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Abstract. Bias correction is a crucial step in using Earth sys-
tem model outputs for assessments, as it adjusts systematic
errors by comparing the model to observations. However,
standard methods – ranging from mean-based linear scaling
to distribution-based quantile mapping typically treat bias
correction as a single-scale process, overlooking the fact that
biases can manifest differently across daily, seasonal, and an-
nual timescales. In this study, we propose a novel, timescale-
aware bias-correction approach built on Empirical Mode De-
composition. By decomposing the meteorological signal into
multiple oscillatory components and aggregating them to
represent distinct timescales, we apply targeted corrections
to each component, thereby preserving both short- and long-
term structure in the data. Experimental illustrations show
that the timescale-aware EMDBC framework matches the
performance of conventional quantile-delta mapping (QDM)
at the native daily scale and achieves progressively larger bias
reductions at bi-weekly, seasonal, and annual scales. As a re-
sult, the proposed approach offers a more robust path to ac-
curate and reliable Earth system projections, strengthening
their utility for resilience and adaptation planning.

1 Introduction

Accurate projections of future weather dynamics at re-
gional and local scales are crucial not only for understand-
ing extremes but also for guiding decision-making in sec-
tors such as water resource management, agriculture, re-
newable energy, and public health. Over the decades, the
horizontal spatial resolution of large-scale models, includ-
ing global climate models (GCMs), has significantly im-
proved, with grid cells for CMIP6 (Coupled Model Inter-
comparison Project Phase 6) models typically ranging from
50 to 100 km (Masson-Delmotte et al., 2021; Roberts et al.,
2019). However, most resilience and preparedness efforts de-
mand meteorological inputs at spatial and temporal scales
much finer than the resolution of the latest GCMs (Kota-
marthi et al., 2021). Consequently, current state-of-the-art
GCMs still fall short in providing the fine-scale resolution
required for detailed assessments in many sectors. Common
approaches to addressing the scale gap between informa-
tion from GCMs and the needs for actionable regional and
local-scale information include statistical (Fan et al., 2013;
Pierce et al., 2014) and dynamical downscaling (Prein et al.,
2015; Wang and Kotamarthi, 2014, 2015; Akinsanola et al.,
2024) approaches. Unlike statistical downscaling which re-
lies on drawing empirical relationships between large-scale
Earth system models and local observations to infer fine-
scale meteorological information, dynamical downscaling
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can simulate a range of physical processes and their interac-
tions within the Earth system, producing a comprehensive set
of dynamically consistent high-resolution atmospheric vari-
ables. The standard practice of dynamical downscaling in-
volves the continuous operation of a regional climate model
(RCM), using outputs from GCMs as initial and lateral
boundary conditions. Various region-level modeling and as-
sessment initiatives have adopted this approach, including
the North American Regional Climate Change Assessment
Program (Mearns et al., 2012), the North American compo-
nent of the Coordinated Regional Downscaling Experiment
(NA-CORDEX) (Mearns et al., 2017), targeted evaluations
for Tasmania (Corney et al., 2013), the central United States
(Bukovsky and Karoly, 2011), the European Coordinated Re-
gional Downscaling Experiment (EURO-CORDEX) ensem-
ble over Europe (Jacob et al., 2014), and the Coordinated
Regional Downscaling Experiment over Africa (CORDEX-
Africa) initiative (Nikulin et al., 2012), demonstrating the
enhanced capability to capture fine-scale features and pro-
vide more realistic, detailed projections at regional and lo-
cal scales. Despite these improvements, RCMs continue to
face challenges with biases arising from both their forcing
data and inherent systematic errors, such as those related to
model resolution (Christensen et al., 2008), simplified phys-
ical parameterizations (Misra, 2007; Bukovsky and Karoly,
2011; Jacob et al., 2014), and incomplete understanding of
the Earth system (Christensen et al., 2008), all of which de-
grade the downscaled simulations.

To address these biases and improve the reliability of fu-
ture projections, various bias correction (BC) methods have
been developed and employed in many studies. One of the
simplest approaches is the mean-based linear scaling BC
method (Tumsa, 2021). It involves calculating the difference
between the mean of the historical output of the model and
the mean of the observed data. The difference is then added
to the future projections, scaling the model data based on
the mean difference between model and observations calcu-
lated in the historical record. However, this method assumes
that the relationship between model and observed data is lin-
ear with time and over the entire distribution of the vari-
able. However, this may not capture more complex biases,
especially for extreme events or in cases where the distri-
bution of the data differs significantly between the model
and observations or between the present and future projec-
tions. Furthermore, it only adjusts the mean and does not ad-
dress other statistical moments, such as variability or skew-
ness, potentially limiting its effectiveness in accurately repre-
senting the full range of weather conditions. Building on the
mean-variance trend correction approach introduced by Xu
and Yang (2015), Xu et al. (2021) proposed a novel bias cor-
rection method that adjusts both the linear mean and nonlin-
ear variance trends in model-simulated series. The most com-
monly used bias-correction method, quantile mapping (QM),
addresses several limitations of the mean-based linear scal-
ing BC method by providing a more flexible and detailed ap-

proach to correcting biases in Earth system model outputs.
The QM method preserves the full distribution of the data by
mapping the entire cumulative distribution function (CDF) of
the model data to that of the observed data. This ensures that
the corrected model data reflect not just the mean, but also
the variability, extremes, and other statistical characteristics
of the observed data. In the QM method, a transfer function
is created by matching model-simulated and observed quan-
tiles at their common temporal resolution (daily in this study)
during a reference period; this function is then applied to fu-
ture model simulations. The method is typically evaluated by
comparing bias-corrected values with observations to assess
performance. Previous studies have shown that QM effec-
tively removes biases, improving model accuracy for both
mean values (Wood, 2002; Wood et al., 2004; Boé et al.,
2007; Piani et al., 2009) and extreme events (Piani et al.,
2010; Ashfaq et al., 2010; Teutschbein and Seibert, 2012;
Gudmundsson, 2012). However, since QM assumes that the
CDF for a variable remains unchanged in future periods, it
may distort signals and corrupt future trends, as the CDF is
expected to shift in future projections. An alternative bias-
correction method, Quantile Delta Mapping (QDM) (Can-
non et al., 2015; Tong et al., 2021), improves upon QM by
not only matching the CDF of modeled and observed data,
but also accounting for shifts in these distributions over time,
especially under future scenarios. Yet, it still assumes sta-
tionarity in the quantile-based difference (delta) over time
and typically does not consider the timescale-dependent na-
ture of biases. A more detailed discussion of QM and QDM
is provided in Sect. 2.2. Several ML-based bias-correction
schemes have been proposed as well (e.g., Sarhadi et al.,
2016; Miftahurrohmah et al., 2024; Das et al., 2022; Feng
et al., 2024); however, comprehensive intercomparisons such
as Dhawan et al. (2024) show that their daily-scale perfor-
mance is broadly comparable to that of quantile-based ap-
proaches like QDM and that none addresses biases occurring
across multiple distinct timescales.

