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Abstract. This study proposed a Comprehensive Index (CI)
that jointly considers bias correction performance metrics
and uncertainty to guide the selection of quantile mapping
methods. This approach reveals not only a performance-
based ranking of bias correction methods but also how op-
timal method choices shift as the uncertainty weight varies.
This study evaluated daily precipitation performance from 11
CMIP6 GCMs corrected by Quantile Delta Mapping (QDM),
Empirical Quantile Mapping (EQM), and Detrended Quan-
tile Mapping (DQM) using ten evaluation metrics and ap-
plied TOPSIS (Technique for Order Preference by Similarity
to an Ideal Solution) to compute performance-based rank-
ings. Furthermore, Bayesian Model Averaging (BMA) was
used to quantify both individual model and ensemble predic-
tion uncertainties. Moreover, entropy based weighting of the
ten evaluation metrics reveals that error based measures such
as RMSE and MAE carry the highest information content
(weights 0.13-0.28 and 0.15-0.22, respectively). By aggre-
gating TOPSIS performance scores with BMA uncertainty
measures, this study developed CI. Results show that EQM
achieved the best performance across most metrics 0.30
(RMSE), 0.18 (MAE), 0.98 (R?), 0.87 (KGE), 0.93 (NSE),
and 0.99 (EVS) and exhibited the lowest uncertainty (vari-
ance = 0.0027) across all continents. QDM outperformed
other methods in certain regions, reaching its lowest model
uncertainty (variance = 0.0025) in South America. EQM was
selected most frequently under all weighting scenarios, while
DQM was least chosen. In South America, DQM was pre-
ferred more often than QDM when performance was empha-
sized, whereas the opposite occurred when uncertainty was
emphasized. These findings suggest that incorporating uncer-
tainty leads to spatially heterogeneous and parameter depen-

dent changes in optimal bias correction method choice that
would be overlooked by metric only selection.

1 Introduction

The Coupled Model Intercomparison Project (CMIP) Gen-
eral Circulation Models (GCMs) have provided critical sci-
entific evidence to explore climate change (IPCC, 2021;
IPCC, 2022). Nevertheless, GCMs exhibit significant biases
compared to observational data for reasons such as incom-
plete model parameterization and inadequate understanding
of key physical processes (Evin et al., 2024; Zhang et al.,
2024; Nair et al., 2023). These deficiencies with GCM have
introduced various uncertainties in climate projections, mak-
ing ensuring sufficient reliability in climate change impact
assessments difficult. In this context, many studies have pro-
posed various bias correction methods to reduce the discrep-
ancies between observational data and GCM simulations,
thereby providing more stable results than raw GCM-based
assessments (Cannon et al., 2015; ThemeBl et al., 2012; Piani
et al., 2010). Despite these advancements, the suggested bias
correction methods differ in their statistical approaches, re-
sulting in discrepancies in the climate variables adjusted for
historical periods. Furthermore, the distribution of precipita-
tion across continents and specific locations causes variations
in the correction outcomes depending on the method used,
which makes it challenging to reflect extreme climate events
in future projections and adds another layer of confusion to
climate change research (Song et al., 2022b; Maraun, 2013;
Ehret et al., 2012; Enayati et al., 2021). Thus, exploring mul-
tiple aspects to make reasonable selections when applying
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bias correction methods specific to each continent and region
is necessary.

Many studies have developed appropriate bias correction
methods based on various theories, which have reduced the
difference between raw GCM simulations and observed pre-
cipitation (Abdelmoaty and Papalexiou, 2023; Shanmugam
et al., 2024; Rahimi et al., 2021). The Quantile Mapping
(QM) series has been widely adopted among bias correc-
tion methods due to its conceptual simplicity, ease of ap-
plication, and adaptability to various methodologies. How-
ever, although standard QM methods have high performance
in correcting stationary precipitation, they are less efficient
in non-stationary data, such as extreme precipitation events
(Song et al., 2022b). To address these limitations, recent
studies proposed an improved QM approach to reflect fu-
ture non-stationary precipitation across all quantiles of his-
torical precipitation (Rajulapati and Papalexiou, 2023; Can-
non et al., 2015; Cannon, 2018; Song et al., 2022b). In re-
cent years, climate studies using GCMs have adopted sev-
eral improved QM methods that offer higher performance
than previous methods to correct historical precipitation and
project it accurately into the future. For example, Song et
al. (2022b) performed bias correction on daily historical pre-
cipitation over South Korea using distribution transformation
methods they developed and found that the best QM method
varied depending on the station. Additionally, previous stud-
ies have reported that QM performance varied by grid and
station (Ishizaki et al., 2022; Chua et al., 2022). Furthermore,
they compared the extreme precipitation of GCMs using the
GEV distribution, which allows for more effective estimation
of extreme precipitation, and demonstrated that the perfor-
mance in estimating extreme precipitation varies according
to different bias correction methods. From this perspective,
these improved QMs may only guarantee uniform results
across some grids and regions. Therefore, to analyze posi-
tive changes in future climate impact assessments, selecting
appropriate bias correction methods based on a robust frame-
work is essential.

Multi-criteria decision analysis (MCDA) is efficient for
prioritization because it can aggregate diverse information
from various alternatives. MCDA has been extensively used
across different fields to select suitable alternatives, with
numerous studies confirming its stability in priority selec-
tion (Chae et al., 2022; Chung and Kim, 2014; Song et
al., 2024). Moreover, MCDA has been employed in future
climate change studies to provide reasonable solutions to
emerging problems, including the selection of bias correc-
tion methods for specific regions and countries (Homsi et al.,
2019; Saranya and Vinish, 2021). Technique for Order Pref-
erence by Similarity to Ideal Solution (TOPSIS) is effectively
utilized in our study’s MCDA framework by integrating mul-
tiple evaluation metrics and calculating the distance between
each alternative and the ideal solution, thereby enabling clear
and intuitive prioritization decisions. However, MCDA’s ef-
fectiveness is sensitive to the source and quality of alterna-
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tives, making accurate ranking challenging when information
is lacking or overly focused on specific criteria (Song and
Chung, 2016). Small-scale regional and observation-based
studies have conducted GCM performance evaluations, but
global and continental-scale evaluations are rare due to the
substantial time and cost required.

GCM simulation includes uncertainties from various
sources, such as model structure, initial condition, bound-
ary condition, and parameters (Pathak et al., 2023; Cox and
Stephenson, 2007; Yip et al., 2011; Woldemeskel et al.,
2014). The selection of bias correction methods contributes
significantly to uncertainty in climate change research using
GCMs. Jobst et al. (2018) argued that GHG emission scenar-
ios, bias correction methods, and GCMs are primary sources
of uncertainty in climate change assessments across various
fields. The extensive uncertainties in GCMs complicate the
efficient establishment of adaptation and mitigation policies.
This issue has increased awareness of the uncertainties in-
herent in historical simulations. Consequently, many stud-
ies have focused on estimating uncertainties using diverse
methods to quantify these uncertainties (Giorgi and Mearns,
2002; Song et al., 2022a, 2023). Although it is impossible to
drastically reduce the uncertainty of GCM outputs due to the
unpredictable nature of climate phenomena, uncertainties in
GCM simulations can be reduced using ensemble principles,
such as multi-model ensemble development using a ratio-
nal approach (Song et al., 2024). However, accurately identi-
fying biases in precipitation simulation remains challenging
due to the lack of comprehensive equations reflecting Earth’s
physical processes. In this context, climate change studies
have aimed to quantify the uncertainty of historical climate
variables in GCMs, offering insights into the variability of
GCM simulations (Pathak et al., 2023). Bias-corrected pre-
cipitation of GCMs using QM has shown high performance
in the historical period, which is expected to result in better
future predictions. However, the physical concepts of var-
ious QMs may lead to more significant uncertainty in the
future (Lafferty and Sriver, 2023). Therefore, efforts should
be made to consider and reduce uncertainty in the GCM se-
lection process. It will ensure the reliability of predictions
by selecting an appropriate bias-correcting method. Further-
more, Bayesian Model Averaging (BMA) plays a crucial role
in quantifying the predictive uncertainty of multiple climate
models and enhancing the reliability of the final predictions,
which is why it has been employed as an indispensable tool
in our integrated evaluation.

In light of the challenges outlined above, including dis-
crepancies among bias correction methods, regional variabil-
ity in precipitation distributions, and significant uncertainties
in GCM outputs, there is a clear need for an integrated frame-
work that evaluates the performance of various QM methods
and quantifies their associated uncertainties. This study aims
to compare the performance of three bias correction methods
using daily historical precipitation data (1980-2014) from
CMIP6 GCMs across six continents (South America: SA;

https://doi.org/10.5194/gmd-18-8017-2025



Y. H. Song and E.-S. Chung: Intercomparison of bias correction methods for precipitation 8019

North America: NA; Africa: AF; Europe: EU; Asia: AS; and
Oceania: OA). Ten evaluation metrics were used to assess the
performance of daily precipitation corrected by the three QM
methods for each continent. Subsequently, the Technique for
Order of Preference by Similarity to Ideal Solution (TOPSIS)
of MCDA was applied to select an appropriate bias correc-
tion method for each continent. Additionally, the uncertainty
in daily precipitation for historical periods was quantified us-
ing BMA. By integrating performance scores from TOPSIS
and uncertainty metrics from BMA, this study developed a
Comprehensive Index (CI), which was then used to select the
best bias correction method for each continent. This compre-
hensive approach ensures a balanced consideration of both
performance and uncertainty, enhancing understanding of the
bias correction process based on the distribution of daily pre-
cipitation across continents.

2 Datasets and methods
2.1 General Circulation Model

This study used 11 CMIP6 GCM to perform bias correction
for daily precipitation in the historical period. The variant la-
bel for the GCMs used in this study was rlilplfl. Table 1
presents basic information, including model names, resolu-
tion. The model resolution of 11 CMIP6 GCMs was equally
re-gridded to 1° x 1° using linear interpolation. Furthermore,
this study’s ensemble member of CMIP6 GCMs was the first
member of realizations (rl).

