Articles | Volume 18, issue 20
https://doi.org/10.5194/gmd-18-8017-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-8017-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Intercomparison of bias correction methods for precipitation of multiple GCMs across six continents
Young Hoon Song
Faculty of Civil Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
Faculty of Civil Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
Related authors
Young Hoon Song, Eun-Sung Chung, and Shamsuddin Shahid
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-107, https://doi.org/10.5194/hess-2022-107, 2022
Manuscript not accepted for further review
Short summary
Short summary
This study proposed two new concepts for the previous Double Gamma Quantile Mapping (DGQM), such as the inclusion of flexible dividing point between two individual gamma functions and the use of more probability distributions. As a result, F-DDQM method performed the better bias correction for the GCMs very clearly. This new F-DDQM method can be also applied to the various fields such as the use of satellite climate data, reanalysis climate data and spatial downscaling or interpolation.
Jin Hyuck Kim and Eun-Sung Chung
EGUsphere, https://doi.org/10.5194/egusphere-2025-1298, https://doi.org/10.5194/egusphere-2025-1298, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Hydrological model simulations require a parameter calibration process, which is greatly influenced by the calibration data period and current hydrological conditions. This study aims to quantify the uncertainty in future runoff projections and hydrological droughts based on various general circulation models, and share the calibration data characteristics (data period and hydrological conditions) of socio-economic pathway scenarios and hydrological models.
Young Hoon Song, Eun-Sung Chung, and Shamsuddin Shahid
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-107, https://doi.org/10.5194/hess-2022-107, 2022
Manuscript not accepted for further review
Short summary
Short summary
This study proposed two new concepts for the previous Double Gamma Quantile Mapping (DGQM), such as the inclusion of flexible dividing point between two individual gamma functions and the use of more probability distributions. As a result, F-DDQM method performed the better bias correction for the GCMs very clearly. This new F-DDQM method can be also applied to the various fields such as the use of satellite climate data, reanalysis climate data and spatial downscaling or interpolation.
Cited articles
Abdelmoaty, H. M. and Papalexiou, S. M.: Changes of Extreme Precipitation in CMIP6 Projections: Should We Use Stationary or Nonstationary Models?, J. Clim., 36, 2999–3014, https://doi.org/10.1175/JCLI-D-22-0467.1, 2023.
Ansari, R., Casanueva, A., Liaqat, M. U., and Grossi, G.: Evaluation of bias correction methods for a multivariate drought index: case study of the Upper Jhelum Basin, Geosci. Model Dev., 16, 2055–2076, https://doi.org/10.5194/gmd-16-2055-2023, 2023.
Berg, P., Bosshard, T., Yang, W., and Zimmermann, K.: MIdASv0.2.1 – MultI-scale bias AdjuStment, Geosci. Model Dev., 15, 6165–6180, https://doi.org/10.5194/gmd-15-6165-2022, 2022.
Bourgault, P., Huard, D., Smith, T. J., Logan, T., Aoun, A., Lavoie, J., Dupuis, É., Rondeau-Genesse, G., Alegre, R., Barnes, C., Beaupré Laperrière, A., Biner, S., Caron, D., Ehbrecht, C., Fyke, J., Keel, T., Labonté, M.P., Lierhammer, L., Low, J. F., Quinn, J., Roy, P., Squire, D., Stephens, Ag., Tanguy, M., Whelan, C., Braun, M., and Castro, D.: xclim: xarray-based climate data analytics (0.48.1), Zenodo [code], https://doi.org/10.5281/zenodo.10685050, 2024.
Cannon, A. J.: Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables, Clim. Dyn., 50, 31–49, https://doi.org/10.1007/s00382-017-3580-6, 2018.
Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes?, J. Clim., 28, 6938–6959, https://doi.org/10.1175/JCLI-D-14-00754.1, 2015.
Chae, S. T., Chung, E. S., and Jiang, J.: Robust siting of permeable pavement in highly urbanized watersheds considering climate change using a combination of fuzzy-TOPSIS and the VIKOR method, Water Resour. Manag., 36, 951–969, https://doi.org/10.1007/s11269-022-03062-y, 2022.
Chua, Z. W., Kuleshov, Y., Watkins, A. B., Choy, S., and Sun, C.: A Comparison of Various Correction and Blending Techniques for Creating an Improved Satellite-Gauge Rainfall Dataset over Australia, Remote Sens., 14, 261, https://doi.org/10.3390/rs14020261, 2022.
Chung, E. S. and Kim, Y. J.: Development of fuzzy multi-criteria approach to prioritize locations of treated wastewater use considering climate change scenarios, J. Environ. Manage., 146, 505–516, https://doi.org/10.1016/j.jenvman.2014.08.013, 2014.