Indeed, biases can manifest differently at daily, monthly,
seasonal, and annual scales (Haerter et al., 2011), and a
correction that is effective at one timescale may fail at
another and introduce inconsistencies. Although quantile-
based methods like QDM can capture shifts in the over-
all distribution, they typically treat the data as a sin-
gle timescale, thereby limiting their ability to capture bi-
ases that manifest differently across daily, monthly, sea-
sonal, or annual timescales. Furthermore, even when ac-
knowledging that biases may vary with timescale, isolat-
ing and representing these distinct fluctuations in the raw
data is a non-trivial task. To address these gaps, we propose
an Empirical Mode Decomposition-based Bias Correction
(EMDBC) framework, leveraging the adaptive nature of Em-
pirical Mode Decomposition (EMD) (Huang et al., 1998)
and its ensemble variant Ensemble-EMD (EEMD) (Wu and
Huang, 2009) to isolate distinct oscillatory modes at multi-
ple timescales. By bias-correcting each extracted component

Geosci. Model Dev., 18, 8313–8332, 2025 https://doi.org/10.5194/gmd-18-8313-2025



A. Ganguli et al.: Bias correcting regional scale Earth system model projections 8315

(e.g., via QDM or quantile regressions) and then recombin-
ing them, EMDBC maintains key physical relationships and
effectively addresses both high-frequency and low-frequency
biases that conventional methods may overlook.

The remainder of this manuscript is organized as follows.
Section 2 describes the experimental setup, reviews conven-
tional BC approaches, and introduces the proposed EMDBC
framework. Section 3 evaluates EMDBC’s performance in a
validation context and applies it to bias-correct large-scale
regional Earth system model outputs. Finally, Sect. 4 sum-
marizes the findings, discusses limitations, and suggests av-
enues for future research.

2 Methods

2.1 Data

This study utilizes both observed and modeled temperature
datasets over the continental United States to bias-correct
regional-scale Earth system model projections. The datasets
are described as follows:

– WRF-CCSM (Wang and Kotamarthi, 2015): building off
of previous studies (Wang and Kotamarthi, 2014, 2015),
this study uses modeled 3-hourly temperature data
at a 12 km spatial resolution for three time periods–
historical (1995–2004), mid-century (2045–2054), and
late-century (2085–2094). These projections, called
WRF-CCSM, are generated by dynamically downscal-
ing the Community Climate System Model version 4
(CCSM4) using the Weather Research and Forecasting
(WRF) model version 3.3.1 (Skamarock et al., 2008).
For future periods (mid- and late-century), we use the
Representative Concentration Pathway 8.5 (RCP8.5)
scenario, which corresponds to a high greenhouse
gas concentration trajectory, reaching approximately
8.5 W m−2 of radiative forcing by 2100 (Riahi et al.,
2011). The model uses the Grell–Devenyi convective
parametrization (Grell and Dévényi, 2002), the Yon-
sei University planetary boundary layer scheme (Noh
et al., 2003), the Noah land surface model (Chen and
Dudhia, 2001), the longwave and shortwave radiative
schemes of the Rapid Radiation Transfer Model for
GCM (Iacono et al., 2008), and the Morrison micro-
physics scheme (Morrison et al., 2009). Spectral nudg-
ing (Miguez-Macho et al., 2004) is applied at 6-hour in-
tervals to large-scale features, including air temperature,
geopotential height, and wind, for levels above 850 hPa
and wavelengths around 1200 km, using a nudging co-
efficient of 3× 10−5 s−1. Additionally, a 1-year spin-
up period is implemented to allow the model to reach
equilibrium before each of the three simulations. Details
on the model design and configurations are provided in
Wang and Kotamarthi (2014) and Wang and Kotamarthi
(2015).

– Livneh (Livneh et al., 2013): observed daily temperature
data at a 1/16° spatial resolution for the historical pe-
riod (1995–2004). Livneh temperature data is generated
from daily temperature observations at National Centers
for Environmental Information Cooperative Observer
(COOP) stations across the United States using the syn-
ergraphic mapping system (SYMAP) algorithm.

We therefore apply bias correction after the 12 km
dynamical-downscaling step, allowing the adjustment to ad-
dress both the large-scale biases inherited from the driv-
ing GCM and the additional systematic errors introduced
by the regional model itself. To bias-correct future regional
model projections, we used the historical observational data
(Livneh) over the period (1995–2004). The WRF-CCSM
simulation spanning the same time period (historical; 1995–
2004) is used to learn the bias correction model (explained
in Sect. 2.2 and 2.4). Daily mean temperature data are cal-
culated from the 3 h outputs of WRF-CCSM to match the
temporal resolution of the observed Livneh data. Similarly,
the 1/16° Linveh data is remapped onto the 12 km simulation
mesh used by WRF-CCSM using the bilinear interpolation
operator provided in the Climate Data Operator software ver-
sion 2.5.2 (Schulzweida, 2023) to match the spatial scales.

We estimate a transfer function that aligns the empirical
distribution of the WRF–CCSM daily series with the corre-
sponding Livneh observations for 1995–2004, and then ap-
ply this function to correct the future WRF–CCSM projec-
tions. By correcting the learned biases, the model generates
bias-corrected future predictions that scale more closely with
observational data, thereby reducing systematic and known
biases in the model output.