2.2 Reference data

This study utilized re-gridded precipitation data derived from
ERAS reanalysis products provided by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF). The
original ERAS precipitation data, available at a 0.25° x 0.25°
spatial resolution, was re-gridded to a 1.0° x 1.0° resolution
using the Python library XESMF. The data units were con-
verted from meters per day (md~!) to millimeters per day
(mmd~") for consistency with other datasets. The dataset
is part of the FROGS (Frequent Rainfall Observations on
Grids) database, which integrates various precipitation prod-
ucts, including satellite-based, gauge-based, and reanalysis
data (Roca et al., 2019). The re-gridded dataset was selected
for its spatial compatibility with the study’s objectives, facil-
itating the evaluation of General Circulation Model (GCM)
simulations in replicating observed precipitation patterns.
The FROGS database provides a robust framework for inter-
comparison and assessment of precipitation products across
different sources. FROGS database has been widely used in
various studies to ensure the reliability of climate model eval-
uation and climate change assessment (Wood et al., 2021;
Roca and Fiolleau, 2020; Petrova et al., 2024).
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2.3 Quantile mapping

This study employed three (Quantile delta mapping, QDM;
Detrended quantile mapping, DQM; Empirical quantile map-
ping, EQM) QM methods to correct the simulation of CMIP6
GCMs, and these methods are commonly used in climate
change research based on the climate models (Switanek et
al., 2017). The global application imposed substantial com-
putational demands. Consequently, the scope was limited
to these three techniques, and incorporating additional bias-
correction methods in future work would further strengthen
robustness. For calibration and evaluation, the dataset was
divided into a training period (1980-1996) and a validation
period (1997-2014). This approach minimizes the influence
of uncertainties associated with future projections, allowing
the study to focus on evaluating the intrinsic performance
differences of the QM methods. The frequency-adaptation
technique, as described by ThemefBl et al. (2012), was ap-
plied to address potential biases and improve the accuracy of
the corrections. This technique removes the systematic wet
bias caused by the model’s overestimation of dry days rel-
ative to observations. Based on this procedure, it effectively
corrects the underestimation of excessive dry days during the
summer and ensures stable performance even under rigorous
cross validation. The corrected precipitation using the QM
used a cumulative distribution function, as shown in Eq. (1),
to reduce the difference from the reference data.

mp (1) = F )t Fonh [Xmp (1)] (1)

where, )Em,p (t) presents the bias-corrected results. Fy p, rep-
resents the cumulative distribution function (CDF) of the ob-
served data, and F,  presents the CDF of the model data.
The subscripts o and m denote observed and model data, re-
spectively, and the subscript h denotes the historical period.

QDM, developed by Cannon et al. (2015), preserves the
relative changes ratio of modeled precipitation quantiles. In
this context, QDM consists of bias correction terms derived
from observed data and relative change terms obtained from
the model. The computation process of QDM is carried out
as described in Eqgs. (2) to (4).

fm,p )= )’eozm,h:p(t) “Am(?) ()
Rombp (1) = F t IR {xmp (0]] 3)
-
Bn(0) = ——mpD) )
Fo [P {xmp ()]

where, )?o;m,h;p () presents the bias corrected daily precipita-
tion for the historical period, and Ap,(¢) the relative change
in the model simulation between the reference period and the
target period. In addition, the target period is calculated by
multiplying the relative change (A, (¢)) at time () multiplied
by the bias-corrected precipitation in the reference period.
An(1) is defined as X, p (1) divided by Fo_ﬁ [Féf‘)p {xm,p @) }].
A (?) preserving the relative change between the reference
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Table 1. Information of CMIP6 GCMs in this study.

Institution Models Resolution
Commonwealth scientific and industrial research organization/Australia ACCESS-CM2 1.2° x 1.8°
ACCESS-ESM1-5  1.2°x 1.8°
Beijing Climate Center/China BCC-CSM2-MR 1.1°x 1.1°
Canadian Centre for Climate Modeling and Analysis/Canada CanESMS5 2.8°x2.8°
National Center for Atmospheric Research CESM2-WACCM 0.9°x 1.3°
Euro-Mediterranean Center on Climate Change coupled climate model/Italy CMCC-CM2-SR5 ~0.9°
CMCC-ESM2 0.9° x 1.25°
EC-Earth Climate Model Consortium/ EC-EARTH consortium EC-Earth3-Veg-LR  1.0° x 1.0°
National Oceanic and Atmospheric Administration/ United States GFDL-ESM4 1.4° x 1.4°
Institute for Numerical Mathematics/ Russia INM-CM4-8 ~0.9°

Institute Pierre Simon Laplace/ France

IPSL-CM6A-LR 1.1°x 1.1°

and target periods. DQM, while more limited compared to
QDM, integrates additional information regarding the pro-
jection of future precipitation. Furthermore, climate change
signals estimated from DQM tend to be consistent with sig-
nals from baseline climate models. The computational pro-
cess of DQM is performed as shown in Eq. (5).

XonXmn () || Xmp(t
)em,p _ F(;}l Fm,h mih m,h( ) r_n,p( ) (5)
’ Xm,p (t) Xm,h

where, X m,h and X m,p represent the long-term modeled aver-
ages for the historical reference period and the target period,
respectively.

EQM is a method that corrects the quantiles of the empiri-
cal cumulative distribution function from a GCM simulation
based on a reference precipitation distribution using a cor-
rected transfer function (Dequé, 2007). The calculation pro-
cess of EQM can be represented as follows in Eq. (6).

Rmp (1) = Fy 1 (FinpGem p(1))) (6)

All these QMs can be applied to historical data correction
in this approach. The bias correction is performed based on
the relative changes between a reference period and a target
period in the past, ensuring that the relative changes between
these periods are preserved in the corrected data (Ansari et
al., 2023; Tanimu et al., 2024; Cannon et al., 2015).

2.4 Evaluation metrics

This study evaluated the performance of three quantile-
mapping methods against reference data during the valida-
tion period (1997-2014) using ten metrics commonly em-
ployed in climate research, and used these metrics to iden-
tify the optimal GCMs and bias-correction techniques. Rec-
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ognizing that redundancy among metrics can bias multi-
criteria decision making, this study applied an entropy-based
weighting scheme that assigns weights according to each
metric’s distribution to enhance objectivity. Ten evaluation
metrics used in this study are as follows: Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), Coefficient
of Determination (R?), Percent bias (Pbias), Nash-Sutcliffe
Efficiency (NSE), Kling-Gupta efficiency (KGE), Median
Absolute Error (MdAE), Mean Squared Logarithmic Er-
ror (MSLE), Explained Variance Score (EVS), and Jenson-
Shannon divergence (JSD). The equations of ten evaluation
metrics are presented in Table 2.

Ten evaluation metrics selected in this study assess
GCM performance from various perspectives, including er-
ror (RMSE, MAE, MdAE, and MSLE), deviation (Pbias),
accuracy (R%,NSE), variability (EVS), correlation and over-
all performance (KGE), and distributional differences (JSD).
These metrics complement each other by offering a com-
prehensive evaluation framework. For instance, while NSE
evaluates the overall fit of the simulated data to observations,
KGE provides a holistic view by integrating correlation, vari-
ability, and bias into a single efficiency score, and JSD cap-
tures the difference between the distributions of the reference
data and the bias-corrected GCM output. This study used
the Friedman test to perform statistical comparisons among
the three bias-correction methods (DQM, EQM, QDM), and
when the Friedman test indicated overall significant differ-
ences, pairwise Wilcoxon signed-rank tests were conducted
between each method pair to determine which specific com-
parisons differed. The detailed concepts of the two methods
can be found in Friedman (1937) and Wilcoxon (1945).
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Table 2. Information of the ten-evaluation metrics used in this study.

8021

Metrics  Equations

Factors

References

Range

. 2
(X:slm _ X{ef)
i i

1
RMSE =\/n'
1

i

X l?ef reference data
X l.sm‘ Bias corrected GCM

[0, +00)
Best value: 0

n
_ si f
MAE = 2 |xgim — xge
1=
i (X?im_x;'ef)z
R? =1- W Galton (1886) (—00,1]
! ! Best value: 1
i (xref—x$im)
- i i
Pbias ==l x 100 (—00, +00)
Z] X{ef Best value: 0
i=
i (X?im_leef)Z
NSE =1-5— Nash and Sutcliffe (1970)  (—o0, 1]
_;(Xfef—xfef)z Best value: 1
MJAE = median(’XiSim — xrefy [0, +00)
Best value: 0
n . -~
MSLE = 1 3 (log 1+ X}i™) — log(1 + XI¥1))2 [0, +00)
i=1 Best value: 0
1 Var(xsim_xref) _
EVS =1 T Var(xEnh (=00, 1]
Best value: 1
KGE =1-V/r-D24@-D2+B-1)?2 r Pearson product-moment  Gupta et al. (2009) (=00, 1]
correlation Best value: 1
o Variability error
B: Bias term
ISD =1pkL (P I P;—Q) +1Dk1 <Q|| #) P(x): Probability density ~ Lin (1991) [0, In2]
distribution of reference Best value: 0
data
Q(x) : Probability density
distribution of GCM
Dxr: KL-D

2.5 Generalized extreme value

This study used generalized extreme value (GEV) to com-
pare the extreme precipitation calculated by the bias-
corrected GCM at each grid of six continents over the histor-
ical period. The historical precipitation was compared with
the distribution of reference data and bias-corrected GCM
above the 95th quantile of the Probability Density Function
(PDF) of the GEV distribution (Hosking et al., 1985). In ad-
dition, this study compared the distribution differences be-
tween the reference data based on the GEV distribution and
the corrected GCM using JSD. GEV distribution is com-
monly used to confirm extreme values in climate variables.
The PDF of the GEV distribution is shown in Eq. (7), and
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the parameters of the GEV distribution were estimated using
L-moment (Hosking, 1990).

1 x—e€ i X —€ g
g(x):—[l—k :| expi—[l—k :| } @)
N N N

where, k, s, and ¢ represents a shape, scale, and location of
the GEV distribution, respectively.

2.6 Bayesian model averaging (BMA)

The BMA is a statistical technique that combines multiple
models to provide predictions that account for model uncer-
tainty (Hoeting et al., 1999). BMA is used to integrate pre-
dictions from GCMs to improve the robustness and reliability
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of the resulting assemblies. The posterior probability of each
model is calculated based on Bayes’ theorem as shown in

Eq. (8).

P(D|My)P(M,
P(M, | D) = K( | My)P(My) @)

> P(D|Mj)P(Mj)
j=1

where, P(Mjp) is the prior probability of model My, and
P(D | My) the likelihood of the data D given model My,
P (My | D) is the posterior probability of model M. In addi-
tion, the BMA prediction OBMa is the weighted average of
the predictions from each model as shown in Eq. (9).

K
Opyma =Y P(Mi | D)Qx ©)
k=1

where, Qk is the prediction from model M. In this study,
BMA was used to quantify the model uncertainty and ensem-
ble prediction uncertainty for daily precipitation corrected by
three QM methods (QDM, EQM, and DQM) applied to 11
CMIP6 GCMs, as shown in Egs. (10) and (11).

| X
2 -2
aW=EZ(wk—w) (10)
k=1
where, K is the number of models, w;y = P(My | D) is
the weight of model My, w is the mean of the weights,

K
given by w = % > wg. A higher variance in model weights

indicates more significant prediction differences, implying
greater model uncertainty.

& ..
BMA = | — — OBMA)? 11
o K};(Qk OBMA) (11)

oBMA is standard deviation of the BMA ensemble predic-
tions, Qk is the prediction from each model My, QBMA is
the weighted average prediction from BMA. This standard
deviation represents the variability among the ensemble pre-
dictions and serves as an indicator of uncertainty. A lower
standard deviation implies higher consistency among predic-
tions, indicating lower uncertainty, while a higher standard
deviation suggests greater variability and higher uncertainty.

