Articles | Volume 18, issue 21
https://doi.org/10.5194/gmd-18-8313-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-8313-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Bias correcting regional scale Earth system model projections: novel approach using empirical mode decomposition
Arkaprabha Ganguli
CORRESPONDING AUTHOR
Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA
Jeremy Feinstein
CORRESPONDING AUTHOR
Environmental Science Division, Argonne National Laboratory, Lemont, IL, USA
Ibraheem Raji
Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, USA
Akintomide Akinsanola
Environmental Science Division, Argonne National Laboratory, Lemont, IL, USA
Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, USA
Connor Aghili
Environmental Science Division, Argonne National Laboratory, Lemont, IL, USA
Chunyong Jung
Environmental Science Division, Argonne National Laboratory, Lemont, IL, USA
Jordan Branham
Decision and Infrastructure Sciences, Argonne National Laboratory, Lemont, IL, USA
Tom Wall
Decision and Infrastructure Sciences, Argonne National Laboratory, Lemont, IL, USA
Whitney Huang
School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, USA
Rao Kotamarthi
Environmental Science Division, Argonne National Laboratory, Lemont, IL, USA
Related authors
No articles found.
Lindsay M. Sheridan, Jiali Wang, Caroline Draxl, Nicola Bodini, Caleb Phillips, Dmitry Duplyakin, Heidi Tinnesand, Raj K. Rai, Julia E. Flaherty, Larry K. Berg, Chunyong Jung, Ethan Young, and Rao Kotamarthi
Wind Energ. Sci., 10, 1551–1574, 10.5194/wes-10-1551-2025, 10.5194/wes-10-1551-2025, 2025
Short summary
Short summary
Three recent wind resource datasets are assessed for their skills in representing annual average wind speeds and seasonal, diurnal, and interannual trends in the wind resource in coastal locations to support customers interested in small and midsize wind energy.
Lara Tobias-Tarsh, Chunyong Jung, Jiali Wang, Vishal Bobde, Akintomide A. Akinsanola, and V. Rao Kotamarthi
EGUsphere, 10.5194/egusphere-2025-1805, 10.5194/egusphere-2025-1805, 2025
Preprint archived
Short summary
Short summary
We use a high-resolution regional climate model to better understand hurricanes in the North Atlantic over the past 20 years. The model closely matches observed storm frequency and captures stronger storms more accurately than traditional datasets. It also shows better performance in areas with limited data, like the Caribbean. These results can help improve local storm preparedness and planning for critical infrastructure.
Chunyong Jung, Pengfei Xue, Chenfu Huang, William Pringle, Mrinal Biswas, Geeta Nain, and Jiali Wang
Wind Energ. Sci. Discuss., 10.5194/wes-2025-47, 10.5194/wes-2025-47, 2025
Revised manuscript under review for WES
Short summary
Short summary
This study introduces a system that combines weather, ocean, and wave models to better understand their interactions during tropical storms and their impact on offshore structures like wind turbines. Tested using Hurricane Henri (2021), the system improves storm predictions by including how waves and ocean cooling affect storm strength and wind patterns. The results show this approach helps assess risks to offshore infrastructure during severe weather, making it more accurate and reliable.
Kyle Peco, Jiali Wang, Chunyong Jung, Gökhan Sever, Lindsay Sheridan, Jeremy Feinstein, Rao Kotamarthi, Caroline Draxl, Ethan Young, Avi Purkayastha, and Andrew Kumler
Wind Energ. Sci. Discuss., 10.5194/wes-2025-13, 10.5194/wes-2025-13, 2025
Revised manuscript accepted for WES
Short summary
Short summary
This study presents a new wind dataset, generated by a climate model, that can help facilitate efforts in wind energy. By providing data across much of North America, this dataset can offer insights into the wind patterns in more understudied regions. By validating the dataset against actual wind observations, we have demonstrated that this dataset is able to accurately capture the wind patterns of different geographic areas, which can help identify locations for wind energy farms.
Qiuyi Wu, Julie Bessac, Whitney Huang, Jiali Wang, and Rao Kotamarthi
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 205–224, 10.5194/ascmo-8-205-2022, 10.5194/ascmo-8-205-2022, 2022
Short summary
Short summary
We study wind conditions and their potential future changes across the U.S. via a statistical conditional framework. We conclude that changes between historical and future wind directions are small, but wind speeds are generally weakened in the projected period, with some locations being intensified. Moreover, winter wind speeds are projected to decrease in the northwest, Colorado, and the northern Great Plains (GP), while summer wind speeds over the southern GP slightly increase in the future.