Copernicus Climate Change Service, Climate Data Store: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023.
Cox, P. and Stephenson, D.: A changing climate for prediction. Science 317, 207–208, https://doi.org/10.1126/science.1145956, 2007.
Déqué, M.: Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values, Glob. Planet. Change, 57, 16–26, https://doi.org/10.1016/j.gloplacha.2006.11.030, 2007.
Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K., and Liebert, J.: HESS Opinions “Should we apply bias correction to global and regional climate model data?”, Hydrol. Earth Syst. Sci., 16, 3391–3404, https://doi.org/10.5194/hess-16-3391-2012, 2012.
Enayati, M., Bozorg-Haddad, O., Bazrafshan, J., Hejabi, S., and Chu, X.: Bias correction capabilities of quantile mapping methods for rainfall and temperature variables, Water and Climate change, 12, 401–419, https://doi.org/10.2166/wcc.2020.261, 2021.
Evin, G., Ribes, A., and Corre, L.: Assessing CMIP6 uncertainties at global warming levels, Clim. Dyn., https://doi.org/10.1007/s00382-024-07323-x, 2024.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance, Journal of the American Statistical Association, 32, 675–701, https://doi.org/10.1080/01621459.1937.10503522, 1937.
Galton, F.: Regression Towards Mediocrity in Hereditary Stature, The Journal of the Anthropological Institute of Great Britain and Ireland, 15, 246–263, https://doi.org/10.2307/2841583, 1886.
Giorgi, F. and Mearns, L. O.: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging” (REA) method, J. Clim., 15, 1141–1158, https://doi.org/10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2, 2002.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-Skaugen, T.: Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods, Hydrol. Earth Syst. Sci., 16, 3383–3390, https://doi.org/10.5194/hess-16-3383-2012, 2012.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Homsi, R., Shiru, M. S., Shahid, S., Ismail, T., Harun, S. B., Al-Ansari, N., and Yaseen, Z. M.: Precipitation projection using a CMIP5 GCM ensemble model: a regional investigation of Syria, Eng. Appl. Comput. Fluid Mech., 14, 90–106, https://doi.org/10.1080/19942060.2019.1683076, 2019.
Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T.: BayesIan model averaging: A tutorial (with discussion), Stat. Sci., 214, 382–417, https://doi.org/10.1214/ss/1009212519, 1999.
Hosking, J. R. M.: L-moments: Analysis and estimation of distributions using linear combinations of order statistics, J. R. Stat., 52, 105–124, https://doi.org/10.1111/j.2517-6161.1990.tb01775.x, 1990.
Hosking, J. R. M., Wallis, J. R., and Wood, E. F.: Estimation of the generalized extreme value distribution by the method of probability weighted monents, Technometrics, 27, 251–261, https://doi.org/10.1080/00401706.1985.10488049, 1985.
Hwang, C. L. and Yoon, K.: Multiple attribute decision making: Methods and applications, Springer-Verlag, https://doi.org/10.1007/978-3-642-48318-9, 1981.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, https://doi.org/10.1017/9781009157896, 2021.
IPCC: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, https://doi.org/10.1017/9781009325844, 2022.
Ishizaki, N. N., Shiogama, H., Hanasaki, N., Takahashi, K., and Nakaegawa, T.: Evaluation of the spatial characteristics of climate scenarios based on statistical and dynamical downscaling for impact assessments in Japan, Int. J. Climatol., 43, 1179–1192, https://doi.org/10.1002/joc.7903, 2022.
Jobst, A. M., Kingston, D. G., Cullen, N. J., and Schmid, J.: Intercomparison of different uncertainty sources in hydrological climate change projections for an alpine catchment (upper Clutha River, New Zealand), Hydrol. Earth Syst. Sci., 22, 3125–3142, https://doi.org/10.5194/hess-22-3125-2018, 2018.
Lafferty, D. C. and Sriver, R. L.: Downscaling and bias-correction contribute considerable uncertainty to local climate projections in CMIP6, npj Clim. Atmos. Sci., 6, 158, https://doi.org/10.1038/s41612-023-00486-0, 2023.
Lafon, T., Dadson, S., Buys, G., and Prudhomme, C.: Bias correction of daily precipitation simulated by a regional climate model: a comparison of methods, Int. J. Climatol., 33, 1367–1381, https://doi.org/10.1002/joc.3518, 2013.
Lin, J.: Divergence measures based on the Shannon entropy, IEEE Transactions on Information Theory, 37, 145–151, https://doi.org/10.1109/18.61115, 1991.
