we choose
β = 1− 10−4.

With F`0(w(λ)) as the objective function of (15), it is a
piecewise continuous objective function, smooth along each
linear segment of the regularization path and with disconti-
nuities at {λk}rk=0. Moreover, F`0(w(λ)) is a quadratic poly-
nomial for λ ∈ (λk+1,λk], since card(S(w(λ))) remains con-
stant within this interval. If we denote λ̃k as the minimizer of
this polynomial over the closure of this interval, then problem
(15) reduces to a discrete parameter optimization problem:

min
0≤k≤r

F`0(w(λ̃k)). (17)

3.2.2 Bilevel formulation based on the Bayesian
Information Criterion

In this case, the choice of the loss function F(w) is inspired
by the Bayesian Information Criterion for model selection
(Schwarz, 1978). Similar to `0-regression, it penalizes model
complexity but does not require a tuning parameter. Given a
collection P of candidate models, and letting σ(w) denote
the maximum likelihood under model w ∈ P , the BIC-based
objective is given by

min
w∈P

n ln
(
σ(w)

)
+ ln(n)K(w),

where K(w) denotes the number of explanatory variables in
model w (or a measure of model complexity), and n is the
number of data points used to construct model w. If the “true
model” belongs to P , then the probability that BIC selects
this model approaches 1 as the number of data points in-
creases.

In our context, the model set P consists of LASSO solu-
tions for each λ≥ 0, built using n=NM data points, and a
good approximation to the true model is given by the ordi-
nary least squares solution w(0). We define:

σ(w)=
1
NM
‖Aw− y‖22 and K(w)= card(S(w)),

for w ∈ P,

The BIC-based objective function is then defined as:

FBIC(w)=NM ln
(

1
NM
‖Aw− y‖22

)
+ln(NM)card(S(w)).

This is a piecewise continuous objective function, smooth
along each linear segment of the regularization path and
with discontinuities at {λk}rk=0. It can be verified that
FBIC(w(λ)) is monotonically increasing in λ ∈ (λk+1,λk]

since card(S(w(λ))) remains constant within this interval.
Therefore, the solution of the bilevel problem (15) with the
BIC-based merit function occurs at one of the discontinuity
points λk . Consequently, problem (15) reduces to the discrete
model selection problem:

min
0≤k≤r

FBIC(w(λk)). (18)

3.2.3 Post-LASSO for model bias reduction

An important characteristic of LASSO solutions is that they
are biased toward zero whenever λ > 0. As a result, the mean
squared error of w(λ)may not accurately reflect the true like-
lihood of the model, particularly in the context of the BIC-
based formulation. To address this, we use a post-penalized
estimator, namely an ordinary least squares regression re-
stricted to the set of predictors selected by LASSO (Belloni
and Chernozhukov, 2011). This approach is known as the
Post-LASSO problem. As a direct consequence of the pre-
dictor set remaining fixed within each line segment of the
LASSO regularization path, the Post-LASSO problems can
be formulated for each k = 0,1, . . ., r as:

min
w∈Rml

1
NM
‖Aw− y‖22

s.t. wj = 0, for j 6∈ S(w(λk)).

Let
{
wk

LS
}r
k=0 denote the set of Post-LASSO solutions

corresponding to the sequence {λk}rk=0. Instead of using
solutions from the LASSO regularization path in the `0-
regression (Eq. 17) or BIC-based (Eq. 18) formulations, we
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employ the Post-LASSO solutions wk
LS, which provides an

alternative model selector with reduced bias:

min
0≤k≤r

F(wk
LS). (19)

Finally, this formulation is used to select the weights for
the optical depth parametrization for each gas and pressure
level, using either the bilevel `0+LASSO regression or the
bilevel BIC+LASSO regression formulations.

4 Numerical Results

This section evaluates the performance of the proposed
parametrization compared to the standard RTTOV v13.
Specifically, it studies the level of sparsity achieved and its
impact on accuracy relative to RTTOV v13 and Line-by-
Line calculations using LBLRTM. Performance is measured
via the root mean square error (RMSE) of the transmittances
compared to Line-by-Line transmittances, and by assessing
the brightness temperature (BT) approximation error from
the Fast-RT models against Line-by-Line results. Addition-
ally, the BT error is compared to the Noise-Equivalent Delta
Temperature (NEdT) of the M-band VIIRS instrument to as-
sess the proportion of profiles for which the model error re-
mains below the instrument noise.

The numerical experiments do not include direct bench-
marking against other existing Fast-RT models, only against
standard RTTOV v13. It also does not evaluate scenarios
where the assumptions of the method might break down,
such as extreme atmospheric conditions, including extreme
pollution events and environments with high volcanic activ-
ity.

4.1 Experiment settings

For training the RTTOV parametrizations and the proposed
sparse variants, six variable gases are considered: H2O, O3,
CO2, N2O, CO, and CH4. The Fast-RT model can addition-
ally consider SO2 as a variable gas, but here it will be treated
as a fixed gas among the total of 22 fixed gases considered.
No distinction is made between water vapor absorption lines
and continuum absorption. For the viewing angle, we con-
sider 6 path secant angles from 1 to 2.25 with step 0.25 (from
0 to 63.61°).

4.1.1 Spectral Response Functions of VIIRS M-bands

The VIIRS is an instrument on NOAA’s Suomi NPP and
NOAA-20 satellites, part of the Joint Polar Satellite Sys-
tem (JPSS). It features 16 moderate resolution bands (M-
bands) that cover visible and infrared spectra. This study fo-
cuses on spectral response functions for bands M7 to M16,
which cover the near (NIR), medium (MIR), and long (LIR)
infrared ranges. In this study, we use the VIIRS SRF J2,
which can be downloaded from the following link: https:

Table 1. VIIRS IR M-bands (wavenumber).

Band Centroid (cm−1) Spectral Range (cm−1) IR

M7 11525.42 11070.96–12048.02 NIR
M8 8056.98 7924.69–8170.62 NIR
M9 7235.57 7134.59–7373.52 NIR
M10 6199.43 5853.32–6522.30 NIR
M11 4442.00 4342.01–4549.99 NIR
M12 2711.61 2545.18–2867.98 MIR
M13 2489.30 2354.64–2607.44 MIR
M14 1166.76 1111.73–1235.32 LIR
M15 939.82 875.89–1008.36 LIR
M16 839.10 782.35–896.29 LIR

//ncc.nesdis.noaa.gov/NOAA-21/index.php (last access: 14
December 2023). Details on the centers and spectral ranges
of these bands can be found in Tables 1 and 2 in Cao et al.
(2017).