To assess the performance and generalizability of the pro-
posed EMDBC method, we conducted a validation study us-
ing historical data from 1995 to 2004. This period was split
into two parts: the first half (1995–1999) was used to develop
and train our bias correction models, while the second half
(2000–2004) was reserved for validation. The Livneh daily
observed temperature series served as the reference dataset,
and the EMDBC approach was applied to correct the daily
temperature projections from CCSM. For a comprehensive
spatial evaluation, we randomly selected seven areas, each
measuring 25× 25 grid cells (300 km× 300 km), from ma-
jor subregions defined in the Fifth National Climate Assess-
ment (USGCRP, 2023) across the continental United States,
shown in Fig. 1, ensuring a diverse set of conditions. The
seven areas are geographically defined in Appendix A.

2.2 Quantile mapping-based bias adjustment

Quantile mapping (QM) is one of the most widely adopted
bias correction (BC) techniques, designed to align the sta-
tistical distribution of model outputs with observations (see
Chen et al., 2013 for a comprehensive review). By adjust-
ing model outputs to match observed quantiles, QM can ef-
fectively reduce systematic biases related to both the cen-
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Figure 1. Map of case study regions selected for evaluating the bias
correction methods. Boundaries are overlaid on the average 1995–
2004 mean temperature field from WRF-CCSM, illustrating the di-
verse range of temperature regimes captured by the case study areas.

tral tendency and variability. Two prominent variants of this
framework are briefly described below: Basic Quantile Map-
ping (QM) and Quantile Delta Mapping (QDM).

– Basic Quantile Mapping (QM): this approach directly
corrects model outputs by aligning their quantile func-
tions to that of the observed data (Tong et al., 2021; Kim
et al., 2016). Let To the observed data, and T hist

p the his-
torical model simulation. For a future model output T fut

p ,

the bias-corrected value T fut,BC
p is given by:

T fut,BC
p = F−1

o

(
F hist

m

(
T fut

p

))
, (1)

where F hist
m is the empirical CDF of the model outputs

in the historical period T hist
p , and Fo is the empirical

CDF of the observed data To. To bias-correct the fu-
ture WRF–CCSM projections, we use the 1995–2004
Livneh observations as the calibration reference. Al-
though QM ensures perfect distributional alignment for
the historical period, it implicitly assumes that the ob-
served CDF remains valid under future conditions – an
assumption that can distort projected trends when the
future outputs differs significantly from the historical
weather regime.

– Quantile Delta Mapping (QDM): QDM extends QM
by accounting for shifts between the historical and fu-
ture model distributions (Tong et al., 2021; Maraun,
2016). Specifically, QDM maps future values T fut

p to
their probabilities in both the future model CDF F fut

model
and historical model CDF F hist

model, then determines the
corresponding quantiles in the observed CDF Fo. Fi-
nally, the difference (delta) between the historical and
future mappings is added to the original future values.
Mathematically, it can be written as:

T fut,bc
p = F−1

o

(
F fut

p

(
T fut

p

))
+

[
T fut

p −F
hist−1

p

(
F fut

p

(
T fut

p

))]
. (2)

This formulation permits future distributional changes
to be incorporated into the bias correction. Various mod-
ifications, such as equidistant or equiratio quantile map-
ping (Li et al., 2010; Wang and Chen, 2014), have been
shown to be mathematically equivalent to QDM (Can-
non et al., 2015). In many applications involving large
ranges (e.g., precipitation), the additive delta in Eq. (2)
is replaced with a multiplicative factor. Nonparametric
empirical CDFs are commonly used for flexibility, al-
though parametric and semiparametric distributions can
also be employed (Gudmundsson et al., 2012; Rajulap-
ati and Papalexiou, 2023).

As highlighted in the introduction, QDM improves upon
QM by allowing for distributional shifts from historical
and future time periods. Nonetheless, most quantile-based
methods effectively treat the entire time series on a single
timescale, leaving biases at monthly, seasonal, or longer fre-
quencies insufficiently addressed. This omission can result in
residual errors that accumulate over extended periods, under-
mining confidence in long-term projections – a critical factor
for both robust resilience assessments and strategic decision-
making. These issues underscore the need for an approach
that not only preserves the distributional changes in future
projections but also captures timescale-dependent biases. In
the next sections, we introduce the proposed EMDBC frame-
work, which disentangles time-series of atmospheric vari-
ables produced by Earth system models into their intrinsic
oscillatory modes. By applying tailored bias corrections to
each timescale-specific component and subsequently recom-
bining them, EMDBC aims to overcome the core limitations
of QM and QDM, thereby offering a more robust and detailed
method for bias correction in future projections.

2.3 Empirical mode decomposition and ensemble EMD

Empirical Mode Decomposition (EMD) (Huang et al., 1998)
is a data-driven method to adaptively decompose a time se-
ries x(t) into a finite set of oscillatory components, called
intrinsic mode functions (IMFs), plus a residual monotonic
trend. Formally, EMD expresses a time series as:

x(t)=

n∑
i=1

ci(t)+ r(t), (3)

where ci(t) are the IMFs – each capturing variations over
distinct timescales – and r(t) is the residual. Although EMD
has found utility in diverse application domains, it can suffer
from mode mixing, where oscillations of different frequen-
cies end up blended in a single IMF.

To address this issue, Ensemble Empirical Mode Decom-
position (EEMD) (Wu and Huang, 2009) was introduced.
EEMD has been successfully incorporated in several re-
cent studies, for example, Alizadeh et al. (2019), Kim et al.
(2018), Liu et al. (2019) and Hawinkel et al. (2015). It adds
multiple realizations of low-amplitude random noise, εj (t),
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to the original signal x(t) to form an ensemble of signals:
xj (t)= x(t)+ εj (t). EMD is then applied to each noise-
added realization, and the resulting IMFs are averaged:

cEEMD
i (t)=

1
N

N∑
j=1

ci,j (t), (4)

where ci,j (t) denotes the ith IMF from the j th noise realiza-
tion, and N is the ensemble size. By smoothing over numer-
ous noise realizations, EEMD mitigates mode mixing, yield-
ing a more robust and interpretable decomposition. This reli-
ability is especially valuable for timescale-specific bias cor-
rection. We use the EEMD function available in the Python
package PyEMD (Laszuk, 2017) to decompose temperature
signals into IMFs.