William J. Shaw, Larry K. Berg, Mithu Debnath, Georgios Deskos, Caroline Draxl, Virendra P. Ghate, Charlotte B. Hasager, Rao Kotamarthi, Jeffrey D. Mirocha, Paytsar Muradyan, William J. Pringle, David D. Turner, and James M. Wilczak
Wind Energ. Sci., 7, 2307–2334, 10.5194/wes-7-2307-2022, 10.5194/wes-7-2307-2022, 2022
Short summary
Short summary
This paper provides a review of prominent scientific challenges to characterizing the offshore wind resource using as examples phenomena that occur in the rapidly developing wind energy areas off the United States. The paper also describes the current state of modeling and observations in the marine atmospheric boundary layer and provides specific recommendations for filling key current knowledge gaps.
Caleb Phillips, Lindsay M. Sheridan, Patrick Conry, Dimitrios K. Fytanidis, Dmitry Duplyakin, Sagi Zisman, Nicolas Duboc, Matt Nelson, Rao Kotamarthi, Rod Linn, Marc Broersma, Timo Spijkerboer, and Heidi Tinnesand
Wind Energ. Sci., 7, 1153–1169, 10.5194/wes-7-1153-2022, 10.5194/wes-7-1153-2022, 2022
Short summary
Short summary
Adoption of distributed wind turbines for energy generation is hindered by challenges associated with siting and accurate estimation of the wind resource. This study evaluates classic and commonly used methods alongside new state-of-the-art models derived from simulations and machine learning approaches using a large dataset from the Netherlands. We find that data-driven methods are most effective at predicting production at real sites and new models reliably outperform classic methods.
Romit Maulik, Vishwas Rao, Jiali Wang, Gianmarco Mengaldo, Emil Constantinescu, Bethany Lusch, Prasanna Balaprakash, Ian Foster, and Rao Kotamarthi
Geosci. Model Dev., 15, 3433–3445, 10.5194/gmd-15-3433-2022, 10.5194/gmd-15-3433-2022, 2022
Short summary
Short summary
In numerical weather prediction, data assimilation is frequently utilized to enhance the accuracy of forecasts from equation-based models. In this work we use a machine learning framework that approximates a complex dynamical system given by the geopotential height. Instead of using an equation-based model, we utilize this machine-learned alternative to dramatically accelerate both the forecast and the assimilation of data, thereby reducing need for large computational resources.
Jiali Wang, Zhengchun Liu, Ian Foster, Won Chang, Rajkumar Kettimuthu, and V. Rao Kotamarthi
Geosci. Model Dev., 14, 6355–6372, 10.5194/gmd-14-6355-2021, 10.5194/gmd-14-6355-2021, 2021
Short summary
Short summary
Downscaling, the process of generating a higher spatial or time dataset from a coarser observational or model dataset, is a widely used technique. Two common methodologies for performing downscaling are to use either dynamic (physics-based) or statistical (empirical). Here we develop a novel methodology, using a conditional generative adversarial network (CGAN), to perform the downscaling of a model's precipitation forecasts and describe the advantages of this method compared to the others.
Jaydeep Singh, Narendra Singh, Narendra Ojha, Amit Sharma, Andrea Pozzer, Nadimpally Kiran Kumar, Kunjukrishnapillai Rajeev, Sachin S. Gunthe, and V. Rao Kotamarthi
Geosci. Model Dev., 14, 1427–1443, 10.5194/gmd-14-1427-2021, 10.5194/gmd-14-1427-2021, 2021
Short summary
Short summary
Atmospheric models often have limitations in simulating the geographically complex and climatically important central Himalayan region. In this direction, we have performed regional modeling at high resolutions to improve the simulation of meteorology and dynamics through a better representation of the topography. The study has implications for further model applications to investigate the effects of anthropogenic pressure over the Himalaya.