For each channel, the wavenumber ν and the correspond-
ing Spectral Response Function (SRF) values are tabulated.
The wavenumber tabulation typically covers a broader spec-
tral range, denoted as [νa,νb], with noisy SRF values at the
extremes of this interval. Therefore, the SRF must be trun-
cated to a smaller interval that retains most of the relevant
SRF information. Instead of using Tables 1 and 2 from Cao
et al. (2017) for our calculations, we utilize channels with
a spectral range broader than those. These channels are de-
fined as [ν∗−νl,ν∗+νu], where ν∗ is the centroid of SRF in
[νa,νb], νl and νu are the tabulated wavenumber values clos-
est to ν∗ below and above, respectively, such that the relative
truncation error does not exceed ε = 9× 10−4. Specifically:

(1− ε)

νb∫
νa

φ(ν∗,ν) dν ≤

ν∗+νu∫
ν∗−νl

φ(ν∗,ν) dν.

The integrals are calculated using the composite trapezoidal
rule. The SRF data are then truncated and normalized within
this new interval, and the centroid ν∗ is recalculated. The up-
dated channels and centroids are presented in Table 1. By
truncating the noisy tails of the SRF in this way, the resulting
NSRF for each channel is interpolated using natural cubic
splines to be used for calculating polychromatic transmit-
tances with a much finer spectral resolution than the tabu-
lated NSRF data. It can be shown that the error made by ap-
proximating the polychromatic transmittance with the trun-
cated NSRF does not exceed ε.

4.1.2 Vertical profile database ECMWF83

For training the optical depth parametrization, we use the
ECMWF83 database, which includes 83 vertical profiles
with temperature and gas concentrations for H2O, O3, CO2,
N2O, CO and CH4, across 101 pressure levels, originally cre-
ated to train RTTOV (Matricardi, 2008). A separate database
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with 22 vertical profiles covers fixed gases. These datasets
are available from NWP SAF of EUMETSAT and can be
downloaded at https://nwp-saf.eumetsat.int/site/ (last access:
10 November 2023).

4.1.3 Line-by-Line Transmitances with LBLRTM

In this study, LBLRTM v12.15.1 (February 2023) will be
employed for Line-by-Line calculations. The software uses
AER Continuum MT CKD v4.1.1. for continuum models of
water vapor and other gases and the AER Line Parameter
Database v3.8.1. for line parameters, which consolidates var-
ious line spectral databases, primarily HITRAN 2016 (Gor-
don et al., 2017).

The principal parameter in the LBLRTM calculation,
to generate the optical depths for training and top-of-
atmosphere radiances, are the following:

– The continuum absorption is not activated for isolated
gases and fixed gases, nor when all gases are included.

– The Voigt profile is chosen for the shape of spectral
lines,

– The spectral resolution is set to dν = ᾱν/1.5 where ᾱν
is the average value of the Voigt halfwidth for the layer.
Consequently, the spectral resolution is not homoge-
neous across channels, achieving an average spectral
resolution from 7.1× 10−3 for M7 to 4.1× 10−4 for
M16.

– The calculation of optical depths with the software is
performed only for the observation point at nadir. For
other angles, variations are made directly in the calcula-
tion of polychromatic transmittances.

4.1.4 RTTOV v13 and Proposals Settings

For short, we will abbreviate Fast-RT models as follows: RT-
TOV13 for the standard RTTOV v13; SI for RTTOV13 with
statistical threshold and ordinary least squares for parameter-
ization; BIC+L1 for RTTOV13 with statistical threshold and
BIC+LASSO regression for parameterization; and L0+L1
for RTTOV13 with statistical threshold and `0+LASSO re-
gression for parameterization

We implemented the transmittance parametrization of RT-
TOV v13 as described in Saunders et al. (2020), using the
same predictors, except for the method of selecting gases per
channel, which is detailed below.

In RTTOV v13 in the standard form, regression param-
eters are obtained by including only the gases that exhibit
absorption lines in each channel, as shown in Table 2. In
the proposed RTTOV variants, using statistical inference and
LASSO regression, all gases are included in the training.

Additionally, there are other criteria for selecting predic-
tors in the correction term and training data by level, which
are listed below:

Table 2. Gases considered in RTTOV v13 for VIIRS M-bands.

Channels Gases

M7 H2O, CO2, CH4
M8 H2O, CO2, CO, CH4
M9 H2O, CO2, NO2, CH4
M10–M11 H2O, O3, CO2, N2O, CO, CH4
M12–M16 H2O, O3, CO2, N2O, CH4

– Threshold for gases correction term. Predictors for fixed
gases are always included in the correction term. For
other gases, predictors for a specific gas in a layer are
included only if any of the corresponding optical depths
in the training profile for that layer exceed a threshold
0.01 for CH4 and 0.005 for the other gases. As a result,
for all the VIIRS channels studied, only predictors for
fixed gases and water vapor are included in the correc-
tion term.

– Threshold for Optical Depth Data Training. Optical
depth data in a layer for a gas is omitted if the corre-
sponding transmittance from the layer to the surface is
less than 3× 10−6. As a result, only channel M10 is af-
fected by this selection criterion.

The performance of the three proposed models, SI,
BIC+L1, and L0+LASSO, is evaluated using different sta-
tistical threshold parameters ε1 ∈ {10−9,10−8,10−7,10−6

}.
Since the L0+LASSO bilevel model is based on a validation
data criterion for the upper-level merit function, we split the
NM data randomly in half, using one half for training the
LASSO problems and the other half as validation data for
evaluating model quality using the `0 regression.

4.2 Sparsity Pattern in the parametrization of optical
depths

Table 3 summarizes the percentage of non-zero parameters
(%NZ) out of a total of 11 000 parameters (worst-case sce-
nario) for each type of optical depth model: RTTOV13, SI,
BIC+L1, and L0+L1. Figures 1 and 2 show the percentage of
parameter usage and computation time relative to RTTOV13.
Tables 4, 5, 6, and 7 provide details on the number of non-
zero parameters (NNZ) for each gas type and correction fac-
tor, for ε1 = 10−6.