2.4 EMD-based bias correction

Building on EEMD, we introduce an Empirical Mode
Decomposition-based Bias Correction (EMDBC) framework
for rectifying model biases across multiple timescales. As
sketched in Fig. 2, EMDBC proceeds in three steps:

i. timescale decomposition – the daily Livneh and CCSM
series (Row 1) are split via EEMD into four bands
(Rows 2–4);

ii. timescale-specific correction – the residual and bi-
weekly bands are adjusted with QDM, while the sea-
sonal and annual bands use ensemble quantile regres-
sion (Row 5); and

iii. reconstruction – the corrected bands are recombined to
yield the final series for evaluation (Row 6).

We describe each of these steps in detail in the following
subsections.

2.4.1 Step 1: timescale decomposition

We begin by applying EEMD to decompose each time series
into IMFs and a residual:

To =

mTo∑
j=1

s
To
j + r

To ,

T hist
p =

m
T hist

p∑
j=1

s
T hist

p
j + r

T hist
p ,

T fut
p =

m
T fut

p∑
j=1

s
T fut

p
j + r

T fut
p . (5)

Here, To represents the observed series, T hist
p the historical

model series, and T fut
p the future model series. For any given

series s, the total number of extracted IMFs is ms. Although

EEMD generally reduces mode mixing, it may not fully en-
sure that each IMF corresponds to a unique frequency band.
To address this, after each EEMD pass, we evaluate the peak
frequency of every IMF, impose spacing constraints to min-
imize overlap, and iterate the decomposition with adjusted
parameters until those constraints are satisfied. For the sake
of clarity in presenting the timescale-wise bias correction, we
have placed the detailed tuning procedure in Appendix B.

We then group these IMFs into broader frequency bands
to reflect different timescales. For instance, the observed se-
ries To is aggregated as follows:

To,biweekly =

[
τ1m

To
]∑

j=1
s
To
j ,

To,seasonal =

[
τ2m

To
]∑

j=[τ1mTo ]+1

s
To
j ,

To,annual =

mTo∑
j=[τ2mTo ]+1

s
To
j , (6)

To = To,biweekly+ To,seasonal+ To,annual+ r
To (7)

where 0< τ1 < τ2 < 1 are thresholds (often determined via
bandpass or spectral methods) that separate biweekly, sea-
sonal, and annual timescales. The biweekly band aggregates
all IMFs with periods shorter than 14 d – thereby encapsu-
lating the entire sub-daily to bi-weekly spectrum – while
longer bands are formed by summing progressively lower-
frequency IMFs. In this study, we perform bandpass filter-
ing of the original signal, isolating the frequencies associ-
ated with each timescale using the butter function available
in scipy (Virtanen et al., 2020). We then compute correla-
tions between each IMF and each bandpass-filtered version
of the signal, selecting τ1 and τ2 such that the IMFs most
closely matching each frequency range are grouped together.
For each IMF sTo

j we compute its Pearson correlation with
the band-pass-filtered series representing the three target fre-
quency ranges, denoted B1 (bi-weekly), B2 (seasonal), and
B3 (annual). Let

rj,k = corr
(
s
To
j ,Bk

)
, k ∈ {1,2,3}.

Each IMF is assigned to the band for which the correlation is
maximal, argmaxkrj,k . Let mTo be the total number of IMFs
for To. We define the cut-points

τ1 =
max

{
j : argmaxkrj,k = 1

}
mTo

,

τ2 =
max

{
j : argmaxkrj,k ≤ 2

}
mTo

,

so bτ1m
Toc and bτ2m

Toc are the last indices assigned to
the bi-weekly and seasonal groups, respectively. The same
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Figure 2. Timescale-wise bias correction framework using EMDBC. Three inputs are required: temperature timeseries from observation,
modeled historical, and modeled future datasets. Here, to demonstrate EMDBC, timeseries data are extracted from Livneh (To), WRF-
CCSM historical (T hist

p ), and WRF-CCSM mid-century (T fut
p ) at an arbitrary location. The input temperature series are decomposed into

IMFs using EEMD. IMFs are then classified into predefined timescales: biweekly, seasonal, and annual. Bias correction is applied using
QDM for biweekly timescale and residuals, and quantile regression for seasonal or annual timescales. Finally, the corrected timescales are
summed to reconstruct the bias corrected temperature series.
Geosci. Model Dev., 18, 8313–8332, 2025 https://doi.org/10.5194/gmd-18-8313-2025
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correlation-based scheme is applied to the IMFs of T hist
p and

T fut
p to construct their corresponding time-scale bands. This

step, illustrated in the “Timescale Analysis” portion of Fig. 2,
organizes the IMFs into distinct frequency bands, laying the
groundwork for applying the most suitable bias-correction
strategy to each timescale in the subsequent steps.

2.4.2 Step 2: timescale-specific bias correction

Although each extracted frequency band represents the same
underlying variable (e.g., temperature), the nature of the bi-
ases can vary greatly depending on whether we are dealing
with short-term fluctuations (e.g., biweekly scales) or longer-
term patterns (e.g., seasonal or annual). To address these dif-
ferences, we apply distinct bias-correction strategies tailored
to each frequency band, reflecting the idea that short-term ex-
tremes and variance require different treatments from slower,
more systematic drifts or trends.

Biweekly component and residual trend

At the biweekly scale, signals often exhibit substantial vari-
ability and frequent extremes, yet show little in the way of
stable temporal patterns that persist across years. Because a
more complex regression approach is unlikely to provide sig-
nificant benefits at this resolution, we use the QDM to correct
these components. Likewise, the residual term – reflecting
the underlying long-term trend – can also change consider-
ably between observed and future periods. To capture these
shifts and extremes effectively, we again use QDM, which
directly infers quantiles from historical data while allowing
for changes in the future distribution. Formally,

T
fut,BC

p,biweekly = QDM
(
To,biweekly,T

hist
p,biweekly,T

fut
p,biweekly

)
, (8)

rT
fut,BC
p = QDM

(
rTo , r

T hist
p , r

T fut
p
)
. (9)

By aligning near-term fluctuations with observed quantiles,
QDM preserves short-lived events and local variability with-
out requiring additional predictors.