2.7 TOPSIS

This study used TOPSIS to calculate a rational priority
among three QM methods based on the outcomes derived
from evaluation metrics. Moreover, this study employed en-
tropy theory to compute objective weights for the evalu-
ation metrics as an alternative to TOPSIS (Shannon and
Weaver, 1949). The closeness coefficient calculated using
TOPSIS was used as the performance metric for the CIL.
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Proposed by Hwang and Yoon (1981), TOPSIS is a multi-
criteria decision-making technique frequently used in water
resources and climate change research to select alternatives
(Song et al., 2024). As described in Eqs. (12) and (13), the
proximity of the three QM methods is calculated based on the
Positive Ideal Solution (PIS) and the Negative Ideal Solution
(NIS).

D = | > w;(ff = fi;)? (12)
j=1

Dy = | Y wi(f — fip)? (13)
\=!

where, Dl.+ is the Euclidean distance of each criterion from
the PIS, summing the whole criteria for an alternative f j+,

J presents the normalized value for the alternative f j+. w;

presents weight assigned to the criterion j. D;” is the distance
between the alternative f j_ and the NIS. The relative close-
ness is calculated as shown in Eq. (14). The optimal value is
closer to 1 and represents a reasonable alternative.

C Di (14)

"7 (D + D)

This study used entropy theory to calculate the weights for
each criterion. Entropy weighting ensures sufficient objec-
tivity by calculating weights based on the variability and dis-
tribution of data. This approach minimizes subjectivity, pre-
venting biases in the weighting process.

2.8 Comprehensive index (CI)

This study proposed a CI to select the best QM method by
combining performance scores and model uncertainty indi-
cators. The CI integrates the performance scores (closeness
coefficient) derived from the TOPSIS method with the uncer-
tainty quantified using BMA. This approach allows for a bal-
anced evaluation that considers both the effectiveness of the
QM methods and the associated uncertainties. Uncertainty
was quantified in two ways. Model-specific weight variance
was calculated using the variance of the model weights as-
signed by BMA, representing the uncertainty in selecting the
appropriate QM. The standard deviation of BMA ensemble
prediction was calculated to capture the spread and, thus,
the uncertainty of the ensemble forecasts. Both the indica-
tors were normalized using a min-max scaler to ensure com-
parability. The CI is calculated individually for every grid
and can reflect climate characteristics. Framework provides
flexibility in determining the weighting of uncertainty or per-
formance depending on the study objectives. Additionally,
the methodology offers flexibility in selecting performance
and uncertainty metrics. Alternative MCDA methods beyond
TOPSIS can be utilized for performance indicators, or in-
dices that effectively represent the model’s performance can
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be employed to calculate the CI. Similarly, for uncertainty
indicators, approaches such as variance, standard deviation,
or other uncertainty quantification techniques can be applied
to enhance the robustness of the framework further. Finally,
the calculation process of the CI is performed as shown in
Eqgs. (15) and (16).

v
Ul = % (15)
Cl=wx Ci— B x U (16)

where,UI represents the uncertainty indicator. V, and o, rep-
resent the normalized weight variance and the normalized
ensemble standard deviation, respectively, calculated using
BMA. C; represents the closeness coefficient calculated from
TOPSIS. w represents the weight given to the performance
score, 8 represents the weight given to the uncertainty in-
dicator. Furthermore, by adjusting the weights @ and 8, the
study evaluated the QM methods under different scenarios.
Equal weight (w = 0.5, 8 = 0.5) balances performance and
uncertainty equally, and the emphasized performance weight
(w=0.7, B =0.3) prioritize performance over uncertainty.
The emphasized uncertainty weight (w = 0.3, 8 =0.7) pri-
oritize uncertainty over performance. The results from the CI
provide a holistic evaluation of the QM methods, considering
both their effectiveness in bias correction and the reliability
of their predictions.

3 Result

3.1 Assessment of bias correction reproducibility
across continents

3.1.1 Comparison of bias correction effects

A Taylor diagram was used to compare the bias-corrected
and raw GCM precipitation with the observed data, and
Fig. 1 presents the results of applying the three QM methods
to 11 CMIP6 GCMs. In general, the precipitation corrected
by DQM showed a larger difference from the reference data
than other methods. In contrast, EQM performed better than
DQM, and many models showed results close to the refer-
ence data. The precipitation corrected by QDM also showed
good performance in most continents but slightly lower than
EQM. Nevertheless, QDM showed clearly better results than
DQM.

Regarding correlation coefficients, precipitation corrected
by DQM showed relatively high values between 0.8 and 0.9
but lower than EQM and QDM. The precipitation corrected
by EQM showed high agreement with the reference data,
recording correlation coefficients above 0.9 in most con-
tinents. QDM generally showed similar correlation coeffi-
cients to EQM but slightly lower values than EQM in North
America and Asia.
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For RMSE, precipitation corrected by DQM was higher
than EQM and QDM, indicating that the corrected precipita-
tion differed more from the reference data. On the other hand,
EQM had the lowest RMSE and showed superior perfor-
mance compared to other methods. QDM had slightly higher
RMSE than EQM but still outperformed DQM.

In terms of standard deviation, precipitation corrected by
DQM was higher or lower than the reference data in most
continents. On the other hand, precipitation corrected by
EQM was similar to the reference data and almost identical
to the reference data in Africa and Asia. QDM was similar
to the reference data in some continents but showed slight
differences from EQM.

These results imply that the precipitation corrected by the
three methods outperforms the raw simulation, which con-
firms that the GCM’s daily precipitation is reliably corrected
in the historical period.

3.1.2 Spatial distribution of bias correction
performance

This study used the Friedman test to evaluate whether the
three quantile-mapping methods (QDM, DQM, EQM) rank
differently across the 11 downscaled GCMs for each of the
ten-evaluation metrics within each continent. A p-value <
0.05 indicates that the methods rank differently for the met-
ric, and in this section all Friedman p-values were < 0.001
(Table S1 in the Supplement). When the Friedman test was
significant, pairwise differences were examined with the
Wilcoxon signed-rank test. The results, summarized in Sup-
plement Fig. S1, show that most method pairs are significant
across continents.

The spatial patterns of the evaluation metrics computed
from the bias-corrected daily precipitation data of GCMs in
South America are presented as shown in Fig. 2. Overall,
the precipitation corrected by EQM demonstrated lower JSD
values, as well as higher EVS and KGE values, compared to
other methods. The precipitation corrected by EQM showed
higher EVS in certain regions but slightly lower performance
in MdAE and Pbias across some grids. DQM exhibited per-
formance similar to EQM and QDM in most evaluation in-
dices but was relatively lower in most evaluation metrics.
The precipitation corrected by the three methods was under-
estimated compared to the reference data in northern South
America, while it was overestimated in eastern South Amer-
ica. In addition, precipitation corrected by the DQM method
tended to be overestimated more than the other methods,
while the EQM method showed the opposite result. Fur-
thermore, the daily precipitation corrected by EQM showed
the lowest overall error and high performance in both NSE
and R>. QDM and DQM also performed well but exhibited
slightly larger errors in some regions than EQM.

Figure 3 shows spatial patterns of evaluation metrics for
bias-corrected daily precipitation in North America. DQM
exhibited poorer error performance (MAE, MSLE, RMSE,

Geosci. Model Dev., 18, 8017-8045, 2025
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Figure 1. Comparison of raw and bias-corrected daily precipitation across six continents during the validation period (1997-2014) using
Taylor diagrams (x-axis: standard deviation; y-axis: correlation coefficient).
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Figure 2. Performance comparison of DQM, EQM, and QDM for the validation period (1997-2014) using evaluation metrics for daily

precipitation in South America.

MdAE), especially in the southern region, while EQM
achieved the best error metrics continent wide and QDM’s er-
rors were only slightly higher. For correlation metrics (NSE,
R?), EQM yielded the highest coefficients (mostly above
0.995), DQM lagged except for some high values in central
and eastern grids, and QDM showed slightly lower correla-
tions (around 0.978). All three methods overestimated pre-
cipitation (Pbias) at most grid points, with notable underes-
timation in Greenland. On divergence and distribution met-
rics (JSD, EVS, KGE), EQM again outperformed both DQM
and QDM. Consequently, EQM consistently provided the

https://doi.org/10.5194/gmd-18-8017-2025

most accurate and reliable precipitation corrections in North
America, while DQM introduced the greatest uncertainty.
Daily precipitation in Africa was corrected using three QM
methods, and performance is shown in Fig. 4. All three meth-
ods produced similar JSD spatial patterns, though DQM’s
performance was notably lower in southern Africa. In terms
of EVS, DQM exhibited the highest variability, QDM was in-
termediate, and EQM showed the lowest variability in south-
ern and central regions (but remained high in the north).
For error metrics, QDM performed best overall, particularly
in North Africa (MAE = 0.03, MSLE = 0.004), followed

Geosci. Model Dev., 18, 8017-8045, 2025
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Figure 3. Performance comparison of DQM, EQM, and QDM for the validation period (1997-2014) using evaluation metrics for daily

precipitation in North America.

by EQM, then DQM. EQM achieved the highest correlation
scores (NSE and R?) across most grid points, with QDM out-
performing DQM.

Figure 5 shows the spatial results of the grid-based evalu-
ation metrics for the European region. In terms of error met-
rics, EQM-corrected precipitation performed the best across
Europe compared to other methods. In contrast, QDM-
corrected precipitation performed similarly to DQM in MAE
and MSLE but significantly outperformed DQM in RMSE.

Regarding NSE and R%, EVS, and KGE metrics, EQM-
corrected precipitation performed overwhelmingly better
than other methods. QDM precipitation performed bet-
ter than DQM, while DQM performed the worst. Regard-
ing Pbias, EQM-corrected precipitation was underestimated
compared to the reference data in most parts of Europe. In
contrast, QDM-corrected precipitation was more similar to
the reference data compared to other methods, and DQM pre-
cipitation was overestimated compared to the reference data
except in central Europe.

Figure 6 compares bias-corrected daily precipitation in
Asia using various evaluation metrics. For error metrics,
EQM provided the best performance its RMSE remained be-
low 1.35 over most regions while DQM had the lowest er-
rors. QDM’s error values were similar to EQM but slightly
higher in East and North Asia. In terms of NSE and R2, EQM
again led, especially in Southwest and East Asia, with DQM
lagging behind. For EVS, EQM showed the lowest variabil-
ity, QDM was intermediate, and DQM the highest. Regard-

Geosci. Model Dev., 18, 8017-8045, 2025

ing Pbias, DQM tended to overestimate precipitation conti-
nent wide, EQM underestimated in most areas except Central
Asia, and QDM’s spatial pattern resembled EQM but with a
wider Pbias range.

Figure 7 shows the results of spatially quantifying the cor-
rected daily precipitation in Oceania using various evalua-
tion metrics. In terms of error metrics, the precipitation es-
timated by the three QM methods performed similarly in
MAE, MdAE, and MSLE. However, the precipitation cor-
rected by EQM performed better in RMSE than the other
methods. In the case of JSD, all three methods performed
well. Regarding EVS, the precipitation corrected by EQM
showed lower variability than the other methods, and DQM
showed higher performance than QDM. In Pbias, the precip-
itation adjusted by QDM was overestimated compared to the
reference data in Oceania, while the precipitation corrected
by DQM and EQM was underestimated compared to the ref-
erence data in central and southern Oceania. Finally, in KGE,
precipitation corrected by EQM showed the highest perfor-
mance, while DQM showed the lowest.