In Table 3, the increase in sparsity for the proposed
parametrizations compared to the general RTTOV v13
scheme is evident. RTTOV v13 induces sparsity by manu-
ally selecting gases and applying optical depth thresholds to
include predictors in the correction factor. Using ε1 = 10−6

as a reference, in the best-case scenario with channel M7,
where greater sparsity is achieved with RTTOV13, the spar-
sity level of RTTOV13 (53.64 %) increases to 93.66 % for SI,
94.39 % for BIC+L1, and 96.22 % for L0+L1. Conversely,
in the worst-case scenario with channels M10 and M11,
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Table 3. Percentage of nonzero parameters in RTTOV v13 for each channel, for the standard configuration, SI with OLS regression,
BIC+LASSO regression, and `0+LASSO regression. The second column represents the different statistical thresholds ε1 used for the pro-
posed RTTOV v13 variants.

Fast-RT M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

RTTOV13 46.36 46.47 59.77 80.00 80.00 69.95 68.18 70.00 69.41 69.77

10−6 6.34 9.17 24.49 23.51 22.87 34.20 30.55 37.95 34.43 27.83
SI 10−7 13.05 20.23 27.85 28.80 28.69 53.49 46.34 50.64 44.38 39.35

10−8 24.09 32.67 35.28 36.99 41.61 64.95 57.72 56.59 50.86 46.32
10−9 37.76 40.36 47.10 56.57 55.13 68.29 62.51 62.69 57.75 47.95

10−6 5.61 8.31 18.37 19.88 18.70 27.94 25.21 30.36 29.76 23.15
BIC+L1 10−7 10.33 17.17 20.63 23.96 22.10 43.84 37.26 38.77 37.25 32.60

10−8 17.87 25.01 26.31 30.40 32.22 52.51 45.03 43.58 42.47 36.50
10−9 26.39 29.46 36.24 44.93 42.48 54.45 48.39 48.79 47.48 37.67

10−6 3.78 6.14 12.18 9.50 10.11 16.85 15.68 19.63 23.87 16.71
L0+L1 10−7 7.20 11.39 13.79 11.99 12.99 22.07 21.39 24.55 29.61 23.50

10−8 11.00 15.73 15.93 15.34 16.96 24.59 23.53 27.63 33.95 27.38
10−9 14.98 18.78 18.51 20.76 21.03 25.70 25.41 31.38 37.59 28.35

Figure 1. Parameter usage (left) and runtime (right) of the SI method, expressed as percentages relative to those of RTTOV v13 (fixed at
100 %) for different values of ε1.

where RTTOV13 achieves lower sparsity (20 %), the lev-
els increase to 76.49 % and 77.13 % for SI, 80.12 % and
81.30 % for BIC+L1, and 90.50 % and 89.89 % for L0+L1.
As the statistical threshold tolerances decrease, sparsity lev-
els also decrease; however, they remain higher than those of
RTTOV13, suggesting that the computational cost benefits
are preserved while achieving better sparsity results with the
proposed L0+L1 model.

In Figs. 1 and 2, we present the percentage of parameter
usage in the proposed optical depth approximations within
RTTOV, relative to the number of parameters used in the
standard RTTOV configuration, and the percentage of run-
time required by the proposed schemes compared to stan-
dard RTTOV. The measured runtime corresponds to the av-
erage time of 200 evaluations of the parameterized function
used to compute approximate transmittances for the 83 at-
mospheric profiles with 6 different viewing angles. For the
following comparisons, we use ε1 = 10−6 as a reference.
For the SI configuration, parameter usage across all chan-
nels ranges from 13.67 % to 54.21 % relative to standard RT-
TOV, corresponding to a runtime ranging from 29.99 % to

58.32 %; for the BIC+L1 configuration, usage ranges from
12.10 % to 43.38 %, with runtime from 26.75 % to 48.64 %;
and for the L0+L1 configuration, usage ranges from 8.16 %
to 34.39 %, with runtime from 13.77 % to 41.39 %. These re-
sults suggest that the computational cost of evaluating pa-
rameterized transmittances is significantly and proportion-
ally reduced with the proposed parametrizations.

Although the absolute runtime difference is small for this
limited number of profiles, in practical scenarios where trans-
mittance functions must be evaluated for hundreds of thou-
sands of atmospheric profiles, as required in satellite data re-
trieval applications, the reduction in computational time be-
comes highly significant for the efficiency of the retrieval
process.

As an illustrative example, from Fig. 2, for channel M15,
for each 100 time units required to compute transmittances
with the RTTOV13 model, the L0+L1 model takes only
41.69 time units with ε1 = 10−6, and 59.63 time units with
ε1 = 10−9 (worst-case), representing a significant reduction
in runtime.
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Figure 2. Parameter usage (left) and runtime (right) of the BIC+LASSO method, expressed as percentages relative to those of RTTOV v13
(fixed at 100 %) for different values of ε1.

Figure 3. Parameter usage (left) and runtime (right) of the L0+LASSO method, expressed as percentages relative to those of RTTOV v13
(fixed at 100 %) for different values of ε1.

In Tables 5, 6, and 7, the effectiveness of introducing sta-
tistical thresholds to discard irrelevant gases by channel is
evident compared to Table 4. A number of non-zero param-
eters below 100 for a specific gas corresponds to Case II of
the statistical threshold parameterization, suggesting that the
corresponding gas can be included with the fixed gases.

To illustrate in more detail, we reference channels M11
and M12 and compare the sparsity patterns in Figs. 4 and 5
among the four parameterizations using ε1 = 10−6 as a refer-
ence. For the L0+L1 model and the remaining channels, see
Appendix A, Figs. A1 and A2. The numbering of predictors
and correctors follows RTTOV v13 (Saunders et al., 2020),
see Appendix B, except for predictor 0, which corresponds
to the predictor in Case II of the statistical inference pro-
posal. Each column represents the parameters of a predictor
for each pressure level, and each point in a column repre-
sents a non-zero parameter associated with that predictor at
the corresponding pressure level.