Seasonal and annual components

With daily-resolution data, longer timescales like seasons or
years appear more structured, while shorter timescales show
less pattern. Hence, for longer timescales, relying solely on
QDM, an empirically driven method, may overlook struc-
tured variation better captured by predictor-based modeling.
Consequently, we adopt a strategy that incorporates:

1. day: the day of the year, reflecting intra-annual varia-
tions,

2. T hist
p,long: the model-simulated values aggregated at either

the seasonal or annual scale, accounting for magnitude-
dependent biases.

Let, T hist
p,long ∈ {T

hist
p,seasonal,T

hist
p,annual}, T fut

p,long ∈

{T
f ut

p,seasonal,T
fut

p,annual}, To,long ∈ {To,seasonal,To,annual}, where
each variable is a sum (or aggregation) of the IMFs corre-
sponding to its relevant timescale. We define the historical
bias as:

biashist = T
hist

p,long− To,long,

and fit an ensemble of quantile regressions spanning a set
of quantiles {q1, q2, . . ., q`} (e.g., q = 0.05, 0.06, . . ., 0.99).
For each quantile qk , we train:

fqk

(
day,T hist

p,long

)
= b̂ias(

qk)

hist ,

capturing the bias at that particular quantile. The
quantile regression analysis is performed using the
QuantileRegressor model from scikit-learn – a
Python library for machine learning (Pedregosa et al., 2011).
When applied to future data, the same function yields

b̂ias(
qk)

fut = fqk

(
day,T fut

p,long

)
.

We then correct the historical and future series accordingly:

T
hist,BC,(qk)
p,long = T hist

p,long− b̂ias(
qk)

hist ,T
fut,BC,(qk)
p,long = T fut

p,long− b̂ias(
qk)

fut .

Averaging the corrections across all ` quantiles produces the
final bias-corrected data:

T
hist,BC

p,long =
1
`

∑̀
k=1

T
hist,BC,(qk)

p,long ,T
fut,BC

p,long =
1
`

∑̀
k=1

T
fut,BC,(qk)

p,long .

By leveraging multiple predictors and quantiles, this ap-
proach better encapsulates the full distribution – from lower
tails to upper extremes – while also accounting for both sea-
sonal cycles and magnitude-dependent biases. The result is a
more nuanced and robust adjustment of long-term trends than
would be possible using a single-quantile or purely empirical
technique. timescales.

2.4.3 Step 3: reconstructing the corrected series

After bias-correcting each frequency band, we recombine
them to form the final historical and future time series:

T hist,BC
p = T

hist,BC
p,biweekly+ T

hist,BC
p,seasonal+ T

hist,BC
p,annual+ r

Tp,BC, (10)

T fut,BC
p = T

fut,BC
p,biweekly+ T

fut,BC
p,seasonal+ T

fut,BC
p,annual+ r

Tp,BC. (11)

Here, T hist,BC
p,biweekly and T fut,BC

p,biweekly denote the QDM-corrected

short-term components, while T hist,BC
p,seasonal and T hist,BC

p,annual (along
with their future counterparts) correspond to the multi-
quantile regression corrections at longer timescales. The
residual term rTp,BC is likewise corrected with QDM to ad-
dress any leftover low-frequency bias.
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Figure 3. Comparison of Absolute Biases and Wasserstein Distances Across Sub-Regions in the original daily timescale. (a) Boxplots of
the absolute temperature (in K) bias for the original (CCSM) and bias-corrected (EMDBC and QDM) simulations across sub-regions on
the validation dataset. (b) Boxplots of the corresponding Wasserstein distances between the observed and modeled temperature distributions
across sub-regions on the validation dataset.

By integrating EEMD for timescale decomposition, QDM
for high-frequency biases, and multi-quantile regression for
seasonal to annual scales, the EMDBC framework provides a
flexible and robust bias-correction method. It preserves both
short-term fluctuations and long-term patterns, better handles
extremes, and offers a more holistic view of uncertainty –
addressing some of the most pressing gaps in conventional
bias-correction approaches.

3 Results

This section describes the results from the validation study
on seven case study areas and over the full domain. In both
validation and full domain results, we apply a spatial smooth-
ing procedure to the bias corrected daily temperature fields
for both methods (QDM and EMDBC), while also censoring
any values that exceed the original model’s range to ensure
numerical consistency and prevent unrealistic outliers. Since
temperature typically exhibits strong spatial coherence, cor-

recting each grid cell independently can introduce small-
scale inconsistencies or artifacts. By averaging each cell’s
value with those of its immediate neighbors in a small 2D
window (a 3×3 window in our experiments), we enhance lo-
cal spatial continuity while preserving the broader-scale fea-
tures necessary for downstream impact analyses. All visual-
ization plots were generated using the matplotlib Python
library (Hunter, 2007).

3.1 Validation results

Here, we include a comprehensive evaluation of traditional
bias correction methods alongside our proposed approach.
By applying the bias correction models to both the historical
training scenario and the historical validation scenario, we
can effectively assess each models ability to address biases
and generalize across temporal scales where observed data
does not exist (i.e., the future mid- and late century scenar-
ios).
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Figure 4. The timescale-wise average absolute bias per subregion on the validation dataset. Included timescapes are (a) biweekly,
(b) monthly, (c) seasonal, and (d) annual.