Figure 8 presents the distribution of the ten-evaluation
metrics for bias-corrected daily precipitation averaged over
each continent, summarized as boxplots. Each box shows
the interquartile range (IQR) and median of the metric val-
ues computed over 11 CMIP6 GCMs. Overall, EQM’s boxes
generally have lower medians and narrower IQRs for error
metrics (RMSE, MSLE, MAE) on most continents, indicat-
ing both smaller typical errors and less scatter compared to

https://doi.org/10.5194/gmd-18-8017-2025
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Figure 4. Performance comparison of DQM, EQM, and QDM for the validation period (1997-2014) using evaluation metrics for daily

precipitation in Africa.

QDM and DQM. QDM'’s boxplots lie slightly above those
of EQM but still exhibit relatively tight IQRs, suggesting
consistently strong performance. In contrast, DQM often has
higher median errors, wider IQRs, and more extreme out-
liers, reflecting larger and more variable biases relative to the
other methods.

3.1.3 Comparison of reproducibility for extreme daily
precipitation

This study also compared how well each bias correction
method reproduces extreme precipitation by fitting a Gen-
eralized Extreme Value (GEV) distribution to the corrected
daily values and then quantifying the distributional differ-
ences. Figure 9 shows the JSD of GEV fitted daily precip-
itation for DQM, EQM, and QDM on each continent. Across
most continents, the median JSD for all three methods is ex-
tremely low (on the order of 107* to 10_5), and even the
interquartile ranges fall within narrow bands indicating that
statistically the GEV curves for DQM, EQM, and QDM are
almost indistinguishable for historical data.

https://doi.org/10.5194/gmd-18-8017-2025

Table S2 shows the results of a Friedman test and sub-
sequent Wilcoxon signed rank pairwise comparisons for the
ten highest daily precipitation values exceeding the 95th per-
centile on each continent. The Friedman test yielded a p-
value of 4.5399 x 107>, indicating a highly significant dif-
ference and that at least one of the three quantile-mapping
methods differs systematically. All Wilcoxon pairwise com-
parisons between methods produced 0.00195 on every con-
tinent, demonstrating that no two bias-correction approaches
generate equivalent extreme-precipitation estimates. Further-
more, the fact that both tests yielded identical results across
continents indicates that the sign and rank structure of the
three methods was the same in every continent, which in turn
shows that the direction of the differences was consistent for
each GCM.

Because the reproducibility of extreme values in the cor-
rected GCM is essential for impact assessments, Fig. 10
presents the estimated probability density function (PDF) of
precipitation values above the 95th percentile for the same
GEV fit. Overall, DQM shows the highest probability den-

Geosci. Model Dev., 18, 8017-8045, 2025



8028

EQM
-

EVS

JSD

KGE

MAE (mm)

MdAE (mm)

Y. H. Song and E.-S. Chung: Intercomparison of bias correction methods for precipitation

DQM

EQM
- -

QDM
= R

o=

MSLE

NSE

Pbias (%)

RZ

RMSE (mm)

Figure 5. Performance comparison of DQM, EQM, and QDM for the validation period (1997-2014) using evaluation metrics for daily

precipitation in Europe.

sity for extreme precipitation across all continents and has
the widest tail, indicating that DQM boosts extreme events
most aggressively. In contrast, EQM shows the lowest and
narrowest density conservatively correcting extremes (often
5 %—8 % below DQM'’s values). QDM falls between EQM
and DQM in most regions but remains closer to EQM.

3.2 Prioritization of bias correction methods based on
performance

3.2.1 Results of weight for evaluation metrics

By conducting Friedman and Wilcoxon tests on the evalua-
tion metrics, this study confirms that the observed differences
in entropy-derived weights are statistically significant. In this
study, the weights were calculated by applying entropy the-
ory to the evaluation metrics used in the TOPSIS analysis,
and the results are presented in Table 3. JSD had the highest
weight in South America because the estimated JSD from 11
CMIP6 GCMs was an important metric for evaluating model
performance differences. These results indicate that the dif-
ferences between distributions are significant. On the other
hand, EVS and NSE in South America had very low weights,

Geosci. Model Dev., 18, 8017-8045, 2025

suggesting that the variability and efficiency of precipita-
tion were considered less important than other indicators. For
North America, the RMSE, MSLE, and MAE metrics were
of significant importance, as evidenced by their high weights.
These error metrics revealed substantial regional differences.
In contrast, EVS carried a negligible weight, suggesting it
was less important in explaining variability in North Amer-
ica. For Africa, MAAE and JSD metrics were of considerable
importance, as indicated by their high weights. These met-
rics were key evaluation factors in Africa. Conversely, EVS
carried a low weight, suggesting it was considered relatively
less important. RMSE had the highest weight in Europe, and
KGE also had a relatively high weight, indicating that these
metrics were considered important evaluation criteria in Eu-
rope. In Asia, MAE and MSLE had high weights, suggesting
that these metrics were important evaluation metrics. On the
other hand, EVS and NSE were considered less important
due to their low variability. In Oceania, high weights were
assigned to JSD, KGE, RMSE, and MAE, suggesting that
these metrics are critical for evaluating model performance.
On the other hand, R? and NSE were assigned low weights.

https://doi.org/10.5194/gmd-18-8017-2025
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Table 3. Entropy-based weights for evaluation metrics across different continents.

RMSE ~ MAE R? NSE  KGE Pbias MJAE MSLE  EVS  JSD
South America  0.1439  0.1536  0.0001  0.0001 0.0005 0.0238 0.1754 0.1934  0.0004 0.3088
North America 02289  0.1908 ~ 0.0001 ~ 0.0001 ~0.0007 0.0118 02152 02117 00001 0.1411
Aftica 0.1319  0.1686  0.0002  0.0002 0.0002 0.0855 02436 0.1911  0.0002 0.1786
Europe 02821 01762  0.0022  0.0022 00063 0.0378 01754 0.1666  0.0021 0.1490
Asia 02073  0.1954 0.00003 0.00003 0.0001 0.0305 02300 0.2024 0.00003 0.1342
Oceania 02384 02204  0.0013  0.0013 00068 0.0214 02338 02093  0.0012  0.0660

3.2.2 Selection of the best bias correction method based
on TOPSIS

Figures 11 and S2 present the best bias correction method
selected for each continent using the TOPSIS approach. In
Fig. 11, the spatial distribution of the most effective bias cor-
rection method across the grid points of each continent is
shown. Figure S2 shows the number of grid points selected
for each QM method. In South America, EQM was chosen
as the best method in most grid points, with EQM being se-
lected in over 1500 grid points. In contrast, QDM was se-
lected in fewer than 700 grid cells, making it the least chosen
method in South America. Across all continents except South
America, EQM was selected as the best model in the majority
of grid cells, with the number of selected grid points (North
America: 7583; Africa: 2879; Europe: 2719; Asia: 8793; and
Oceania: 1659). On the other hand, DQM was the least cho-
sen method across all continents. For QDM, although it was
the second most selected method across all continents except
South America, the difference in the number of grid points
between QDM and EQM is significant.

3.3 Uncertainty quantification of bias corrected daily
precipitation

3.3.1 Uncertainty by model

This study quantifies the daily precipitation uncertainty of 11
CMIP6 GCMs, corrected using three different BMA meth-
ods. Figure 12 shows the distribution of GCM weight vari-
ances calculated by BMA across six continents. In South
America, the highest weight variance was observed mainly
in DQM. EQM showed high weight variance in the northern
region but lower variance than DQM in most other regions.
QDM exhibited the lowest weight variance, with values less
than 0.00113 in most regions. In North America, EQM had
the lowest weight variance, with values between 0.00055 and
0.00024 in most regions. QDM showed the lowest model
uncertainty across North America, with more regions where
weight variances were closer to O than the other methods. On
the other hand, DQM exhibited high weight variance over-
all, with exceptionally high model uncertainty in the north-
east and southern regions. In Africa, EQM’s weight variance
was estimated to be low overall, resulting in low model un-

Geosci. Model Dev., 18, 8017-8045, 2025

certainty in most regions. For QDM, weight variance was
low in some regions but higher than 0.00113 in others. DQM
showed high weight variance in most regions except for the
northern area, indicating high model uncertainty across the
continent. EQM’s weight variance was the lowest in Europe
compared to the other methods, with weight variances close
to 0 across the continent. QDM also showed low weight vari-
ance overall, though higher than EQM. DQM exhibited high
weight variance in most regions except for Central Europe. In
Asia, EQM showed low weight variance in most regions ex-
cept Southeast Asia. QDM’s weight variance was similar to
EQM’s, though some regions had higher model uncertainty.
DQM showed high weight variance in most regions except
for some Southwest and North Asian areas. For Oceania, the
weight variances of EQM and DQM were mainly similar, but
DQM showed a higher weight variance overall.

Figure 13 shows the distribution of GCM weight variances
calculated using BMA across six continents, presented as
boxplots. Overall, EQM has the smallest weight variance,
and QDM has the second smallest weight variance on all con-
tinents except South America. In contrast, in South America,
QDM has the smallest weight variance, and EQM has the
second smallest. DQM consistently has the largest weight
variance across all continents, indicating the highest model
uncertainty.

3.3.2 Uncertainty by ensemble prediction

A daily precipitation ensemble for the historical period was
generated using BMA on 11 CMIP6 GCMs, and the stan-
dard deviation of daily precipitation by continent is presented
as shown in Fig. 14. Overall, the ensemble predicted using
EQM provided stable precipitation projection with low stan-
dard deviations across most continents. The QDM ensemble
showed similar results to EQM for most continents except
Oceania, but the standard deviations were slightly higher. On
the other hand, the ensemble using DQM exhibited higher
standard deviations than the other methods for all continents
and had the largest prediction uncertainty. In Oceania, the
ensembles predicted by the three methods showed similar re-
sults. However, the prediction uncertainty was estimated to
be lower in the order of EQM, DQM, and QDM due to slight
differences.

https://doi.org/10.5194/gmd-18-8017-2025
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Figure 11. Spatial distribution for selected best bias correction methods across continents using TOPSIS.

Figure 15 shows the standard deviation of daily precipita-
tion for the ensemble forecasted by BMA using three meth-
ods, DQM, EQM, and QDM, in a boxplot for each conti-
nent. Visually, EQM tends to show the lowest medians across
continents, QDM appears slightly higher, and DQM tends to
show the highest medians. The interquartile ranges overlap
broadly within most continents and the differences in medi-
ans are small in magnitude.

3.4 Evaluation of bias correction methods using CI
3.4.1 Results of CI by each weighting case

This study compared three QM methods by generating a CI
based on three cases of weighting values that considered
both model performance and uncertainty. Figs. 16, S3, and
S4 show the comprehensive indices calculated by applying
equal weights and weights emphasizing performance and un-
certainty, respectively.