Cited articles
Akinsanola, A. A., Jung, C., Wang, J., and Kotamarthi, V. R.: Evaluation of precipitation across the contiguous United States, Alaska, and Puerto Rico in multi-decadal convection-permitting simulations, Sci. Rep., 14, 1238, https://doi.org/10.1038/s41598-024-51714-3, 2024. a
Alizadeh, F., Roushangar, K., and Adamowski, J.: Investigating monthly precipitation variability using a multiscale approach based on ensemble empirical mode decomposition, Paddy Water Environ., 17, 741–759, 2019. a
Ashfaq, M., Bowling, L. C., Cherkauer, K., Pal, J. S., and Diffenbaugh, N. S.: Influence of climate model biases and daily-scale temperature and precipitation events on hydrological impacts assessment: a case study of the United States, J. Geophys. Res., 115, D14116, https://doi.org/10.1029/2009JD012965, 2010. a
Boé, J., Terray, L., Habets, F., and Martin, E.: Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies, Int. J. Climatol., 27, 1643–1655, 2007. a
Bukovsky, M. S. and Karoly, D. J.: A Regional Modeling Study of Climate Change Impacts on Warm-Season Precipitation in the Central United States, J. Climate, 24, 1985–2002, https://doi.org/10.1175/2010JCLI3447.1, 2011. a, b
Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface – Hydrology Model with the Penn State – NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity, Mon. Weather Rev., 129, 569–585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001. a
Chen, J., Brissette, F. P., Chaumont, D., and Braun, M.: Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America, Water Resour. Res., 49, 4187–4205, 2013. a
Christensen, J. H., Boberg, F., Christensen, O. B., and Lucas-Picher, P.: On the need for bias correction of regional climate change projections of temperature and precipitation, Geophys. Res. Lett., 35, https://doi.org/10.1029/2008GL035694, 2008. a, b
Corney, S., Grose, M., Bennett, J. C., White, C., Katzfey, J., McGregor, J., Holz, G., and Bindoff, N. L.: Performance of downscaled regional climate simulations using a variable-resolution regional climate model: Tasmania as a test case, J. Geophys. Res.-Atmos., 118, 11936–11950, https://doi.org/10.1002/2013JD020087, 2013. a
Das, P., Zhang, Z., and Ren, H.: Evaluation of four bias correction methods and random forest model for climate change projection in the Mara River Basin, East Africa, J. Water Clim. Change, 13, 1900–1919, 2022. a
Dhawan, P., Dalla Torre, D., Niazkar, M., Kaffas, K., Larcher, M., Righetti, M., and Menapace, A.: A comprehensive comparison of bias correction methods in climate model simulations: Application on ERA5-Land across different temporal resolutions, Heliyon, 10, e40352, https://doi.org/10.1016/j.heliyon.2024.e40352, 2024. a
Fan, L., Chen, D., Fu, C., and Zhongwei, Y.: Statistical Downscaling of Summer Temperature Extremes in Northern China, Adv. Atmos. Sci., 30, 1085–1095, https://doi.org/10.1007/s00376-012-2057-0, 2013. a
Feng, S., Tan, Y., Kang, J., Zhong, Q., Li, Y., and Ding, R.: Bias correction of tropical cyclone intensity for ensemble forecasts using the XGBoost method, Weather Forecast., 39, 323–332, 2024. a
Fosso, O. B. and Molinas, M.: EMD Mode Mixing Separation of Signals with Close Spectral Proximity in Smart Grids, in: 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 1–6, https://doi.org/10.1109/ISGTEurope.2018.8571816, 2018. a
Gamelin, B. L., Feinstein, J., Wang, J., Bessac, J., Yan, E., and Kotamarthi, V. R.: Projected U.S. drought extremes through the twenty-first century with vapor pressure deficit, Sci. Rep., 12, 8615, https://doi.org/10.1038/s41598-022-12516-7, 2022. a
Ganguli, A. and Feinstein, J.: EMDBC: Empirical Mode Decomposition-based Bias Correction, GitHub [code], https://github.com/jeremyfifty9/emdbc (last access: 23 April 2025), 2025. a
Ganguli, A., Feinstein, J., Raji, I., Akinsanola, A., Aghili, C., Jung, C., Branham, J., Wall, T., Huang, W., and Kotamarthi, R.: Full Simulation Data, Validation Indices, and Frozen Repository for the Empirical Mode Decomposition Based Bias Correction Approach, Zenodo [code and data set], https://doi.org/10.5281/zenodo.15244202, 2025. a