For channel M11 with SI model (upper-middle Fig. 4),
gases O3, CO2, and CO are automatically discarded, and
fixed gases only need one predictor. Meanwhile, gases H2O,
N2O, and CH4 exhibit block-like sparsity patterns from sur-
face pressure approximately to 200, 19, and 0.8 hPa, respec-
tively, where concentrations of these gases are important and
cause significant radiance absorption. For these gases with
block-like sparsity patterns, replacing classical linear regres-
sion with L0+LASSO regression (bottom figure) clearly dis-
cards some predictors across all levels or shows them as less
relevant, as seen in the sparsity patterns for CH4 and N2O.

However, H2O still shows sparsity, but it is difficult for this
channel to determine if any predictor can be discarded at
all levels due to the importance of this gas and the strong
non-linear relationship among the secant angle, temperature,
and gas concentration in the predictors defined for it. Us-
ing BIC+LASSO regression (lower-middle figure) highlights
less relevant predictors for CH4, but does not entirely dis-
card it or any other gas predictor retained in the SI model.
For the proposed models, no correction term is needed at all,
showing that a good fit of the total transmittance is obtained
by considering only the approximation of the individual gas
transmittances.

For channel M12 with SI model (upper-middle Fig. 4),
only CO is automatically discarded, which is expected since
this gas has no absorption lines in this channel. The SI model
still clearly reveals the block-like sparsity patterns of predic-
tors and correctors for each gas at the pressure levels where
they contribute to absorption (upper-middle figure). From the
figure, CO2 appears to be relevant at high pressures, approx-
imately above 767 hPa, while O3 seems relevant between
about 2 and 260 hPa. Using L0+LASSO regression (bottom
figure) for these important pressure levels demonstrates that
some predictors can be entirely discarded or downweighted,
as seen for fixed gases, O3, N2O, and CH4. Similarly, the
BIC+L1 model (lower-middle figure) highlights less relevant
predictors but does not completely discard any predictor re-
tained in the SI model, except in the corrector terms.

A similar analysis can be performed for each channel, as
shown in the appendix, where Figs. A1 and A2 display the
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Table 4. Number of nonzero parameters by gas type and channel in RTTOV13.

Gas M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

FIX 900 900 900 900 900 900 900 900 900 900
H2O 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400
O3 0 0 0 1200 1200 1200 1200 1200 1200 1200
CO2 1300 0 1300 1300 1300 1300 1300 1300 1300 1300
N2O 0 12 1200 1200 1200 1200 1200 1200 1200 1200
CO 0 1300 0 1300 1300 0 0 0 0 0
CH4 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100
COR 400 400 675 400 400 595 400 600 535 575

Table 5. Number of nonzero parameters by gas type and channel in SI for ε1 = 10−6.

Gas M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

FIX 18 247 0 0 15 145 52 134 478 599
H2O 619 618 1374 618 604 775 576 802 687 716
O3 0 0 0 0 0 644 19 1120 1096 466
CO2 0 56 0 1142 0 212 724 0 1213 911
N2O 0 0 0 0 897 640 1024 1024 33 0
CO 0 0 0 0 0 0 0 0 0 0
CH4 47 0 778 768 995 964 819 678 0 0
COR 13 88 542 58 5 382 147 416 280 369

sparsity patterns for all channels using the L0+L1 model.
These figures clearly indicate which gases are relevant in
each channel, the pressure level ranges where they play a
significant role, and which predictors are most important for
reconstructing the transmittance of each gas.

4.3 Validation of transmittances

To validate the proposed RTTOV v13 variants, we calculated
the root mean square error (RMSE) of the total transmittance
for all atmospheric layers, vertical profiles, and viewing an-
gles, as shown in the following formula:

RMSE=

(
1

LMN

L∑
i=1

M∑
j=1

N∑
k=1

(
τTOT
ijk − τ̃

TOT
ijk

)2
) 1

2

,

where L= 100, M = 83, and N = 6. Here, τTOT
ijk and τ̃TOT

ijk

represent the polychromatic transmittances calculated using
LBLRTM optical depths and their corresponding approxima-
tions obtained from Eq. (10) using the training data. The re-
sults are shown in Table 8. The values in the table correspond
to RMSE× 104.

In Table 8, the RMSE for transmittance errors generally
ranges between O(10−6) and O(10−5) across all Fast-RT
methods and channels, except for channel M9, where errors
are larger, in the range O(10−2) to O(10−3). All three pro-
posed models slightly degrade the precision of RTTOV13,
but this degradation diminishes as the statistical threshold
decreases. Comparing RTTOV13 with the SI model, the er-

ror difference reduces fromO(10−7) toO(10−9) on average
across channels, again except for M9. With BIC+LASSO, the
difference remains aroundO(10−7), while for channel M9 it
is O(10−4). Similarly, with L0+L1 the difference is about
O(10−7) for most channels, but O(10−3) for M9. Among
the three, the L0+L1 model shows the lowest precision, as
expected due to its more aggressive sparsity, yet the errors
remain comparable in order of magnitude to RTTOV13.

Overall, these results indicate that including statistical
thresholds in RTTOV v13 has minimal impact on the trans-
mittance approximation. Values remain very close to the
standard RTTOV13 configuration for statistical threshold tol-
erances below 10−6 (Table 8). Combining thresholds with
LASSO regression in a bilevel framework for parameter se-
lection, using either BIC-based or `0-regularization, slightly
modifies the approximation, improving or worsening it, but
variations remain small. The approximated transmittances
closely match those from LBLRTM, with the added benefit
of a significant runtime reduction.

4.4 Validation of brightness temperatures

To achieve a higher level of validation for the proposed trans-
mittance parametrization, the brightness temperatures of the
profiles used for training are calculated. The approximated
brightness temperatures at the top of the atmosphere were
calculated using polychromatic radiances from Eq. (3), ap-
plying the approximate transmittances provided by the RT-
TOV v13 scheme and the proposed variants, separately. To
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Figure 4. Sparsity pattern for channel M11, comparing RTTOV13 (Top), SI (Upper-middle), BIC+L1 (Lower-middle), L0+L1 (Bottom) for
ε1 = 10−6.
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Figure 5. Sparsity pattern for channel M12, comparing RTTOV13 (Top), SI (Upper-middle), BIC+L1 (Lower-middle), L0+L1 (Bottom) for
ε1 = 10−6.
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Table 6. Number of nonzero parameters by gas type and channel in BIC+L1 for ε1 = 10−6.