We implement QDM and the proposed EMDBC to bias-
correct the validation dataset introduced in Sect. 2.1. Figure 3
top panel shows the spatial distribution of the average abso-
lute bias across these subregions and highlights the consistent
performance gains achieved by EMDBC on held-out valida-
tion data. In addition, we examined the distributional simi-
larity of the observed series and the model-projected series
(both before and after bias correction) using the Wasserstein
distance (WD). WD is defined as a distance between two
probability measures P and Q on a metric space (X ,‖ · ‖)
by

Wp(P,Q)=

 inf
γ∈0(P,Q)

∫
X×X

‖x− y‖pdγ (x,y)


1/p

, (12)

where 0(P,Q) denotes the set of all couplings with
marginals P and Q; throughout this study we use the com-
mon choice p = 1 (Panaretos and Zemel, 2019). Figure 3
down panel illustrates the WD across all subregions, demon-
strating that the EMDBC correction preserves a distributional
similarity to the observed series comparable to the QDM ap-
proach.

Next, we assessed the performance of EMDBC at four
distinct timescales – biweekly, monthly, seasonal, and half-
annual – by comparing it to both QDM and the origi-
nal CCSM output. To focus on each timescale, we used a
Fast Fourier Transformation (FFT) based bandpass filtering
method. First, the daily temperature series was transformed
into the frequency domain. Then, all frequencies outside
the target range were set to zero before an inverse trans-
form was applied to reconstruct the filtered signal. This ap-
proach allowed us to isolate and compare how effectively
each bias correction method captures variability at differ-
ent temporal scales. Figure 4 shows the spatial distribu-
tion of the absolute bias across subregions for each fil-
tered timescale. While EMDBC and QDM perform com-
parably at shorter timescales (biweekly), EMDBC demon-
strates a progressively closer alignment with the observed
series at longer timescales (monthly, seasonal, half-annual).
Accurate bias correction at coarser temporal resolutions is
especially important for large-scale resilience assessments
and long-term planning, where cumulative effects and ex-
tended trends play a crucial role. This includes common
uses cases of RCM and GCM, such as global, national,
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Figure 5. Bias-correction comparison across multiple time-scales at a representative grid cell. Column 1 shows the full 1995–2004 record,
while Column 2 zooms into 1999–2001 for clarity. Solid lines correspond to the observed Livneh series (blue) and the raw CCSM projection
(green); dashed lines show the bias-corrected outputs from EMDBC (red) and QDM (purple). Each row presents the original daily series and
its bi-weekly, seasonal, and annual components, obtained by aggregating intrinsic mode functions as described in Sect. 2.4. The numbers
at right report the mean-squared error (MSE, °K2) between each series and Livneh. While QDM matches EMDBC at the native daily
scale, EMDBC yields consistently lower MSE at the bi-weekly, seasonal, and annual bands, indicating superior preservation of large-scale
temperature variability.
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Figure 6. Comparison of CCSM Temperature Biases and Temperature Distributions Across Sub-Regions. (a) Boxplots of the absolute tem-
perature bias before and after applying EMDBC and QDM corrections. (b) Violin plots showing the distribution of the average temperature
for each sub-region.

or regional impact studies (USGCRP, 2023); policy plan-
ning for risk assessment (Ranasinghe et al., 2021); energy
infrastructure trends for long-term heating or cooling de-
mands (Tan et al., 2023); drought security (Gamelin et al.,
2022); agriculture planning (Jin et al., 2017); and under-
standing ecosystem biodiversity shifts (Liu et al., 2025). In
other words, EMDBC shows promising ability to reduce tem-
perature trend distortion caused by systematic biases due to
model uncertainties and better capture temperature trend dy-
namics. This improved ability to preserve these longer-term
patterns makes it a more reliable choice than QDM for appli-
cations that depend on consistent performance across multi-
ple timescales.These results demonstrate that EMDBC suc-
cessfully preserves bias-corrected signals over a broad range
of temporal frequencies. By confirming EMDBC’s effective-
ness in an out-of-sample setting in this validation experiment,
we gain confidence that it retains crucial physical relation-
ships within the model more effectively than the traditional
QDM, particularly at longer timescales. In the next section,
we will evaluate its performance on the full GCM domain.

3.2 Over full domain

We apply EMDBC and QDM to the expanded model do-
main – covering all relevant time periods – to illustrate each
method’s impact on temperature bias correction. As an initial
illustration, Fig. 5 presents a single sampled location, decom-
posed in multiple timescales via the EMD-based approach
described in Sect. 2.4. While QDM and EMDBC both per-
form well at the daily (training) scale, EMDBC more accu-
rately preserves the longer-term fluctuations (e.g., seasonal
and annual) seen in the observed Livneh data.

Turning next to broader spatial analyses, Fig. 6 focuses
on various sub-regions across continental United States
(CONUS). In each sub-region, the top panel compares the
absolute temperature bias between the model projected and
the observed series before and after correction with EMDBC
and QDM, whereas the bottom panel shows the distribution
of the average temperature. This figure demonstrates that
EMDBC consistently reduces biases while maintaining an
overall temperature distribution comparable to QDM.

To verify whether these distributional consistencies hold
across individual seasons, we next analyze Fig. 7, which
illustrates the spatial distribution of seasonal-average tem-
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Figure 7. The mean daily temperature by season – (a) winter, (b) spring, (c) summer, (d) fall – across Livneh (1995–2004) and WRF-CCSM
historical (1995–2004), mid-century (2045–2054), and late-century (2085–2094) timeframes before and after bias correction. Results for
QDM and EMDBC are included. Violin plots displaying all timeframes on a common axis illustrate how both QDM and EMDBC preserve
the shape of the observed spatial temperature distribution, while also showing the distribution’s shift across centuries as projected by the
WRF-CCSM model.

perature for the Livneh observations, the raw WRF-CCSM
outputs, and their bias-corrected counterparts. At this ag-
gregated seasonal level, both EMDBC and QDM move the
model’s temperature distribution closer to the observed data
while retaining the overall projected warming trends through
the mid- and late-century timeframes. This consistency fur-
ther suggests that EMDBC not only reduces bias magnitude
but also closely matches observed seasonal temperature pat-
terns.