Grell, G. A. and Dévényi, D.: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques, Geophys. Res. Lett., 29, 38-1–38-4, https://doi.org/10.1029/2002GL015311, 2002. a
Gudmundsson, L.: qmap: Statistical transformations for postprocessing climate model output, r package version 1.0–3, https://cran.r-project.org/web/packages/qmap/ (last access: 28 January 2025), 2012. a
Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-Skaugen, T.: Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods, Hydrol. Earth Syst. Sci., 16, 3383–3390, https://doi.org/10.5194/hess-16-3383-2012, 2012. a
Haerter, J. O., Hagemann, S., Moseley, C., and Piani, C.: Climate model bias correction and the role of timescales, Hydrol. Earth Syst. Sci., 15, 1065–1079, https://doi.org/10.5194/hess-15-1065-2011, 2011. a
Hawinkel, P., Swinnen, E., Lhermitte, S., Verbist, B., Van Orshoven, J., and Muys, B.: A time series processing tool to extract climate-driven interannual vegetation dynamics using Ensemble Empirical Mode Decomposition (EEMD), Remote Sens. Environ., 169, 375–389, https://doi.org/10.1016/j.rse.2015.08.024, 2015. a
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008. a
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new high-resolution climate change projections for European impact research, Reg. Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014. a, b
Jin, Z., Zhuang, Q., Wang, J., Archontoulis, S. V., Zobel, Z., and Kotamarthi, V. R.: The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO2, Global Change Biol., 23, 2687–2704, 2017. a
Kim, K. B., Kwon, H.-H., and Han, D.: Precipitation ensembles conforming to natural variations derived from a regional climate model using a new bias correction scheme, Hydrol. Earth Syst. Sci., 20, 2019–2034, https://doi.org/10.5194/hess-20-2019-2016, 2016. a
Kim, T., Shin, J.-Y., Kim, S., and Heo, J.-H.: Identification of relationships between climate indices and long-term precipitation in South Korea using ensemble empirical mode decomposition, J. Hydrol., 557, 726–739, 2018. a
Kotamarthi, R., Hayhoe, K., Wuebbles, D., Mearns, L. O., Jacobs, J., and Jurado, J.: Downscaling Techniques for High-Resolution Climate Projections: From Global Change to Local Impacts, Cambridge University Press, Cambridge, https://doi.org/10.1017/9781108601269, 2021. a
Laszuk, D.: Python implementation of Empirical Mode Decomposition algorithm, Zenodo [code], https://doi.org/10.5281/zenodo.5459184, 2017. a
Li, H., Sheffield, J., and Wood, E. F.: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching, J. Geophys. Res.-Atmos., 115, D10101, https://doi.org/10.1029/2009JD012882, 2010. a
Liu, H., Zhan, Q., Yang, C., and Wang, J.: The multi-timescale temporal patterns and dynamics of land surface temperature using Ensemble Empirical Mode Decomposition, Sci. Total Environ., 652, 243–255, 2019. a
Liu, J., Kyle, C., Wang, J., Kotamarthi, R., Koval, W., Dukic, V., and Dwyer, G.: Climate change drives reduced biocontrol of the invasive spongy moth, Nat. Clim. Change, 15, 210–217, 2025. a
Livneh, B., Rosenberg, E. A., Lin, C., Nijssen, B., Mishra, V., Andreadis, K. M., Maurer, E. P., and Lettenmaier, D. P.: A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States: Update and Extensions, J. Climate, 26, 9384–9392, https://doi.org/10.1175/JCLI-D-12-00508.1, 2013. a, b
Maraun, D.: Bias Correcting Climate Change Simulations – A Critical Review, Curr. Clim. Change Rep., 2, 211–220, https://doi.org/10.1007/s40641-016-0050-x, 2016. a
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J., Maycock, T., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B. (Eds.): Climate Change 2021: The Physical Science Basis, in: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.1017/9781009157896, 2021. a
Mearns, L. O., Arritt, R., Biner, S., Bukovsky, M. S., McGinnis, S., Sain, S., Caya, D., Correia, J., Flory, D., Gutowski, W., Takle, E. S., Jones, R., Leung, R., Moufouma-Okia, W., McDaniel, L., Nunes, A. M. B., Qian, Y., Roads, J., Sloan, L., and Snyder, M.: The North American Regional Climate Change Assessment Program: Overview of Phase I Results, B. Am. Meteorol. Soc., 93, 1337–1362, https://doi.org/10.1175/BAMS-D-11-00223.1, 2012. a