Gas M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

FIX 18 244 0 0 15 125 52 134 463 534
H2O 542 545 1102 535 531 704 475 732 653 670
O3 0 0 0 0 0 531 19 969 904 382
CO2 0 56 0 1024 0 196 648 0 1114 850
N2O 0 0 0 0 799 624 901 913 33 0
CO 0 0 0 0 0 0 0 0 0 0
CH4 47 0 567 576 707 759 559 402 0 0
COR 10 69 352 52 5 134 119 190 107 111

Table 7. Number of nonzero parameters by gas type and channel in L0+L1 for ε1 = 10−6.

Gas M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

FIX 18 187 0 0 15 54 52 92 116 154
H2O 342 351 763 239 385 556 281 663 506 590
O3 0 0 0 0 0 238 19 451 826 268
CO2 0 56 0 394 0 96 497 0 977 661
N2O 0 0 0 0 244 268 411 348 33 0
CO 0 0 0 0 0 0 0 0 0 0
CH4 47 0 203 355 463 443 317 353 0 0
COR 9 81 374 57 5 199 148 252 168 165

compare these results, brightness temperatures at the top of
the atmosphere were calculated using the polychromatic ra-
diances with Eq. (2), using the monochromatic radiances cal-
culated with LBLRTM. In all cases, the integrals were ap-
proximated using composite trapezoidal formulas, with the
spacing determined by the pressure levels of the data. In
each case, the resulting brightness temperatures were aver-
aged over all profiles and viewing angles. The relative er-
rors in BT obtained with the Fast-RT models and those ob-
tained with LBLRTM were then calculated, which are shown
in Table 9 (×104). The maximum relative error for brightness
temperature, determined for each profile and viewing angle,
is presented in Table 10 (×103).

In Table 9, a similar behavior is observed in the errors
when approximating transmittances. The average relative er-
ror of brightness temperature generally ranges fromO(10−5)

to O(10−4) across all channels and Fast-RT methods. The
order of magnitude of the average relative error remains con-
sistent when comparing the four methods by channel. The
differences in average relative BT errors between RTTOV13
and the SI model decrease from O(10−5) to O(10−7) when
lowering the statistical threshold tolerance. Similarly, the dif-
ferences between RTTOV13 and the BIC+L1 model decrease
in the same manner. For the L0+L1 model, the differences
decrease from O(10−5) to O(10−6).

Turning to the maximum errors, for all channels the sparse
approximations of optical depth for RTTOV13 show min-
imal deviation from the BT results of standard RTTOV13
when ε1 ≤ 10−7. Table 10 shows maximum relative BT er-

rors ranging from O(10−4) to O(10−3) across all chan-
nels and Fast-RT methods. Comparing the maximum abso-
lute error by channel for the four methods, errors remain of
the same order of magnitude for M7, M9, and M11–M16
(ε1 ≤ 10−6), M8 (ε1 ≤ 10−8), and M10 (ε1 ≤ 10−7); in other
cases, standard RTTOV13 may yield up to one order of mag-
nitude lower errors.

Observe in Table 9 that, for some channels, the errors with
the proposed methods are slightly lower than those of RT-
TOV13. With the L0+L1 model at ε1 = 10−9 this happens
for channels M7, M8, M10, M11, M13, M14, and M16,
and with the BIC+L1 model at the same tolerance for chan-
nels M7, M8, M10, M11, and M13. Also note that, although
the BIC+L1 model gives a better transmittance fit than RT-
TOV13 for channel M9, its brightness temperature error is
not improved. These findings suggest that using merit func-
tions based on radiances or BT, together with model com-
plexity penalization, instead of relying only on optical depth
fitting, could improve the results of Fast-RT models within
the RTTOV13 framework.

Figure 6 (left) shows the average absolute BT error be-
tween the LBLRTM model and the Fast-RT models for ε1 =

10−6, while Fig. 6 (right) shows the maximum absolute error
across all profiles and viewing angles. The average bright-
ness temperature shows some degradation in the proposed
methods compared to RTTOV v13: in the worst case, 0.021 K
for M7, 0.008 K for M8, 0.20 K for M9, while the other chan-
nels remain below 0.003 K for all proposals. For the maxi-
mum absolute error per profile and viewing angle, the worst
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Table 8. RMSE of total transmittance for each channel, scaled by 104, for the proposed RTTOV v13 variants. The second column indicates
the statistical threshold ε1 used for each variant.

Fast-RT M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

RTTOV13 0.0126 0.0224 102.4458 0.0133 0.1341 0.7334 0.1128 0.8514 0.3340 0.7794

10−6 0.0160 0.0332 102.4442 0.0245 0.1320 0.7298 0.1130 0.8504 0.3325 0.7779
SI 10−7 0.0128 0.0229 102.4455 0.0134 0.1336 0.7334 0.1155 0.8513 0.3339 0.7795

10−8 0.0126 0.0228 102.4457 0.0133 0.1340 0.7334 0.1128 0.8514 0.3340 0.7794
10−9 0.0126 0.0228 102.4458 0.0133 0.1341 0.7334 0.1128 0.8514 0.3340 0.7794

10−6 0.0160 0.0333 95.1889 0.0245 0.1321 0.7329 0.1132 0.8606 0.3345 0.7792
BIC+L1 10−7 0.0128 0.0231 95.1962 0.0136 0.1341 0.7372 0.1155 0.8610 0.3355 0.7842

10−8 0.0127 0.0230 95.1988 0.0135 0.1345 0.7372 0.1128 0.8610 0.3356 0.7842
10−9 0.0127 0.0230 95.1977 0.0135 0.1345 0.7372 0.1127 0.8610 0.3356 0.7842

10−6 0.0173 0.0343 165.5327 0.0262 0.1398 0.7384 0.1149 0.8758 0.3392 0.7829
L0+L1 10−7 0.0143 0.0246 165.5344 0.0175 0.1420 0.7406 0.1183 0.8767 0.3399 0.7854

10−8 0.0142 0.0245 165.5347 0.0174 0.1423 0.7407 0.1155 0.8767 0.3400 0.7853
10−9 0.0142 0.0245 165.5348 0.0174 0.1423 0.7407 0.1156 0.8767 0.3400 0.7854

Table 9. Average Relative Errors in Brightness Temperature (K), scaled by 104, between the Fast-RT and LBLRTM models. The second
column indicates the statistical threshold ε1 used for each variant.