Finally, Figs. 9 and 8 show the average predicted daily
bias (d–f) and the corresponding spatial maps ((g–i); e.g., an-
nual or multi-year averages) for the raw and bias-corrected
WRF-CCSM outputs. For reference, average Livneh obser-
vation data is also plotted, along with the average WRF-
CCSM historical bias before and after correction (a–c). Here,
“predicted bias” refers to the difference between the mod-
eled temperature and its bias-corrected counterpart. EMDBC

generally applies a stronger correction than QDM, resulting
in slightly cooler daily temperature fields and a more uni-
form reduction of bias across the domain. Although we can-
not fully validate future-period corrections in the absence of
observations, EMDBC’s stronger alignment with historical
data and its lower bias in validation sub-regions suggest it is
well-equipped to handle changing conditions while preserv-
ing both short- and long-term temperature variability.

4 Conclusion

This study proposes a new timescale-aware bias-correction
methodology, EMDBC, and applies it to 12 km WRF-
CCSM daily temperature simulations, covering historical
(1995–2004), mid-century (2045–2054), and late-century
(2085—094) periods across the contiguous United States.
Furthermore, the EMDBC approach is validated by split-
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Figure 8. Temperature and temperature bias comparisons over CONUS before and after applying QDM. Left: (a) observed temperature
(Livneh, 1995–2004), (b) WRF-CCSM historical (1995–2004) average daily absolute bias, and (c) QDM-corrected WRF-CCSM historical
average daily absolute bias. Middle: (d) magnitude of QDM correction in historical, (e) mid-century (2045–2054), and (f) late-century
(2085–2004) timeframes. Right: (g) QDM-corrected temperatures for WRF-CCSM historical, (h) mid-century, and (i) late-century periods.

Figure 9. Temperature and temperature bias comparisons over CONUS before and after applying EMDBC. Left: (a) observed temperature
(Livneh, 1995–2004), (b) WRF-CCSM historical (1995–2004) average daily absolute bias, and (c) EMDBC-corrected WRF-CCSM histori-
cal average daily absolute bias. Middle: (d) magnitude of EMDBC correction in historical, (e) mid-century (2045–2054), and (f) late-century
(2085–2004) timeframes. Right: (g) EMDBC-corrected temperatures for WRF-CCSM historical, (h) mid-century, and (i) late-century peri-
ods.
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ting historical model and observed data into training and
validation sets and evaluating the validation set for bias re-
duction. In order to demonstrate the benefits of EMDBC,
we compare the distributional similarities and absolute bias
at varying timescales of the observed, model-projected, and
bias corrected series. The results of this study highlight the
importance of addressing biases across multiple timescales
when correcting regional Earth system model outputs. Con-
ventional approaches, such as mean-based linear scaling or
quantile mapping, often focus on single distributions without
adequately capturing longer-term fluctuations (e.g., monthly
or seasonal). This limitation can lead to distorted trends
and weakened physical consistency among atmospheric vari-
ables, thereby reducing confidence in model projections used
for impact assessments and decision-making. In contrast, our
EMDBC framework leverages Empirical Mode Decomposi-
tion (EMD) to isolate and correct distinct timescale wise os-
cillatory decomposition of a given signal, thereby preserving
both short-term and long-term variability. Validation experi-
ments show that EMDBC aligns better with observations at
coarser temporal resolutions compared to conventional ap-
proaches, ensuring more accurate trends and enhanced phys-
ical consistency. These improvements are particularly rel-
evant for applications where long-term signals – such as
drought monitoring and risk assessment – play a critical role.

Nonetheless, several limitations remain. While the EMD
decomposition offers theoretical guarantees for extracting
intrinsic modes, segmenting them into discrete timescales
still depends on user-defined thresholds, introducing a de-
gree of subjectivity. A more rigorous, automated frame-
work for determining these boundaries would further bol-
ster EMDBC’s robustness. Additionally, although ensemble
EMD (EEMD) helps mitigate mode mixing, more advanced
signal-processing or machine learning techniques could opti-
mize the decomposition process. Another promising avenue
for future work is the exploration of multivariate EMD ap-
proaches, which would facilitate a more comprehensive bias
correction by preserving inter-variable dependencies among
variable fields. Despite these open questions, our results
demonstrate that a timescale-aware bias-correction strategy
significantly enhances model projection reliability and paves
the way for continued innovation in this area.

Geosci. Model Dev., 18, 8313–8332, 2025 https://doi.org/10.5194/gmd-18-8313-2025



A. Ganguli et al.: Bias correcting regional scale Earth system model projections 8327

Appendix A: Case study regions used in validation

Table A1. Bounding-box definitions for each case-study region. Columns ymin, ymax, xmin, and xmax list the 0-based Python array indices
that isolate the region within the WRF domain supplied with the dataset linked in the data availability statement; the remaining columns give
the decimal-degree latitudes and longitudes of the four bounding-box corners: upper left (UL), upper right (UR), lower right (LR), and lower
left (LL).

Region ymin ymax xmin xmax UL corner UR corner LR corner LL corner

Midwest 163 187 384 408 40.6233° N, 93.2427° W 40.1100° N, 89.8016° W 42.7208° N, 89.0243° W 43.2588° N, 92.6135° W
Northeast 190 214 482 506 40.6657° N, 78.3030° W 39.6782° N, 75.0555° W 42.1325° N, 73.6529° W 43.1648° N, 77.0141° W
Northern 189 213 292 316 44.4211° N, 106.7944° W 44.3514° N, 103.0425° W 47.0303° N, 102.8481° W 47.1034° N, 106.7843° W
Northwest 187 211 204 228 43.3865° N, 120.3843° W 43.7721° N, 116.7218° W 46.4336° N, 117.1932° W 46.0293° N, 121.0272° W
Southeast 95 119 394 418 33.0354° N, 93.4738° W 32.5457° N, 90.4126° W 35.1159° N, 89.7489° W 35.6294° N, 92.9269° W
Southern 110 134 330 354 35.4968° N, 101.6792° W 35.2683° N, 98.4510° W 37.9028° N, 98.0920° W 38.1425° N, 101.4546° W
Southwest 123 147 229 253 36.7126° N, 115.5168° W 36.9397° N, 112.2155° W 39.5947° N, 112.4409° W 39.3564° N, 115.8829° W

Appendix B: Optimal tuning of IMFs for EMDBC

The performance of the proposed EMDBC framework de-
pends on the quality and separation of the IMFs gener-
ated during the decomposition process. A common chal-
lenge in EMD methods is mode-mixing, where oscillatory
modes of different frequencies are entangled within a sin-
gle IMF, reducing interpretability and effectiveness (Tang
et al., 2012). While the Ensemble EMD (EEMD) approach
(Wu and Huang, 2009) mitigates mode-mixing by introduc-
ing random noise, it does not fully eliminate the issue. Sev-
eral alternative strategies have been proposed to ensure dis-
tinct frequency bands for IMFs (Tang et al., 2012; Fosso and
Molinas, 2018), but none has proven universally robust.