Mearns, L. O., McGinnis, S., Korytina, D., Arritt, R., Biner, S., Bukovsky, M., Chang, H.-I, Christensen, O., Herzmann, D., Jiao, Y., Kharin, S., Lazare, M., Nikulin, G., Qian, M., Scinocca, J., Winger, K., Castro, C., Frigon, A., Gutowski, W., and Kessenich, L.: The NA-CORDEX dataset, version 1.0, WCRP, https://doi.org/10.5065/D6SJ1JCH, 2017. a
Miftahurrohmah, B., Kuswanto, H., Pambudi, D. S., Fauzi, F., and Atmaja, F.: Assessment of the Support Vector Regression and Random Forest Algorithms in the Bias Correction Process on Temperatures, Proced. Comput. Sci., 234, 637–644, 2024. a
Miguez-Macho, G., Stenchikov, G. L., and Robock, A.: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations, J. Geophys. Res.-Atmos., 109, D13104, https://doi.org/10.1029/2003JD004495, 2004. a
Misra, V.: Addressing the Issue of Systematic Errors in a Regional Climate Model, J. Climate, 20, 801–818, https://doi.org/10.1175/JCLI4037.1, 2007. a
Morrison, H., Thompson, G., and Tatarskii, V.: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes, Mon. Weather Rev., 137, 991–1007, https://doi.org/10.1175/2008MWR2556.1, 2009. a
Nikulin, G., Jones, C., Giorgi, F., Asrar, G., Büchner, M., Cerezo-Mota, R., Christensen, O. B., Déqué, M., Fernandez, J., Hänsler, A., van Meijgaard, E., Samuelsson, P., Sylla, M. B., and Sushama, L.: Precipitation Climatology in an Ensemble of CORDEX-Africa Regional Climate Simulations, J. Climate, 25, 6057–6078, https://doi.org/10.1175/JCLI-D-11-00375.1, 2012. a
NOAA-PSL: Livneh Daily CONUS Near-Surface Gridded Meteorological and Derived Hydrometeorological Data, NOAA PSL [data set], https://psl.noaa.gov/data/gridded/data.livneh.html (last access: April 2025), 2013. a
Noh, Y., Cheon, W. G., Hong, S. Y., and Raasch, S.: Improvement of the K-profile Model for the Planetary Boundary Layer Based on Large Eddy Simulation Data, Bound.-Lay. Meteorol., 107, 401–427, https://doi.org/10.1023/A:1022146015946, 2003. a
Panaretos, V. M. and Zemel, Y.: Statistical aspects of Wasserstein distances, Annu. Rev. Stat. Appl., 6, 405–431, 2019. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011. a
Piani, C., Haerter, J. O., and Coppola, E.: Statistical bias correction for daily precipitation in regional climate models over Europe, Theor. Appl. Climatol., 99, 187–192, 2009. a
Piani, C., Weedon, G. P., Best, M., Gomes, S. M., Viterbo, P., Hagemann, S., and Haerter, J. O.: Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models, J. Hydrol., 395, 199–215, 2010. a
Pierce, D. W., Cayan, D. R., and Thrasher, B. L.: Statistical downscaling using localized constructed analogs (LOCA), J. Hydrometeorol., 15, 2558–2585, 2014. a
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K., Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S., Schmidli, J., van Lipzig, N. P. M., and Leung, R.: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges, Rev. Geophys., 53, 323–361, https://doi.org/10.1002/2014RG000475, 2015. a
Rajulapati, C. R. and Papalexiou, S. M.: Precipitation Bias Correction: A Novel Semi-parametric Quantile Mapping Method, Earth Space Sci., 10, e2023EA002823, https://doi.org/10.1029/2023EA002823, 2023. a
Ranasinghe, R., Ruane, A., Vautard, R., Arnell, N., Coppola, E., Cruz, F., Dessai, S., Islam, A., Rahimi, M., Ruiz Carrascal, D., Sillmann, J., Sylla, M., Tebaldi, C., Wang, W., and Zaaboul, R.: Climate Change Information for Regional Impact and for Risk Assessment, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J., Maycock, T., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, 1767–1926, https://doi.org/10.1017/9781009157896.014, 2021. a
Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., and Rafaj, P.: RCP 8.5 – A Scenario of Comparatively High Greenhouse Gas Emissions, Climatic Change, 109, 33, https://doi.org/10.1007/s10584-011-0149-y, 2011. a
Roberts, M. J., Baker, A., Blockley, E. W., Calvert, D., Coward, A., Hewitt, H. T., Jackson, L. C., Kuhlbrodt, T., Mathiot, P., Roberts, C. D., Schiemann, R., Seddon, J., Vannière, B., and Vidale, P. L.: Description of the resolution hierarchy of the global coupled HadGEM3-GC3.1 model as used in CMIP6 HighResMIP experiments, Geosci. Model Dev., 12, 4999—5028, https://doi.org/10.5194/gmd-12-4999-2019, 2019. a