EQM showed the highest CI across all continents when
equal weights were applied. However, the index was lower
in southern Europe and southeastern North America, but it
calculated high values in most other regions. QDM showed
high index values in some regions, although they were lower
than those of EQM. For example, the CI results were high
in the northern and western parts of North America and the
central part of Europe. On the other hand, DQM was gener-
ally unsuitable in most regions but showed a relatively high
index in Oceania.

https://doi.org/10.5194/gmd-18-8017-2025

When weights that emphasized performance were applied,
DQM showed a high index in the central part of South Amer-
ica but low performance in most continents. Nevertheless,
DQM showed a better index than QDM in some parts of
Oceania. EQM showed the best index across most continents.
While QDM was less suitable than EQM, it was still evalu-
ated as a useful method in some continents.

Even when applying weights that increased the empha-
sis on uncertainty, similar results were obtained with the
other weighting values. In particular, EQM was evaluated as
the most suitable model across all continents, while DQM
showed the opposite results.

Figure 17 presents a comparison of the comprehensive
indices for three QM methods with different weights for
each continent using box plots. Overall, all methods showed
higher indices than the other weighting values in the val-
ues that emphasized more weight on performance. In all
weighted values, DQM showed the lowest indices in all con-
tinents except for South America and Oceania, where it was
slightly higher or similar to QDM. EQM showed the best
composite indices in all continents, outperforming perfor-
mance and uncertainty. QDM showed high comprehensive
indices in most continents, and the gap with EQM narrowed
significantly in the weighting values that emphasized perfor-
mance more. Nevertheless, QDM overall had lower compre-
hensive indices than EQM.

Under the three weighting scenarios defined in the
main text, the Friedman test produced p-values effectively
rounded to zero for every continent, indicating highly sig-
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Figure 12. Spatial distribution of weight variance across continents for bias corrected CMIP6 GCMs using BMA.

nificant differences among DQM, EQM, and QDM (Ta- These findings demonstrate that, aside from that single case
ble S3 in the Supplement). Subsequent pairwise Wilcoxon in Oceania, the choice of scenarios exerts a statistically sig-
tests showed that most method comparisons remained sig- nificant impact on composite scores across all continents.
nificant across all regions. The only notable exception oc-

curred in Oceania under equal weighting, where the p-value

of 3.93 x 10~! failed to reach significance at the 0.05 level.
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Figure 13. Weight variance for bias correction methods across six continents using box plots.

3.4.2 Selection of best bias correction method

Based on the CI, this study selected the best bias correction
method for each continent. Figure 18 shows how the best bias
correction method was selected for each continent by apply-
ing various weighting values of the CI. Overall, EQM was se-
lected as the best correction method for most continents in all
weighting values and was selected more than other methods
in North America, Europe, Asia, and Oceania. DQM was se-
lected the least in most continents except for South America
and Oceania, and the number of selected grids tended to de-
crease as the weighting for uncertainty increased. QDM was
selected as the best bias correction method in western North
America, southern and eastern Africa, and northern Europe.
In addition, QDM was selected the most in Southeast Asia in
all weighting values.

Figure 19 shows the number of selected grids for the
best bias correction method across continents based on three
weighting values. Overall, EQM was the most frequently
selected method across all weighting values, demonstrating
superior performance across all continents compared to the
other methods. Interestingly, as the weight for uncertainty
increased, the number of grids where EQM was selected
also increased, while the number decreased as the weight
for performance increased. In contrast, QDM was chosen
as the second-best method on most continents, except for
South America and Oceania. The number of selected grids
for QDM slightly increased as the performance weight in-
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creased. DQM was the least selected method across most
continents, indicating that it was the least suitable overall.

4 Discussion

Bias correction methods are widely used in correcting GCM
outputs, and previous studies have compared the perfor-
mance of various methods (Homsi et al., 2019; Saranya and
Vinish, 2021). Among these, Quantile Mapping (QM) has
consistently shown superior performance compared to other
methods, making it a widely used approach for bias correc-
tion. In particular, QDM, EQM, and DQM, which are the fo-
cus of this study, are frequently employed in research explor-
ing and applying climate change projections based on GCM
outputs (Cannon et al., 2015; Switanek et al., 2017; Song et
al., 2022a). Analyzing the strengths and limitations of these
three methods will provide valuable insights for climate re-
searchers, enabling them to choose the most suitable bias cor-
rection method for specific regions. In this context, this study
further evaluates the performance of QDM, EQM, and DQM,
especially for daily precipitation, and investigates how these
methods perform across different regions. Unlike previous
studies that focused on the performance of bias correction
methods (Song et al., 2024; Teutschbein and Seibert, 2012;
Smitha et al., 2018), this study suggests a CI that integrates
the performance and uncertainty metrics. This approach en-
hances the robustness of bias correction method selection and
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Figure 14. Spatial distribution of standard deviation for daily precipitation across continents for bias corrected CMIP6 GCMs using BMA.

provides a more holistic evaluation framework. This section
discusses the strengths and weaknesses of each method from
various perspectives to provide a more balanced assessment.

Geosci. Model Dev., 18, 8017-8045, 2025

4.1 Evaluation of bias correction methods performance

The daily precipitation corrected by the three QM methods
outperformed the raw GCM data (see Fig. 1). All three meth-
ods, as evidenced by the Taylor diagram, demonstrated over-
all stronger performance than the raw GCM and consistently
produced good results across various regions. Nonetheless,
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Figure 15. Spatial distribution of standard deviation for daily precipitation across continents for bias corrected CMIP6 GCMs using BMA.

the performance of the bias-corrected GCMs clearly differs.
This highlights the need to use multiple performance met-
rics to fully understand the strengths and weaknesses of the
three QM methods, as relying on a single analysis or macro-
scopic perspective can overlook important details. From this
perspective, many studies have emphasized the application
of a multifaceted analysis in selecting bias correction meth-
ods (Homsi et al., 2019; Cannon et al., 2015; Berg et al.,
2022; Song et al., 2023). The spatial distribution of correc-
tion performance, as discussed in Sect. 3.1.2, varies signif-
icantly by continent. Figures 2 to 7 reveal that the evalu-
ated metrics differ across continents, underscoring the im-
portance of region-specific correction methods. This finding
aligns with Song et al. (2023), highlighting the importance
of selecting appropriate correction methods based on the pre-
cipitation distribution at observation sites. Moreover, studies
such as Homsi et al. (2019) and Saranya and Vinish (2021)
also emphasize the variability in bias correction performance
depending on the regional climate and data characteristics,
reinforcing the need for tailored approaches. Of course, the
three QM methods showed high performance across most
continents, effectively correcting the biases in daily precip-
itation from GCMs. However, the corrected daily precipita-
tion varies subtly among the three methods, with these differ-
ences becoming more pronounced in extreme events or spe-
cific evaluation metrics. For example, the three QM methods
tend to perform less effectively in regions with high precipi-
tation, but their performance also varies by grid (e.g., south-
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ern India in Asia: RMSE; central Oceania: Pbias and EVS;
central Europe: Pbias, MdAE, and KGE). While EQM per-
forms well across most continents, DQM and QDM show su-
perior results in specific regions. Similar results were made
by Cannon et al. (2015), which highlighted differences in the
performance of bias correction methods, particularly in han-
dling extreme precipitation events. QDM’s error-related met-
rics (South America: RMSE, MAE, and MSLE) are nearly
identical to EQM’s, yet QDM outperforms EQM regarding
MAJAE on more grids. These findings suggest that a more
nuanced and detailed analysis of precipitation corrected by
GCMs is necessary, aligning with the conclusions of Gud-
mundsson et al. (2012), which emphasize that the effective-
ness of bias correction methods can vary significantly de-
pending on local climate characteristics, highlighting the im-
portance of selecting appropriate methods for each region.
These results suggest a more detailed precipitation analysis
from corrected GCM:s is needed.

This study compared the three QM methods for daily pre-
cipitation events above the 95th percentile (extreme precipi-
tation) using the GEV distribution, as shown in Fig. 10. The
results indicate that DQM tends to correct more extreme pre-
cipitation events than QDM, aligning with previous findings
that DQM captures a broader range of extremes. The unique
characteristics of DQM caused these results. DQM overesti-
mated the corrected extreme precipitation due to the relative
variability in the data introduced through detrending, and the
subsequent reintroduction of the long-term mean during the

Geosci. Model Dev., 18, 8017-8045, 2025
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Figure 16. Spatial distribution of comprehensive indices for bias correction methods with equal weights («: 0.5, B: 0.5) across continents

correction step widened the range of extreme precipitation,
leading to overestimation compared to the reference data in
areas with high variability. At the same time, QDM and EQM
take a more conservative approach (as noted in previous stud-
ies such as Cannon et al., 2015). These findings suggest that
EQM and QDM may be more suitable in regions vulnera-

Geosci. Model Dev., 18, 8017-8045, 2025

ble to floods and extreme weather events that require a more
balanced and cautious approach. However, when comparing
the differences in GEV distributions, there was no significant
difference between methods in regions like Oceania and Eu-
rope (see Fig. 10). These results imply that EQM can better
handle extreme values or outliers in the data by directly com-
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Figure 17. CI for three bias correction methods across continents with varying weights on performance and uncertainty.

paring and correcting past and future distributions. In partic-
ular, EQM is consistent with previous studies in that it more
accurately corrects observed distributions in non-stationary
and highly variable climate variables, such as precipitation
(ThemeBl et al., 2012; Maraun, 2013; Gudmundsson et al.,
2012). These positive aspects are mainly due to EQM’s abil-
ity to align the empirical ECDFs of reference and model data
across all quantiles, allowing it to correct biases with high
precision at both central tendencies and extremes. Although
there are significant advantages in observing the results of
the correction method in detail from various perspectives,
presenting these results without integrating them into a rea-
sonable framework can increase confusion and uncertainty
in climate change research (Wu et al., 2022). Therefore, it is
essential to introduce a structured framework such as MCDA
to provide a single integrated result.