Fast-RT M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

RTTOV13 3.8967 0.3357 7.5875 2.1803 0.5966 1.0472 0.6429 0.5221 0.7386 0.6715

10−6 4.7551 0.5896 7.6048 2.2527 0.5833 1.0181 0.6672 0.5088 0.7521 0.7512
SI 10−7 4.7488 0.4203 7.5838 2.1820 0.5985 1.0419 0.6421 0.5198 0.7414 0.6723

10−8 4.3021 0.3429 7.5878 2.1799 0.5970 1.0470 0.6430 0.5218 0.7389 0.6716
10−9 3.8726 0.3348 7.5875 2.1803 0.5966 1.0472 0.6429 0.5221 0.7386 0.6715

10−6 4.7552 0.5896 7.6185 2.2526 0.5832 1.0220 0.6672 0.5109 0.7509 0.7557
BIC+L0 10−7 4.7490 0.4203 7.5975 2.1819 0.5980 1.0492 0.6421 0.5229 0.7425 0.6742

10−8 4.3022 0.3429 7.6035 2.1797 0.5964 1.0549 0.6426 0.5257 0.7411 0.6730
10−9 3.8726 0.3348 7.6027 2.1802 0.5962 1.0550 0.6425 0.5258 0.7407 0.6730

10−6 4.7572 0.5896 7.8953 2.2525 0.5819 1.0270 0.6568 0.5145 0.7575 0.7399
L0+L1 10−7 4.7503 0.4202 7.8756 2.1824 0.5974 1.0509 0.6309 0.5190 0.7434 0.6632

10−8 4.3030 0.3425 7.8858 2.1799 0.5962 1.0570 0.6324 0.5199 0.7414 0.6623
10−9 3.8738 0.3343 7.8860 2.1800 0.5959 1.0572 0.6324 0.5201 0.7406 0.6626

cases are 0.961 K for M7, 0.405 K for M8, and 0.375 K for
M9, with the other channels below 0.15 K. These variations
are not significant in relative terms, as shown in Table 9,
and decrease with a lower statistical threshold, illustrated in
Fig. 7 for ε1 = 10−9. Under this setting, the average BT er-
ror worsens by only 5.7× 10−4 K for M7, 3.7× 10−5 K for
M8, and 7.5×10−3 K for M9, while the others remain below
3.2×10−4 K. The maximum error increases by 2.1×10−2 K
for M7, 1.0×10−3 K for M8, and 1.0×10−3 K for M9, with
the other channels remaining below 1.5× 10−3 K.

These findings confirm that the proposed methods achieve
an accuracy level comparable to RTTOV v13 across most

channels, with only minimal degradation observed in a few
cases under stringent statistical threshold tolerances.

4.5 Validation of Brightness Temperature Against
Instrument Noise Characteristics

To evaluate the accuracy of the Fast RT model, we com-
pare the brightness temperatures it generates with those from
high-fidelity simulations using LBLRTM. A standard valida-
tion criterion requires that the absolute difference in bright-
ness temperature remains below the instrument’s noise level
(Garand et al., 2001). Specifically, this involves comparing
against the Noise Equivalent Delta Temperature (NEdT) for
the thermal emissive bands (M12 to M16), and against the
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Table 10. Maximum Relative Errors in Brightness Temperature (K), scaled by 103, between the Fast-RT and LBLRTM models. The second
column indicates the statistical threshold ε1 used for each variant.

Fast-RT M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

RTTOV13 2.2108 0.3612 1.4245 0.8689 0.4965 0.4082 0.2817 0.2182 0.3501 0.2602

10−6 5.9256 2.0416 1.4218 1.3972 0.4918 0.4143 0.2967 0.1852 0.3549 0.2787
SI 10−7 5.9259 1.2130 1.4243 0.8691 0.4946 0.4066 0.2819 0.2171 0.3501 0.2602

10−8 3.5565 0.4896 1.4245 0.8689 0.4967 0.4082 0.2817 0.2182 0.3500 0.2602
10−9 2.3083 0.3655 1.4245 0.8689 0.4965 0.4082 0.2817 0.2182 0.3501 0.2602

10−6 5.9256 2.0416 1.3104 1.3972 0.4918 0.4197 0.2969 0.1802 0.3559 0.2807
BIC+L0 10−7 5.9259 1.2130 1.3127 0.8687 0.4943 0.4120 0.2820 0.2115 0.3515 0.2660

10−8 3.5565 0.4896 1.3129 0.8686 0.4962 0.4125 0.2816 0.2131 0.3513 0.2650
10−9 2.3085 0.3654 1.3129 0.8687 0.4960 0.4126 0.2817 0.2131 0.3514 0.2650

10−6 5.9256 2.0415 1.5482 1.3993 0.4891 0.4348 0.3036 0.1998 0.3629 0.2851
L0+L1 10−7 5.9259 1.2130 1.5535 0.8686 0.4912 0.4255 0.2892 0.2246 0.3579 0.2692

10−8 3.5565 0.4882 1.5532 0.8684 0.4932 0.4270 0.2891 0.2256 0.3575 0.2683
10−9 2.3116 0.3636 1.5531 0.8684 0.4930 0.4270 0.2892 0.2258 0.3573 0.2681

Figure 6. Average Absolute Errors (left) and Maximum Absolute Errors (right) in Brightness Temperature (K) between the Fast-RT and
LBLRTM models for ε1 = 10−6.

Table 11. SNR and NEdT Values for VIIRS IR M-Bands (L: Low
Gain Mode, H: High Gain Mode).

Channel SNR Ityp Channel NEdT Ttyp

M7 L 340 33.4 M12 0.396 270
M7 H 215 6.4 M13 L 0.423 380
M8 74 5.4 M13 H 0.107 300
M9 83 6.0 M14 0.091 270
M10 342 7.3 M15 0.070 300
M11 10 0.12 M16 0.072 300

Noise Equivalent Delta Radiance (NEdR) for the solar re-
flective bands (M7 to M11). For the VIIRS M-bands, Ta-
ble 11 presents the NEdT values and the signal-to-noise ra-
tios (SNR) used to compute the corresponding NEdR values,
as reported in Table 1 of the manual Cao et al. (2017).