To address the instability of IMFs and ensure their mean-
ingful separation across timescales, we impose constraints
on their maximum amplitude frequencies (fmax) calculated
using the Fast Fourier Transform (FFT) (Rockmore, 2000).
This process is iterative: IMFs are generated, evaluated
against the constraints, and refined until all conditions are
satisfied. The constraints are defined as follows:

– Ensuring distinct timescales: each IMF must represent a
unique timescale, maintaining a strictly decreasing fre-
quency trend:

1f
(j)
max = f

(j)
max− f

(j+1)
max > 0, ∀ j,

where f (j)max denotes the maximum amplitude frequency
of the j th IMF.

– Preventing overlap: to avoid redundancy, the relative
change in frequency between consecutive IMFs must
exceed a minimum threshold:

1f
(j)
max

f
(j)
max

> δmin.

– Maintaining regularity: the progression of frequen-
cies across IMFs should be smooth, avoiding abrupt
changes. This is enforced by ensuring:

1f
(j)
max

f
(j)
max

< δmax. (B1)

The thresholds δmin and δmax act as hyperparameters,
which can be tuned through cross-validation. In our experi-
ments, setting δmin = 0.2 and δmax = 0.8 yielded satisfactory
results. The algorithm iteratively checks these constraints af-
ter each generation of IMFs. If all conditions are satisfied,
the process terminates; otherwise, new IMFs are generated,
and the constraints are re-evaluated. The following algorithm
outlines the major steps in this iterative optimization process:

By iteratively applying these constraints, we ensure that
the IMFs represent distinct timescales, avoid redundancy,
and maintain smooth frequency progression. This optimiza-
tion significantly enhances the stability of the decomposi-
tion and improves the effectiveness of EMDBC in handling
challenging cases of mode-mixing or overlapping frequency
bands.
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Algorithm B1 Iterative Optimization of IMFs for EMDBC.

1: Input: time series x(t), thresholds δmin, δmax
2: Output: optimized set of IMFs, {sj }mj=1
3: Initialize: generate initial IMFs using EEMD: {sj }mj=1

4: Compute maximum amplitude frequencies f (j)max using FFT
5: while any constraint is violated do
6: Check distinct timescales: 1f (j)max > 0, ∀ j

7: Check overlap: 1f
(j)
max

f
(j)
max

> δmin

8: Check regularity: 1f
(j)
max

f
(j)
max

< δmax

9: if any condition is violated then
10: Regenerate IMFs using updated parameters
11: Recompute f (j)max
12: end if
13: end while
14: return Optimized {sj }mj=1

Appendix C: Description of the acronyms

Table C1. Acronyms and Symbols used in this study.

Acronym/symbol Full form Brief description (incl. equations)

CMIP6 Coupled Model Intercomparison Project Phase 6 Multi-model ensemble of coordinated global climate
simulations.

GCM Global Climate Model Dynamical model representing physical processes of
the climate system on a global grid.

RCM Regional Climate Model Higher-resolution model nested within a GCM to
resolve regional detail.

BC Bias Correction Statistical adjustment applied to model output to align
it with observations.

QM Quantile Mapping Bias-correction technique that remaps model quantiles
to observed quantiles.

CDF Cumulative Distribution Function FX(x)= Pr[X ≤ x] for a random variable X.

QDM Quantile Delta Mapping Bias-correction method that preserves the modeled
change signal while correcting quantiles.

EMD Empirical Mode Decomposition Data-adaptive decomposition that yields oscillatory
components called IMFs.

EEMD Ensemble Empirical Mode Decomposition Noise-assisted EMD variant that improves mode
separation.

WRF–CCSM Weather Research and Forecasting–Community
Climate System Model

Dynamical downscaling chain coupling WRF with
CCSM boundary fields.

IMF Intrinsic Mode Function Oscillatory component extracted by EMD, each with
well-behaved local extrema.

EMDBC EMD-based Bias Correction Bias-correction framework that operates on
time-scale-specific IMFs before reconstruction.
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Table C1. Continued.

Acronym/symbol Full form Brief description (incl. equations)

Wp (WD) Wasserstein Distance Wp(P,Q)=(
infγ∈0(P,Q)

∫
X×X

‖x− y‖pdγ (x,y)

)1/p

; where

0(P,Q) denotes the set of all couplings with
marginals P and Q, commonly p = 1.

MSE Mean Squared Error MSE(y, ŷ)= 1
n

n∑
i=1
(yi − ŷi)

2; average squared

deviation between predictions and observations.

FFT Fast Fourier Transform Algorithm that computes the discrete Fourier transform
in O(n logn) operations.

Code and data availability. All Python scripts for the Empir-
ical Mode Decomposition-based Bias Correction, the full-
domain WRF-CCSM dataset used in this manuscript, and
the validation areas mapping WRF-CCSM indices to 25×
25 case study regions are available in a Zenodo repository at
https://doi.org/10.5281/zenodo.15244202 (Ganguli et al., 2025).
Livneh daily CONUS observational data (Livneh et al., 2013), pro-
vided by NOAA Physical Sciences Laboratory (NOAA-PSL) in
Boulder, Colorado, USA, are available at https://psl.noaa.gov/data/
gridded/data.livneh.html (NOAA-PSL, 2013). For Livneh, daily
mean temperatures are computed as the average of the daily
minimum and maximum values. Finally, the Empirical Mode
Decomposition-based Bias Correction code is also available in
the EMDBC GitHub repository at https://github.com/jeremyfifty9/
emdbc (Ganguli and Feinstein, 2025).
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