4.2 Uncertainties of model and ensemble prediction in
bias correction methods

In climate modeling, quantifying uncertainty is essential to
assess the reliability of bias-corrected precipitation data. This
study applied BMA to quantify the uncertainty of three
QM methods on a continental basis, addressing both model-
specific and ensemble prediction uncertainties. Similar to the
findings by Cannon et al. (2015), this analysis demonstrates

https://doi.org/10.5194/gmd-18-8017-2025

how different bias correction methods yield varying uncer-
tainty levels based on the underlying climate models. No-
tably, EQM showed the lowest weight variance across most
continents, which means that the inter-model uncertainty for
11 GCMs corrected by EQM is lower than that of the other
QM methods. The low uncertainty associated with EQM
aligns with previous studies like ThemeBl et al. (2012), which
found that EQM consistently reduced discrepancies between
modeled and observed data across regions. EQM’s ability to
manage extreme precipitation and anomalous values based
on observed distributions contributes to its reliability, a fea-
ture also emphasized by Gudmundsson et al. (2012). On the
other hand, DQM showed the highest weight variance across
all continents, indicating more significant uncertainty when
applied to various GCMs. This uncertainty was particularly
pronounced in regions with complex climate conditions, such
as Southeast Asia, East Africa, and the Alps in Europe. These
results align with Berg et al. (2022), who highlighted DQM’s
limitations in capturing long-term climate trends and extreme
events. The higher uncertainty associated with DQM sug-
gests that, while its detrending process is effective in cor-
recting the mean, it may struggle in regions dominated by
nonlinear climate patterns, as it does not sufficiently account
for all quantiles in the distribution, particularly extremes, as
noted by Cannon et al. (2015). QDM, though showing lower

Geosci. Model Dev., 18, 8017-8045, 2025
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Figure 18. Selection of best bias correction methods across continents based on CI depending on weighting values.
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weight variance than DQM, still demonstrated higher uncer-
tainty than EQM in regions with diverse climate character-
istics. These results are consistent with the study of Tong et
al. (2021), suggesting that QDM performs better under mod-
erate precipitation scenarios. However, the uncertainty may
increase under highly variable or extreme weather condi-
tions. Furthermore, this study extended the uncertainty anal-
ysis to ensemble predictions, calculating the standard devia-
tion of daily precipitation for each continent using BMA. The
EQM-based ensemble consistently exhibited low standard
deviations across all continents, indicating that EQM offers
the most stable and reliable precipitation predictions. This
finding echoes the conclusions drawn by Teng et al. (2015),
where EQM provided more accurate and less uncertain pro-
jections. In contrast, DQM presented the most significant
prediction uncertainty, reinforcing the need for caution when
applying DQM in studies that require high-confidence data.
These results emphasize the importance of weighing perfor-
mance and uncertainty when choosing a suitable bias correc-
tion method. EQM’s consistent performance in reducing un-
certainty across model-specific and ensemble forecasts high-
lights its robustness as a preferred choice for climate re-
search. However, the substantial uncertainty associated with
DQM suggests that its use should be limited to regions where
its detrending process can be beneficial. Overall, these find-
ings stress the critical role of uncertainty quantification in
climate change impact assessments and underscore the need
for selecting bias correction methods based on a comprehen-
sive evaluation of both performance and uncertainty.

4.3 Integrated assessment of bias correction methods

This study selected the optimal QM method for each conti-
nent based on the CI, which considers uncertainty and perfor-
mance. The critical point is that uncertainty is decisive when
selecting a bias correction method. As shown in Fig. 19, the
optimal correction method varies depending on the conti-
nent, and the selected method also changes depending on

https://doi.org/10.5194/gmd-18-8017-2025

the weight. These results suggest that uncertainty still ex-
ists, as Berg et al. (2022) pointed out, and that uncertainty
must be considered when selecting the optimal method. In
other words, even if the QM method has high performance,
it is difficult to make a reasonable selection if the uncer-
tainty contained in the method is significant. Overall, EQM
showed the highest CI value in all continents, which means
that it provides the most balanced results in terms of perfor-
mance and uncertainty. These results are consistent with pre-
vious studies (Lafon et al., 2013; Teutschbein and Seibert,
2012; Teng et al., 2015) that showed high precipitation cor-
rection accuracy and excellent performance, especially under
complex climate conditions. QDM was evaluated highly in
some regions but performed worse than EQM overall. Berg
et al. (2022) also pointed out that QDM is superior in general
climate conditions but may perform worse in extreme climate
situations, suggesting that this may increase the uncertainty
of QDM in extreme climates. DQM was evaluated as an un-
suitable method in most regions due to low CI values, which
is consistent with the limitations of DQM mentioned in Can-
non et al. (2015) and Berg et al. (2022). It was confirmed that
DQM performs relatively well in dry climates but may per-
form worse in various climate conditions. In addition, some
differences were observed with the results based on TOPSIS.
For example, DQM was selected more than QDM in South
America, but when the uncertainty weight was applied, QDM
was selected more. Conversely, in Oceania, QDM was se-
lected more than DQM, but when the uncertainty weight was
increased to 0.7, DQM was selected more. These results are
consistent with those of Lafferty and Sriver (2023), showing
that when significant uncertainty exists, uncertainty can be
greater despite high bias correction performance.

5 Conclusions

This study corrected and compared historical daily precip-
itation from 11 CMIP6 GCMs using three QM methods.

Geosci. Model Dev., 18, 8017-8045, 2025
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Eleven statistical metrics were used to evaluate the precipita-
tion performance corrected by three QM methods, and TOP-
SIS was applied to select performance-based priorities. BMA
was applied to quantify model-specific and ensemble predic-
tion uncertainties. Additionally, suitable QM methods were
selected and compared using a CI that integrates TOPSIS
performance scores with BMA uncertainty metrics. The con-
clusions of this study are as follows:

1. EQM showed the highest overall index across all conti-
nents, indicating that it provides the most balanced ap-
proach in terms of performance and uncertainty.

2. DQM effectively reproduced the dry climate in North
Africa and parts of Central and Southwest Asia but
showed the highest uncertainty across all continents.
These results suggest that DQM may lose some long-
term trend information, making it less reliable in regions
prone to extreme weather events.

3. QDM performed better in certain regions, such as
Southeast Asia, and was selected more often than DQM
when uncertainty was given greater weight. QDM may
be a promising alternative in areas where uncertainty
plays a significant role.

4. Selecting an appropriate QM is required for high perfor-
mance, and significant uncertainty can complicate ra-
tional decision-making. Therefore, a multifaceted ap-
proach considering performance and uncertainty is es-
sential in climate modeling.

In conclusion, EQM has emerged as the preferred method
due to its balanced performance, but this study emphasizes
the importance of regional assessment and careful consider-
ation of uncertainty when selecting a QM method. Further-
more, EQM is the most balanced method regarding perfor-
mance and uncertainty and will likely be preferred in future
climate modeling studies. However, there may be more suit-
able QM methods depending on the region, and a compre-
hensive evaluation with various weights is needed. There-
fore, when establishing climate change response strategies
or policy decisions, it is essential to take a multifaceted ap-
proach that considers uncertainty together rather than rely-
ing on a single indicator or performance alone. It will en-
able more reliable predictions and better decision-making.
Future research should integrate greenhouse gas scenarios to
improve the accuracy of climate predictions and provide a
more comprehensive understanding of future climate risks.
Furthermore, more bias correction methods should be used
to extend the robustness of CI.

Code and data availability. Codes for benchmark-
ing the xclim of python package are available from
https://doi.org/10.5281/zenodo.10685050  (Bourgault et al.,
2024). Furthermore, the CI proposed in this study, along
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with the TOPSIS and BMA used within it, is available at
https://doi.org/10.5281/zenodo.14351816 (Song, 2024a). The data
used in this study are publicly available from multiple sources.
CMIP6 General Circulation Models (GCMs) outputs were obtained
from the Earth System Grid Federation (ESGF) data portal at
https://esgf-node.llnl.gov/search/cmip6/ (last access: 15 July
2024). Users can select data types such as climate variables, time
series, and experiment ID, which can be downloaded as NC files.
Furthermore, CMIP6 GCMs output can also be accessed in Eyring
et al. (2016). The ERAS reanalysis dataset used in this study is
available from the Copernicus Climate Data Store (C3S, 2023)
via https://doi.org/10.24381/cds.adbb2d47 (datasets: Copernicus
Climate Change Service, Climate Data Store, 2023; journal
article: Hersbach et al., 2020). The daily precipitation datasets
from CMIP6 GCM and ERAS used in this study are available at
https://doi.org/10.6084/m9.figshare.27999167.v5 (Song, 2024b).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-8017-2025-supplement.

Author contributions. YHS: Conceptualization, Methodology,
Data curation, Funding acquisition, Visualization, Funding ac-
quisition, Writing — original draft, Writing — review & editing.
ESC: Formal analysis, Funding acquisition, Methodology, Project
administration, Supervision, Validation, Writing-review & editing.

Competing interests. The contact author has declared that neither
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibil-
ity lies with the authors. Views expressed in the text are those of the
authors and do not necessarily reflect the views of the publisher.

Acknowledgements. We are grateful to the National Research
Foundation of Korea (NRF) for support that enabled this research.

Financial support. This research was supported by the National
Research Foundation of Korea (grant no. RS-2023-00246767_2).

Review statement. This paper was edited by Yongze Song and re-
viewed by two anonymous referees.

https://doi.org/10.5194/gmd-18-8017-2025


https://doi.org/10.5281/zenodo.10685050
https://doi.org/10.5281/zenodo.14351816
https://esgf-node.llnl.gov/search/cmip6/
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.6084/m9.figshare.27999167.v5
https://doi.org/10.5194/gmd-18-8017-2025-supplement

Y. H. Song and E.-S. Chung: Intercomparison of bias correction methods for precipitation

References

Abdelmoaty, H. M. and Papalexiou, S. M.: Changes of Ex-
treme Precipitation in CMIP6 Projections: Should We Use Sta-
tionary or Nonstationary Models?, J. Clim., 36, 2999-3014,
https://doi.org/10.1175/JCLI-D-22-0467.1, 2023.

Ansari, R., Casanueva, A., Liagat, M. U., and Grossi, G.: Evaluation
of bias correction methods for a multivariate drought index: case
study of the Upper Jhelum Basin, Geosci. Model Dev., 16, 2055—
2076, https://doi.org/10.5194/gmd-16-2055-2023, 2023.

Berg, P, Bosshard, T., Yang, W., and Zimmermann, K.: MI-
dASv0.2.1 — Multl-scale bias AdjuStment, Geosci. Model
Dev., 15, 6165-6180, https://doi.org/10.5194/gmd-15-6165-
2022, 2022.

Bourgault, P., Huard, D., Smith, T. J., Logan, T., Aoun, A.,
Lavoie, J., Dupuis, E., Rondeau-Genesse, G., Alegre, R., Barnes,
C., Beaupré Laperriere, A., Biner, S., Caron, D., Ehbrecht,
C., Fyke, J., Keel, T., Labonté, M.P., Lierhammer, L., Low,
J. F, Quinn, J.,, Roy, P, Squire, D., Stephens, Ag., Tan-
guy, M., Whelan, C., Braun, M., and Castro, D.: xclim:
xarray-based climate data analytics (0.48.1), Zenodo [code],
https://doi.org/10.5281/zenodo.10685050, 2024.

Cannon, A. J.: Multivariate quantile mapping bias correction: an N-
dimensional probability density function transform for climate
model simulations of multiple variables, Clim. Dyn., 50, 31-49,
https://doi.org/10.1007/s00382-017-3580-6, 2018.

Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias correction of
GCM precipitation by quantile mapping: How well do methods
preserve changes in quantiles and extremes?, J. Clim., 28, 6938—
6959, https://doi.org/10.1175/ICLI-D-14-00754.1, 2015.