Rockmore, D.: The FFT: an algorithm the whole family can use, Comput. Sci. Eng., 2, 60–64, https://doi.org/10.1109/5992.814659, 2000. a
Sarhadi, A., Burn, D. H., Johnson, F., Mehrotra, R., and Sharma, A.: Water resources climate change projections using supervised nonlinear and multivariate soft computing techniques, J. Hydrol., 536, 119–132, 2016. a
Schulzweida, U.: CDO User Guide, Zenodo [code], https://doi.org/10.5281/zenodo.10020800, 2023. a
Skamarock, W., Klemp, J., Dudhia, J., Gill, D. O., Barker, D., Duda, M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A Description of the Advanced Research WRF Version 3, Tech. rep., University Corporation for Atmospheric Research, https://doi.org/10.5065/D68S4MVH, 2008. a
Tan, H., Kotamarthi, R., Wang, J., Qian, Y., and Chakraborty, T. C.: Impact of different roofing mitigation strategies on near-surface temperature and energy consumption over the Chicago metropolitan area during a heatwave event, Sci. Total Environ., 860, 160508, https://doi.org/10.1016/j.scitotenv.2022.160508, 2023. a
Tang, B., Dong, S., and Song, T.: Method for eliminating mode mixing of empirical mode decomposition based on the revised blind source separation, Signal Process., 92, 248–258, https://doi.org/10.1016/j.sigpro.2011.07.013, 2012. a, b
Teutschbein, C. and Seibert, J.: Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods, J. Hydrol., 456–457, 12–29, 2012. a
Tong, Y., Gao, X. J., Han, Z. Y., Xu, Y., and Giorgi, F.: Bias correction of temperature and precipitation over China for RCM simulations using the QM and QDM methods, Clim. Dynam., 57, 1425–1443, https://doi.org/10.1007/s00382-020-05447-4, 2021. a, b, c
Tumsa, B. C.: Performance assessment of six bias correction methods using observed and RCM data at upper Awash basin, Oromia, Ethiopia, J. Water Clim. Change, 13, 664–683, https://doi.org/10.2166/wcc.2021.181, 2021. a
USGCRP: Fifth national climate assessment, Tech. rep., https://doi.org/10.7930/NCA5.2023.FM, 2023. a, b
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nat. Meth., 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Wang, J. and Kotamarthi, V. R.: Downscaling with a nested regional climate model in near-surface fields over the contiguous United States, J. Geophys. Res.-Atmos., 119, 8778–8797, https://doi.org/10.1002/2014JD021696, 2014. a, b, c
Wang, J. and Kotamarthi, V. R.: High-resolution dynamically downscaled projections of precipitation in the mid and late 21st century over North America, Earth's Future, 3, 268–288, https://doi.org/10.1002/2015EF000304, 2015. a, b, c, d
Wang, L. and Chen, W.: Equiratio cumulative distribution function matching as an improvement to the equidistant approach in bias correction of precipitation, Atmos. Sci. Lett., 15, 1–6, 2014. a
Wood, A. W.: Long-range experimental hydrologic forecasting for the eastern United States, J. Geophys. Res., 107, D20, https://doi.org/10.1029/2001JD000659, 2002. a
Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P.: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs, Climatic Change, 62, 189–216, 2004. a
Xu, Z. and Yang, Z.-L.: A new dynamical downscaling approach with GCM bias corrections and spectral nudging, J. Geophys. Res.-Atmos., 120, 3063–3084, https://doi.org/10.1002/2014JD022958, 2015. a
Xu, Z., Han, Y., Tam, C.-Y., Yang, Z.-L., and Fu, C.: Bias-corrected CMIP6 global dataset for dynamical downscaling of the historical and future climate (1979–2100), Sci. Data, 8, 293, https://doi.org/10.1038/s41597-021-01079-3, 2021. a
Short summary
This study introduces a timescale-aware bias-correction framework to enhance Earth system model assessments, vital for the geoscience community. By decomposing model outputs into oscillatory components, we preserve critical information across various timescales, ensuring more reliable projections. This improved reliability supports strategic decisions in sectors such as agriculture, water resources, and disaster preparedness.
This study introduces a timescale-aware bias-correction framework to enhance Earth system model...