For each channel from M7 to M11, the table reports the
SNR at the reference radiance Ityp (W m−2 sr−1 µm−1), and
for channels M12 to M16, it reports the NEdT at the refer-
ence temperature Ttyp (K). For a thermal emissive band, the

NEdT at temperature T is defined as

NEdT(T )= NEdT(Ttyp) ·
B ′(Ttyp)

B ′(T )

where B ′ is the derivative of the Planck function with respect
to temperature. For solar reflective bands, the Noise Equiva-
lent Delta Radiance (NEdR) at radiance I is defined as

NEdR(I )=
I

SNR
.

Let Iij and Ĩij denote the top of atmosphere polychromatic
radiances obtained using LBLRTM and the Fast RT model,
respectively, for atmospheric profile i and observation angle
θj , and let Tij and T̃ij be the corresponding brightness tem-
peratures. For emissive bands, the following condition must
be satisfied:

|Tij − T̃ij | ≤ NEdT(Tij ),

and for solar reflective bands, we require:

|Iij − Ĩij | ≤ NEdR(Iij ).
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Figure 7. Average Absolute Errors (left) and Maximum Absolute Errors (right) in Brightness Temperature (K) between the Fast-RT and
LBLRTM models for ε1 = 10−9.

Table 12. Percentage of absolute differences in radiance below the NEdR threshold for channels M7–M11, and percentage of absolute
differences in brightness temperature below the NEdT threshold for channels M12–M16. The second column indicates the statistical threshold
ε1 used for each variant.

Fast-RT M7L M7H M8 M9 M10 M11 M12 M13L M13H M14 M15 M16

RTTOV13 6.63 10.84 100.0 97.99 63.45 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10−6 6.83 10.24 97.19 97.99 61.24 100.0 100.0 100.0 100.0 100.0 100.0 99.60
SI 10−7 6.63 10.24 98.80 97.99 63.25 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10−8 6.63 10.24 99.80 97.99 63.45 100.0 100.0 100.0 100.0 100.0 100.0 100.0
10−9 6.83 10.84 100.0 97.99 63.45 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10−6 6.83 10.24 97.19 98.39 61.24 100.0 100.0 100.0 100.0 100.0 100.0 99.60
BIC+L1 10−7 6.63 10.24 98.80 98.39 63.25 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10−8 6.63 10.24 99.80 98.19 63.45 100.0 100.0 100.0 100.0 100.0 100.0 100.0
10−9 6.83 10.64 100.0 98.19 63.45 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10−6 6.83 10.24 97.19 97.79 61.24 100.0 100.0 100.0 100.0 100.0 100.0 100.0
L0+L1 10−7 6.63 10.24 98.80 97.59 63.25 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10−8 6.63 10.24 99.80 97.59 63.86 100.0 100.0 100.0 100.0 100.0 100.0 100.0
10−9 6.83 10.64 100.0 97.59 63.86 100.0 100.0 100.0 100.0 100.0 100.0 100.0

The percentage of atmospheric profiles for which these con-
ditions are satisfied serves as a practical metric to evalu-
ate the quality of the forward model. A high proportion of
cases meeting the criterion indicates that the modeling error
is smaller than the instrument noise, ensuring that the simu-
lated radiances are sufficiently accurate for satellite retrievals
and potentially suitable for data assimilation. Table 12 re-
ports the percentage of cases, computed over 83 atmospheric
profiles and 6 viewing angles, for which the corresponding
noise threshold condition is met.

In the Table 12, it can be observed that for channels M11
to M16, all methods fully satisfy the noise condition, and the
proposed methods are comparable to standard RTTOV13 for
a statistical tolerance threshold of ε1 ≤ 10−6. For channels
M7 to M10, a stricter statistical tolerance threshold is re-
quired to achieve percentages comparable to RTTOV13. For
channels M7 and M10, the fulfillment of the noise criterion
is quite poor; we infer that this is due to the lack of solar radi-
ation inclusion in the various Fast-RT methods. However, the
results obtained with the proposed methods are similar to RT-
TOV13 for small statistical thresholds. For channel M9, the

proposed BIC+L1 model slightly improve the percentage of
profiles that meet the noise threshold compared to standard
RTTOV13. It is clear that the proposed methods reproduce
the results of standard RTTOV13 for large statistical thresh-
olds in the emissive bands and for smaller statistical thresh-
olds in the solar reflective bands, while offering the advan-
tage of greater computational efficiency due to the induced
sparsity.

5 Conclusions

This study presents an automatic and sparse optical depth
parametrization method for the RTTOV v13 model, aimed at
optimizing parameter adjustment. The method applies statis-
tical thresholding across different pressure levels, followed
by LASSO regression, instead of the traditional least squares
approach in the RTTOV v13 framework. A bilevel optimiza-
tion approach is used to select the optimal regularization pa-
rameter, employing different model validation criteria: one
based on `0 regression and another on the Bayesian Infor-
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mation Criterion (BIC). These alternatives enforce signifi-
cant sparsity across all optical depth regression parameters,
substantially reducing the computational cost of the Fast-RT
model without compromising accuracy.

Validation experiments were conducted on the infrared
channels of the M-bands for the VIIRS instrument. Different
validation criteria were considered, including transmitance
fitting against LBLRTM transmitance, brightness tempera-
ture fitting against LBLRTM transmitance, and the difference
between brightness temperature and the instrument’s Noise
Equivalent Delta Temperature. The results show consistency
with RTTOV v13, while providing improved runtime perfor-
mance in the evaluation of parameterized transmitances.

The induced sparsity automatically excludes gases with
negligible absorptivity in a channel, identifies pressure lev-
els where gases significantly absorb radiance, highlights the
most relevant predictors for each gas type, and classifies
gases as either fixed or variable. This technique is particu-
larly advantageous for multispectral instruments where mul-
tiple gases exhibit strong correlations in radiance absorp-
tion, especially in large-scale variable retrievals for inverse
problems. The proposed method may be extended to other
Fast-RT models, such as CRTM, and to other satellite in-
struments, such as the Advanced Technology Microwave
Sounder (ATMS) and the Cross-track Infrared Sounder
(CrIS), to enhance both the computational efficiency of ra-
diative transfer models and the accuracy of retrieved atmo-
spheric profiles.