Chae, S. T., Chung, E. S., and Jiang, J.: Robust siting of per-
meable pavement in highly urbanized watersheds consider-
ing climate change using a combination of fuzzy-TOPSIS
and the VIKOR method, Water Resour. Manag., 36, 951-969,
https://doi.org/10.1007/s11269-022-03062-y, 2022.

Chua, Z. W., Kuleshov, Y., Watkins, A. B., Choy, S., and
Sun, C.: A Comparison of Various Correction and Blend-
ing Techniques for Creating an Improved Satellite-Gauge
Rainfall Dataset over Australia, Remote Sens., 14, 261,
https://doi.org/10.3390/rs14020261, 2022.

Chung, E. S. and Kim, Y. J.: Development of fuzzy multi-criteria
approach to prioritize locations of treated wastewater use consid-
ering climate change scenarios, J. Environ. Manage., 146, 505—
516, https://doi.org/10.1016/j.jenvman.2014.08.013, 2014.

Copernicus Climate Change Service, Climate Data Store: ERAS
hourly data on single levels from 1940 to present, Copernicus
Climate Change Service (C3S) Climate Data Store (CDS) [data
set], https://doi.org/10.24381/cds.adbb2d47, 2023.

Cox, P. and Stephenson, D.: A changing climate for prediction.
Science 317, 207-208, https://doi.org/10.1126/science.1145956,
2007.

Déqué, M.: Frequency of precipitation and tempera-
ture extremes over France in an anthropogenic sce-
nario: Model results and statistical correction accord-
ing to observed values, Glob. Planet. Change, 57, 16-26,
https://doi.org/10.1016/j.gloplacha.2006.11.030, 2007.

Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K., and Liebert,
J.: HESS Opinions “Should we apply bias correction to global
and regional climate model data?”, Hydrol. Earth Syst. Sci., 16,
3391-3404, https://doi.org/10.5194/hess-16-3391-2012, 2012.

https://doi.org/10.5194/gmd-18-8017-2025

8043

Enayati, M., Bozorg-Haddad, O., Bazrafshan, J., Hejabi, S., and
Chu, X.: Bias correction capabilities of quantile mapping meth-
ods for rainfall and temperature variables, Water and Climate
change, 12, 401-419, https://doi.org/10.2166/wcc.2020.261,
2021.

Evin, G., Ribes, A., and Corre, L.. Assessing CMIP6
uncertainties at global warming levels, Clim. Dyn.,
https://doi.org/10.1007/s00382-024-07323-x, 2024.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B.,
Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled
Model Intercomparison Project Phase 6 (CMIP6) experimen-
tal design and organization, Geosci. Model Dev., 9, 1937-1958,
https://doi.org/10.5194/gmd-9-1937-2016, 2016.

Friedman, M.: The use of ranks to avoid the assumption
of normality implicit in the analysis of variance, Jour-
nal of the American Statistical Association, 32, 675-701,
https://doi.org/10.1080/01621459.1937.10503522, 1937.

Galton, F.: Regression Towards Mediocrity in Hereditary Stature,
The Journal of the Anthropological Institute of Great Britain and
Ireland, 15, 246-263, https://doi.org/10.2307/2841583, 1886.

Giorgi, F. and Mearns, L. O.: Calculation of average, uncertainty
range, and reliability of regional climate changes from AOGCM
simulations via the “reliability ensemble averaging” (REA)
method, J. Clim., 15, 1141-1158, https://doi.org/10.1175/1520-
0442(2002)015<1141:COAURA>2.0.CO:;2, 2002.

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decom-
position of the mean squared error and NSE performance criteria:
Implications for improving hydrological modelling, J. Hydrol.,
377, 80-91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.

Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-
Skaugen, T.: Technical Note: Downscaling RCM precipitation
to the station scale using statistical transformations — a com-
parison of methods, Hydrol. Earth Syst. Sci., 16, 3383-3390,
https://doi.org/10.5194/hess-16-3383-2012, 2012.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Hordnyi, A.,
Muiioz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schep-
ers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Bal-
samo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M.,
Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R.,
Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger,
L., Healy, S., Hogan, R. J., H6lm, E., Janiskovd, M., Keeley,
S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999-2049,
https://doi.org/10.1002/qj.3803, 2020.

Homsi, R., Shiru, M. S., Shahid, S., Ismail, T., Harun, S. B.,
Al-Ansari, N., and Yaseen, Z. M.: Precipitation projection us-
ing a CMIPS GCM ensemble model: a regional investiga-
tion of Syria, Eng. Appl. Comput. Fluid Mech., 14, 90-106,
https://doi.org/10.1080/19942060.2019.1683076, 2019.

Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C.
T.: Bayeslan model averaging: A tutorial (with discussion),
Stat. Sci., 214, 382—417, https://doi.org/10.1214/ss/1009212519,
1999.

Hosking, J. R. M.: L-moments: Analysis and estimation
of distributions using linear combinations of order statis-
tics, J. R. Stat.,, 52, 105-124, https://doi.org/10.1111/j.2517-
6161.1990.tb01775.x, 1990.

Geosci. Model Dev., 18, 8017-8045, 2025


https://doi.org/10.1175/JCLI-D-22-0467.1
https://doi.org/10.5194/gmd-16-2055-2023
https://doi.org/10.5194/gmd-15-6165-2022
https://doi.org/10.5194/gmd-15-6165-2022
https://doi.org/10.5281/zenodo.10685050
https://doi.org/10.1007/s00382-017-3580-6
https://doi.org/10.1175/JCLI-D-14-00754.1
https://doi.org/10.1007/s11269-022-03062-y
https://doi.org/10.3390/rs14020261
https://doi.org/10.1016/j.jenvman.2014.08.013
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.1126/science.1145956
https://doi.org/10.1016/j.gloplacha.2006.11.030
https://doi.org/10.5194/hess-16-3391-2012
https://doi.org/10.2166/wcc.2020.261
https://doi.org/10.1007/s00382-024-07323-x
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.2307/2841583
https://doi.org/10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.5194/hess-16-3383-2012
https://doi.org/10.1002/qj.3803
https://doi.org/10.1080/19942060.2019.1683076
https://doi.org/10.1214/ss/1009212519
https://doi.org/10.1111/j.2517-6161.1990.tb01775.x
https://doi.org/10.1111/j.2517-6161.1990.tb01775.x

8044 Y. H. Song and E.-S. Chung: Intercomparison of bias correction methods for precipitation

Hosking, J. R. M., Wallis, J. R., and Wood, E. F.: Estimation
of the generalized extreme value distribution by the method
of probability weighted monents, Technometrics, 27, 251-261,
https://doi.org/10.1080/00401706.1985.10488049, 1985.

Hwang, C. L. and Yoon, K.: Multiple attribute decision
making: Methods and applications, Springer-Verlag,
https://doi.org/10.1007/978-3-642-48318-9, 1981.

IPCC: Climate Change 2021: The Physical Science Basis. Con-
tribution of Working Group I to the Sixth Assessment Re-
port of the Intergovernmental Panel on Climate Change,
edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Con-
nors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Gold-
farb, L., Gomis, M. I, Huang, M., Leitzell, K., Lonnoy,
E., Matthews, J. B. R., Maycock, T. K., Waterfield, T.,
Yelekei, O., Yu, R., and Zhou, B., Cambridge University Press,
https://doi.org/10.1017/9781009157896, 2021.

IPCC: Climate Change 2022: Impacts, Adaptation, and Vulnera-
bility. Contribution of Working Group II to the Sixth Assess-
ment Report of the Intergovernmental Panel on Climate Change,
edited by: Portner, H.-O., Roberts, D. C., Tignor, M., Poloczan-
ska, E. S., Mintenbeck, K., Alegria, A., Craig, M., Langsdorf,
S., Loschke, S., Moller, V., Okem, A., and Rama, B., Cambridge
University Press, https://doi.org/10.1017/9781009325844, 2022.

Ishizaki, N. N., Shiogama, H., Hanasaki, N., Takahashi, K., and
Nakaegawa, T.: Evaluation of the spatial characteristics of cli-
mate scenarios based on statistical and dynamical downscaling
for impact assessments in Japan, Int. J. Climatol., 43, 1179-1192,
https://doi.org/10.1002/joc. 7903, 2022.

Jobst, A. M., Kingston, D. G., Cullen, N. J., and Schmid, J.: Inter-
comparison of different uncertainty sources in hydrological cli-
mate change projections for an alpine catchment (upper Clutha
River, New Zealand), Hydrol. Earth Syst. Sci., 22, 3125-3142,
https://doi.org/10.5194/hess-22-3125-2018, 2018.

Lafferty, D. C. and Sriver, R. L.: Downscaling and bias-
correction contribute considerable uncertainty to local cli-
mate projections in CMIP6, npj Clim. Atmos. Sci., 6, 158,
https://doi.org/10.1038/s41612-023-00486-0, 2023.

Lafon, T., Dadson, S., Buys, G., and Prudhomme, C.: Bias cor-
rection of daily precipitation simulated by a regional climate
model: a comparison of methods, Int. J. Climatol., 33, 1367-
1381, https://doi.org/10.1002/joc.3518, 2013.

Lin, J.: Divergence measures based on the Shannon entropy,
IEEE Transactions on Information Theory, 37, 145-151,
https://doi.org/10.1109/18.61115, 1991.

Maraun, D.: Bias correction, quantile mapping, and downscal-
ing: Revisiting the inflation issue, J. Clim., 26, 2137-2143,
https://doi.org/10.1175/JCLI-D-12-00821.1, 2013.

Nair, M. M. A., Rajesh, N., Sahai, A. K., and Lakshmi Ku-
mar, T. V.: Quantification of uncertainties in projections of ex-
treme daily precipitation simulated by CMIP6 GCMs over ho-
mogeneous regions of India, Int. J. Climatol., 43, 7365-7380,
https://doi.org/10.1002/joc.8269, 2023.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through con-
ceptual models part I — A discussion of principles, J. Hydrol., 10,
282-290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.

Pathak, R., Dasari, H. P, Ashok, K., and Hoteit, I.: Effects
of multi-observations uncertainty and models similarity on
climate change projections, npj Clim. Atmos. Sci., 6, 144,
https://doi.org/10.1038/s41612-023-00473-5, 2023.

Geosci. Model Dev., 18, 8017-8045, 2025

Petrova, 1. Y., Miralles, D. G., Brient, F., Donat, M. G., Min, S.
K., Kim, Y. H., and Bador, M.: Observation-constrained projec-
tions reveal longer-than-expected dry spells, Nature, 633, 594—
600, https://doi.org/10.1038/s41586-024-07887-y, 2024.

Piani, C., Weedon, G. P., Best, M., Gomes, S. M., Viterbo, P.,
Hagemann, S., and Haerter, J. O.: Statistical bias correction
of global simulated daily precipitation and temperature for the
application of hydrological models, J. Hydrol., 395, 199-215,
https://doi.org/10.1016/j.jhydrol.2010.10.024, 2010.