Maraun, D.: Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue, J. Clim., 26, 2137–2143, https://doi.org/10.1175/JCLI-D-12-00821.1, 2013.
Nair, M. M. A., Rajesh, N., Sahai, A. K., and Lakshmi Kumar, T. V.: Quantification of uncertainties in projections of extreme daily precipitation simulated by CMIP6 GCMs over homogeneous regions of India, Int. J. Climatol., 43, 7365–7380, https://doi.org/10.1002/joc.8269, 2023.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Pathak, R., Dasari, H. P., Ashok, K., and Hoteit, I.: Effects of multi-observations uncertainty and models similarity on climate change projections, npj Clim. Atmos. Sci., 6, 144, https://doi.org/10.1038/s41612-023-00473-5, 2023.
Petrova, I. Y., Miralles, D. G., Brient, F., Donat, M. G., Min, S. K., Kim, Y. H., and Bador, M.: Observation-constrained projections reveal longer-than-expected dry spells, Nature, 633, 594–600, https://doi.org/10.1038/s41586-024-07887-y, 2024.
Piani, C., Weedon, G. P., Best, M., Gomes, S. M., Viterbo, P., Hagemann, S., and Haerter, J. O.: Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models, J. Hydrol., 395, 199–215, https://doi.org/10.1016/j.jhydrol.2010.10.024, 2010.
Rahimi, R., Tavakol-Davani, H., and Nasseri, M.: An Uncertainty-Based Regional Comparative Analysis on the Performance of Different Bias Correction Methods in Statistical Downscaling of Precipitation, Water Resour. Manag., 35, 2503–2518, https://doi.org/10.1007/s11269-021-02844-0, 2021.
Rajulapati, C. R. and Papalexiou, S. M.: Precipitation Bias Correction: A Novel Semi-parametric Quantile Mapping Method, Earth Space Sci., 10, e2023EA002823, https://doi.org/10.1029/2023EA002823, 2023.
Roca, R. and Fiolleau, T.: Extreme precipitation in the tropics is closely associated with long-lived convective systems, Commun. Earth Environ., 1, https://doi.org/10.1038/s43247-020-00015-4, 2020.
Roca, R., Alexander, L. V., Potter, G., Bador, M., Jucá, R., Contractor, S., Bosilovich, M. G., and Cloché, S.: FROGS: a daily 1° × 1° gridded precipitation database of rain gauge, satellite and reanalysis products, Earth Syst. Sci. Data, 11, 1017–1035, https://doi.org/10.5194/essd-11-1017-2019, 2019.
Saranya, M. S. and Vinish, V. N.: Evaluation and selection of CORDEX-SA datasets and bias correction methods for a hydrological impact study in a humid tropical river basin, Kerala, Water Climate Change, 12, 3688–3713, https://doi.org/10.2166/wcc.2021.139, 2021.
Shannon, C. E. and Weaver, W.: The mathematical theory of communication, University of Illinois Press, ISBN 0252725484, 1949.
Shanmugam, M., Lim, S., Hosan, M. L. Shrestha, S., Babel, M. S., and Virdis, S. G. P.: Lapse rate-adjusted bias correction for CMIP6 GCM precipitation data: An application to the Monsoon Asia Region, Environ. Monit. Assess., 196, 49, https://doi.org/10.1007/s10661-023-12187-5, 2024.
Smitha, P. S., Narasimhan, B., Sudheer K. P., and Annamalai, H.: An improved bias correction method of daily rainfall data using a sliding window technique for climate change impact assessment, J. Hydrol., 556, 100–118, https://doi.org/10.1016/j.jhydrol.2017.11.010, 2018.
Song, J. Y. and Chung, E. S.: Robustness, uncertainty, and sensitivity analyses of TOPSIS method to climate change vulnerability: Case of flood damage, Water Resour. Manag., 30, 4751–4771, https://doi.org/10.1007/s11269-016-1451-2, 2016.
Song, Y. H.: Comprehensive Index and Performance-Related Code, Zenodo [code], https://doi.org/10.5281/zenodo.14351816, 2024a.
Song, Y. H.: Historical Daily Precipitation Data of CMIP6 GCMs and ERA5, Figshare [data set], https://doi.org/10.6084/m9.figshare.27999167.v5, 2024b.
Song, Y. H., Shahid, S., and Chung, E. S.: Differences in multi-model ensembles of CMIP5 and CMIP6 projections for future droughts in South Korea, Int. J. Climatol., 42, 2688–2716, https://doi.org/10.1002/joc.7386, 2022a.