The numerical results obtained at different levels of vali-
dation, particularly the output from the proposed model in-
dicating a high proportion of profiles with errors below the
instrument’s NEdT, provide strong evidence of its suitabil-
ity and potential for satellite data assimilation. Nevertheless,
applying sparsity-inducing models in this context requires a
careful evaluation of the sensitivity of simulated radiances
to the underlying model state variables. This evaluation, in
practical scenarios such as the satellite data assimilation of
radiances from the proposed Fast-RT model, will be carried
out in future work.

Additionally, future directions may include a benchmark
comparison against other existing Fast-RT models and more
general scenarios with extreme atmospheric conditions, con-
sidering strong absorption due to extreme pollution events
and incorporating variable SO2 concentrations in environ-
ments with high volcanic activity.

Geosci. Model Dev., 18, 8511–8534, 2025 https://doi.org/10.5194/gmd-18-8511-2025



F. Vargas Jiménez and J. C. De los Reyes: Automatic sparse parametrization of RTTOV 8529

Appendix A: Sparsity Pattern for
RTTOV13+SI+LASSO

Figure A1. Sparsity pattern for channels M7 to M11 in L0–L1 for ε1 = 10−6.
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Figure A2. Sparsity pattern for channels M13 to M16 in L0–L1 for ε1 = 10−6.
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Appendix B: RTTOV v3 Predictors

Table B1. Predictors for RTTOV v13, (Saunders et al., 2017). ∗ Not an original RTTOV v13 predictor; this predictor corresponds to Case II
of the statistical threshold parametrization.

N0 FIX H2O O3 CO2

0∗ 1 1 1 1
1 sec(θ) (sec(θ)Wr )2 sec(θ)O3r sec(θ)CO2r
2 sec2(θ) sec(θ)Ww

√
sec(θ)O3r T 2

r

3 sec(θ)Tr (sec(θ)Ww)2 sec(θ)O3r δT sec(θ)Tr
4 sec(θ)T 2

r sec(θ)WrδT sec(θ)O3r /Ow sec(θ)T 2
r

5 Tr
√

sec(θ)Wr
(
sec(θ)O3r

)2
Tr

6 T 2
r

4√sec(θ)Wr sec(θ)O2
3r
Ow sec(θ)Tw

7 sec(θ)Tw sec(θ)Wr
√

sec(θ)O3rO3r /Ow (sec(θ)CO2w)
2

8 sec(θ)T 3
r (sec(θ)Ww)1.5 sec(θ)O3rOw sec(θ)Tw

√
Tr

9 sec(θ)
√

sec(θ)Tr (sec(θ)Wr )1.5
(
sec(θ)O3w

)1.75 √
sec(θ)CO2r

10 1 (sec(θ)Wr )1.5δT sec(θ)O3r
√

sec(θ)O3w T 3
r

11 –
√

sec(θ)WrδT
(
sec(θ)O3w

)2 sec(θ)T 3
r

12 – (sec(θ)Ww)1.25 √
sec(θ)O2

3w
δT

√
sec(θ)T 2

r T
3
w

13 – sec(θ)W2
r /Ww sec(θ)O3w T 2

r T
2
w

14 –
√

sec(θ)WrWr/Wwt – sec(θ)CO2w
15 – sec(θ)

√
Ww – –

OD 1–9 1–14 1–12 1–13
COR 2, 3, 4, 10 2, 4, 5, 6, 15 13 14, 8, 9

N0 N2O CO CH4

0∗ 1 1 1
1 sec(θ)N2Or sec(θ)COr sec(θ)CH4r
2

√
sec(θ)N2Or

√
sec(θ)COr

√
sec(θ)CH4r

3 sec(θ)N2OrδT sec(θ)COrδT sec(θ)CH4r δT

4 (sec(θ)N2Or )2 (sec(θ)COr )2 (sec(θ)CH4r )
2

5 N2OrδT
√

sec(θ)COrδT CH4r δT
6 4√sec(θ)N2Or 4√sec(θ)COr 4

√
sec(θ)CH4r

7 sec(θ)N2Ow sec(θ)COrδT |δT | sec(θ)CH4wt
8 sec(θ)N2Owt sec(θ)CO2

r /COw CH4wt
9

√
sec(θ)N2OrN2Or/N2Ow

√
sec(θ)COrCOr/COw (sec(θ)CH4w )

2

10 (sec(θ)N2Owt)
2 sec(θ)CO2

r /
√

COw sec(θ)CH4w
11 (sec(θ)N2Owt)

3 (sec(θ)COw)0.4
√

sec(θ)CH4rCH4r /CH4w
12 sec2(θ)N2OwtδT

4√sec(θ)COwt (sec(θ)CH4w )
1.25

13 – sec2(θ)COrCOw –
14 – sec(θ)COw –
15 – sec(θ)COwt –
16 – (sec(θ)COw)2 –

OD 1–12 1–13 1–11
COR 7, 8, 10, 11, 12 12, 14, 15, 16 7, 9, 10, 12
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pδp(l)= p(l+ 1)(p(l+ 1)−p(l)), pδp(0)= p(1)(p(2)−p(1)),

T (l)=
1
2
(T prof(l)+ T prof(l+ 1)), T ∗(l)=

1
2
(T ref(l)+ T ref(l+ 1)), Tr(l)=

T (l)

T ∗(l)
,

Tw(l)=

∑l
i=1pδp(l− 1)T (l)∑l
i=1pδp(l− 1)T ∗(l)

, δT (l)= T (l)− T ∗(l),

G(l)=
1
2
(Gprof(l)+Gprof(l+ 1)), G∗(l)=

1
2
(Gref(l)+Gref(l+ 1)), Gr(l)=

G(l)

G∗(l)
,

Gw(l)=

∑l
i=1pδp(l− 1)G(l)∑l
i=1pδp(l− 1)G∗(l)

, Gwt(l)=

∑l
i=1pδp(l− 1)T (l)G(l)∑l
i=1pδp(l− 1)T ∗(l)G∗(l)

.

where p(l) is the pressure (hPa) at level l, T prof(l) is
the temperature (K) at level l of the input profile, T ref(l)

is the temperature (K) at level l of the reference profile
which is the mean over the training profile set, G ∈ {W =
H2O,O3,CO2,N2O,CO,CH4} represents gas concentration
(ppmv over dry air), Gprof(l) are the gas concentrations at
level l of the input profile and Gref(l) are the gas concentra-
tions at level l of the reference profile which is the mean over
the training profile set.
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