Rahimi, R., Tavakol-Davani, H., and Nasseri, M.: An Uncertainty-
Based Regional Comparative Analysis on the Performance of
Different Bias Correction Methods in Statistical Downscal-
ing of Precipitation, Water Resour. Manag., 35, 2503-2518,
https://doi.org/10.1007/s11269-021-02844-0, 2021.

Rajulapati, C. R. and Papalexiou, S. M.: Precipitation Bias
Correction: A Novel Semi-parametric Quantile Map-
ping Method, Earth Space Sci, 10, e2023EA002823,
https://doi.org/10.1029/2023EA002823, 2023.

Roca, R. and Fiolleau, T.: Extreme precipitation in the tropics is
closely associated with long-lived convective systems, Commun.
Earth Environ., 1, https://doi.org/10.1038/s43247-020-00015-4,
2020.

Roca, R., Alexander, L. V., Potter, G., Bador, M., Jucd, R., Con-
tractor, S., Bosilovich, M. G., and Cloché, S.: FROGS: a daily
1° x 1° gridded precipitation database of rain gauge, satellite
and reanalysis products, Earth Syst. Sci. Data, 11, 1017-1035,
https://doi.org/10.5194/essd-11-1017-2019, 2019.

Saranya, M. S. and Vinish, V. N.: Evaluation and selec-
tion of CORDEX-SA datasets and bias correction meth-
ods for a hydrological impact study in a humid tropical
river basin, Kerala, Water Climate Change, 12, 3688-3713,
https://doi.org/10.2166/wcc.2021.139, 2021.

Shannon, C. E. and Weaver, W.: The mathematical theory of com-
munication, University of Illinois Press, ISBN 0252725484,
1949.

Shanmugam, M., Lim, S., Hosan, M. L. Shrestha, S., Babel,
M. S., and Virdis, S. G. P.: Lapse rate-adjusted bias correc-
tion for CMIP6 GCM precipitation data: An application to
the Monsoon Asia Region, Environ. Monit. Assess., 196, 49,
https://doi.org/10.1007/s10661-023-12187-5, 2024.

Smitha, P. S., Narasimhan, B., Sudheer K. P, and Anna-
malai, H.: An improved bias correction method of daily
rainfall data using a sliding window technique for cli-
mate change impact assessment, J. Hydrol., 556, 100-118,
https://doi.org/10.1016/j.jhydrol.2017.11.010, 2018.

Song, J. Y. and Chung, E. S.: Robustness, uncertainty, and sensitiv-
ity analyses of TOPSIS method to climate change vulnerability:
Case of flood damage, Water Resour. Manag., 30, 47514771,
https://doi.org/10.1007/s11269-016-1451-2, 2016.

Song, Y. H.: Comprehensive Index and Performance-Related
Code, Zenodo [code], https://doi.org/10.5281/zenodo.14351816,
2024a.

Song, Y. H.: Historical Daily Precipitation Data of
CMIP6 GCMs and ERAS, Figshare [data set],
https://doi.org/10.6084/m9.figshare.27999167.vS, 2024b.

Song, Y. H., Shahid, S., and Chung, E. S.: Differences in multi-
model ensembles of CMIP5 and CMIP6 projections for fu-
ture droughts in South Korea, Int. J. Climatol., 42, 2688-2716,
https://doi.org/10.1002/joc.7386, 2022a.

https://doi.org/10.5194/gmd-18-8017-2025


https://doi.org/10.1080/00401706.1985.10488049
https://doi.org/10.1007/978-3-642-48318-9
https://doi.org/10.1017/9781009157896
https://doi.org/10.1017/9781009325844
https://doi.org/10.1002/joc.7903
https://doi.org/10.5194/hess-22-3125-2018
https://doi.org/10.1038/s41612-023-00486-0
https://doi.org/10.1002/joc.3518
https://doi.org/10.1109/18.61115
https://doi.org/10.1175/JCLI-D-12-00821.1
https://doi.org/10.1002/joc.8269
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1038/s41612-023-00473-5
https://doi.org/10.1038/s41586-024-07887-y
https://doi.org/10.1016/j.jhydrol.2010.10.024
https://doi.org/10.1007/s11269-021-02844-0
https://doi.org/10.1029/2023EA002823
https://doi.org/10.1038/s43247-020-00015-4
https://doi.org/10.5194/essd-11-1017-2019
https://doi.org/10.2166/wcc.2021.139
https://doi.org/10.1007/s10661-023-12187-5
https://doi.org/10.1016/j.jhydrol.2017.11.010
https://doi.org/10.1007/s11269-016-1451-2
https://doi.org/10.5281/zenodo.14351816
https://doi.org/10.6084/m9.figshare.27999167.v5
https://doi.org/10.1002/joc.7386

Y. H. Song and E.-S. Chung: Intercomparison of bias correction methods for precipitation 8045

Song, Y. H., Chung, E. S., and Shahid, S.: The New Bias Correc-
tion Method for Daily Extremes Precipitation over South Ko-
rea using CMIP6 GCMs, Water Resour. Manag., 36, 5977-5997,
https://doi.org/10.1007/s11269-022-03338-3, 2022b.

Song, Y. H., Chung, E. S., and Shahid, S.: Uncertainties in evapo-
transpiration projections associated with estimation methods and
CMIP6 GCMs for South Korea, Sci. Total Environ., 825, 153953,
https://doi.org/10.1016/j.scitotenv.2022.153953, 2023.

Song, Y. H., Chung, E. S., and Shahid, S.: Global Future Climate
Signal by Latitudes Using CMIP6 GCMs, Earths Future, 12,
¢2022EF003183, https://doi.org/10.1029/2022EF003183, 2024.

Switanek, M. B., Troch, P. A., Castro, C. L., Leuprecht, A., Chang,
H.-I., Mukherjee, R., and Demaria, E. M. C.: Scaled distribution
mapping: a bias correction method that preserves raw climate
model projected changes, Hydrol. Earth Syst. Sci., 21, 2649-
2666, https://doi.org/10.5194/hess-21-2649-2017, 2017.

Tanimu, B., Bello, A. D., Abdullahi, S. A. Ajibike, M. A,
Yaseen, Z. M., Kamruzzaman, M., Muhammad, M. K. 1., and
Shahid, S.: Comparison of conventional and machine learn-
ing methods for bias correcting CMIP6 rainfall and temper-
ature in Nigeria, Theor. Appl. Climatol., 155, 4423-4452,
https://doi.org/10.1007/s00704-024-04888-9, 2024.

Teng, J., Potter, N. J., Chiew, F. H. S., Zhang, L., Wang, B.,
Vaze, J., and Evans, J. P.: How does bias correction of regional
climate model precipitation affect modelled runoff?, Hydrol.
Earth Syst. Sci., 19, 711-728, https://doi.org/10.5194/hess-19-
711-2015, 2015.

Teutschbein, C. and Seibert, J.: Bias correction of regional climate
model simulations for 575 hydrological climate-change impact
studies: Review and evaluation of different 576 methods, J. Hy-
drol., 16, 12-29, https://doi.org/10.1016/j.jhydrol.2012.05.052,
2012.

https://doi.org/10.5194/gmd-18-8017-2025

ThemeBl, M. J., Gobiet, A., and Heinrich, G.: Empirical-statistical
downscaling and error correction of daily precipitation from
regional climate models. Int. J. Climatol., 31, 1530-1544,
https://doi.org/10.1002/joc.2168, 2012.

Tong, Y., Gao, X., Han, Z., Xu, Y., and Giorgi, F.: Bias correction of
temperature and precipitation over China for RCM simulations
using the QM and QDM methods, Clim. Dyn., 57, 1425-1443,
https://doi.org/10.1007/s00382-020-05447-4, 2021.

Yip, S., Ferro, C. A. T, Stephenson, D. B., and Hawkins,
E.: A simple, coherent framework for partitioning uncer-
tainty in climate predictions, J. Clim., 24, 4634-4643,
https://doi.org/10.1175/2011JCLI4085.1, 2011.

Wilcoxon, F.: Individual comparisons by ranking methods, Biomet-
rics Bulletin, 1, 80-83, https://doi.org/10.2307/3001968, 1945.
Woldemeskel, F. M., Sharma, A. Sivakumar, B., and Mehro-
tra, R.: A framework to quantify GCM uncertainties for
use in impact assessment studies, J. Clim., 519, 1453-1465,

https://doi.org/10.1016/j.jhydrol.2014.09.025, 2014.

Wood, R. R., Lehner, F.,, Pendergrass, A. G., and Schlunegger, S.:
Changes in precipitation variability across time scales in multiple
global climate model large ensembles, Environ. Res. Lett., 16,
084022, https://doi.org/10.1088/1748-9326/ac10dd, 2021.

Wu, Y., Miao, C., Fan, X., Gou, J., Zhang, Q., and Zheng, H.: Quan-
tifying the uncertainty sources of future climate projections and
narrowing uncertainties with Bias Correction Techniques, Earths
Future, 10, e2022EF002963, 1-16, 2022.

Zhang, S., Zhou, Z., Peng, P., and Xu, C.: A New Framework for
Estimating and Decomposing the Uncertainty of Climate Projec-
tions, J. Clim., 37, 365-384, https://doi.org/10.1175/JCLI-D-23-
0064.1, 2024.

Geosci. Model Dev., 18, 8017-8045, 2025


https://doi.org/10.1007/s11269-022-03338-3
https://doi.org/10.1016/j.scitotenv.2022.153953
https://doi.org/10.1029/2022EF003183
https://doi.org/10.5194/hess-21-2649-2017
https://doi.org/10.1007/s00704-024-04888-9
https://doi.org/10.5194/hess-19-711-2015
https://doi.org/10.5194/hess-19-711-2015
https://doi.org/10.1016/j.jhydrol.2012.05.052
https://doi.org/10.1002/joc.2168
https://doi.org/10.1007/s00382-020-05447-4
https://doi.org/10.1175/2011JCLI4085.1
https://doi.org/10.2307/3001968
https://doi.org/10.1016/j.jhydrol.2014.09.025
https://doi.org/10.1088/1748-9326/ac10dd
https://doi.org/10.1175/JCLI-D-23-0064.1
https://doi.org/10.1175/JCLI-D-23-0064.1

	Abstract
	Introduction
	Datasets and methods
	General Circulation Model
	Reference data
	Quantile mapping
	Evaluation metrics
	Generalized extreme value
	Bayesian model averaging (BMA)
	TOPSIS
	Comprehensive index (CI)

	Result
	Assessment of bias correction reproducibility across continents
	Comparison of bias correction effects
	Spatial distribution of bias correction performance
	Comparison of reproducibility for extreme daily precipitation

	Prioritization of bias correction methods based on performance
	Results of weight for evaluation metrics
	Selection of the best bias correction method based on TOPSIS

	Uncertainty quantification of bias corrected daily precipitation
	Uncertainty by model
	Uncertainty by ensemble prediction

	Evaluation of bias correction methods using CI
	Results of CI by each weighting case
	Selection of best bias correction method


	Discussion
	Evaluation of bias correction methods performance
	Uncertainties of model and ensemble prediction in bias correction methods
	Integrated assessment of bias correction methods

	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