Song, Y. H., Chung, E. S., and Shahid, S.: The New Bias Correction Method for Daily Extremes Precipitation over South Korea using CMIP6 GCMs, Water Resour. Manag., 36, 5977–5997, https://doi.org/10.1007/s11269-022-03338-3, 2022b.
Song, Y. H., Chung, E. S., and Shahid, S.: Uncertainties in evapotranspiration projections associated with estimation methods and CMIP6 GCMs for South Korea, Sci. Total Environ., 825, 153953, https://doi.org/10.1016/j.scitotenv.2022.153953, 2023.
Song, Y. H., Chung, E. S., and Shahid, S.: Global Future Climate Signal by Latitudes Using CMIP6 GCMs, Earths Future, 12, e2022EF003183, https://doi.org/10.1029/2022EF003183, 2024.
Switanek, M. B., Troch, P. A., Castro, C. L., Leuprecht, A., Chang, H.-I., Mukherjee, R., and Demaria, E. M. C.: Scaled distribution mapping: a bias correction method that preserves raw climate model projected changes, Hydrol. Earth Syst. Sci., 21, 2649–2666, https://doi.org/10.5194/hess-21-2649-2017, 2017.
Tanimu, B., Bello, A. D., Abdullahi, S. A. Ajibike, M. A., Yaseen, Z. M., Kamruzzaman, M., Muhammad, M. K. I., and Shahid, S.: Comparison of conventional and machine learning methods for bias correcting CMIP6 rainfall and temperature in Nigeria, Theor. Appl. Climatol., 155, 4423–4452, https://doi.org/10.1007/s00704-024-04888-9, 2024.
Teng, J., Potter, N. J., Chiew, F. H. S., Zhang, L., Wang, B., Vaze, J., and Evans, J. P.: How does bias correction of regional climate model precipitation affect modelled runoff?, Hydrol. Earth Syst. Sci., 19, 711–728, https://doi.org/10.5194/hess-19-711-2015, 2015.
Teutschbein, C. and Seibert, J.: Bias correction of regional climate model simulations for 575 hydrological climate-change impact studies: Review and evaluation of different 576 methods, J. Hydrol., 16, 12–29, https://doi.org/10.1016/j.jhydrol.2012.05.052, 2012.
Themeßl, M. J., Gobiet, A., and Heinrich, G.: Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol., 31, 1530–1544, https://doi.org/10.1002/joc.2168, 2012.
Tong, Y., Gao, X., Han, Z., Xu, Y., and Giorgi, F.: Bias correction of temperature and precipitation over China for RCM simulations using the QM and QDM methods, Clim. Dyn., 57, 1425–1443, https://doi.org/10.1007/s00382-020-05447-4, 2021.
Yip, S., Ferro, C. A. T., Stephenson, D. B., and Hawkins, E.: A simple, coherent framework for partitioning uncertainty in climate predictions, J. Clim., 24, 4634–4643, https://doi.org/10.1175/2011JCLI4085.1, 2011.
Wilcoxon, F.: Individual comparisons by ranking methods, Biometrics Bulletin, 1, 80–83, https://doi.org/10.2307/3001968, 1945.
Woldemeskel, F. M., Sharma, A. Sivakumar, B., and Mehrotra, R.: A framework to quantify GCM uncertainties for use in impact assessment studies, J. Clim., 519, 1453–1465, https://doi.org/10.1016/j.jhydrol.2014.09.025, 2014.
Wood, R. R., Lehner, F., Pendergrass, A. G., and Schlunegger, S.: Changes in precipitation variability across time scales in multiple global climate model large ensembles, Environ. Res. Lett., 16, 084022, https://doi.org/10.1088/1748-9326/ac10dd, 2021.
Wu, Y., Miao, C., Fan, X., Gou, J., Zhang, Q., and Zheng, H.: Quantifying the uncertainty sources of future climate projections and narrowing uncertainties with Bias Correction Techniques, Earths Future, 10, e2022EF002963, 1–16, 2022.
Zhang, S., Zhou, Z., Peng, P., and Xu, C.: A New Framework for Estimating and Decomposing the Uncertainty of Climate Projections, J. Clim., 37, 365–384, https://doi.org/10.1175/JCLI-D-23-0064.1, 2024.
Short summary
This study assessed three methods for correcting daily precipitation data: Quantile Delta Mapping, Empirical Quantile Mapping (EQM), and Detrended Quantile Mapping (DQM) using 11 GCMs. EQM performed best overall, offering reliable corrections and lower uncertainty. The best bias correction method for each grid is selected differently depending on the weighting case. The best bias correction method can vary depending on factors such as climate and terrain.
This study assessed three methods for correcting daily precipitation data: Quantile Delta...