Articles | Volume 18, issue 20
https://doi.org/10.5194/gmd-18-7435-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-7435-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
NAAC (v1.0): a seamless two-decade cross-scale simulation from the North American Atlantic Coast to tidal wetlands using the 3D unstructured-grid model SCHISM (v5.11.0)
School of the Environment, Yale University, New Haven, CT 06511, USA
Qubin Qin
Coastal Studies Institute, East Carolina University, Wanchese, NC 27981, USA
Linlin Cui
Lynker and NOAA/NWS/NCEP/EMC, Leesburg, VA 20176, USA
Xiucheng Yang
Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT 06229, USA
Y. Joseph Zhang
Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
Jian Shen
Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
Related authors
No articles found.
Qian Wang, Yang Zhang, Fei Chai, Y. Joseph Zhang, and Lorenzo Zampieri
Geosci. Model Dev., 17, 7067–7081, https://doi.org/10.5194/gmd-17-7067-2024, https://doi.org/10.5194/gmd-17-7067-2024, 2024
Short summary
Short summary
We coupled an unstructured hydro-model with an advanced column sea ice model to meet the growing demand for increased resolution and complexity in unstructured sea ice models. Additionally, we present a novel tracer transport scheme for the sea ice coupled model and demonstrate that this scheme fulfills the requirements for conservation, accuracy, efficiency, and monotonicity in an idealized test. Our new coupled model also has good performance in realistic tests.
Y. Joseph Zhang, Tomas Fernandez-Montblanc, William Pringle, Hao-Cheng Yu, Linlin Cui, and Saeed Moghimi
Geosci. Model Dev., 16, 2565–2581, https://doi.org/10.5194/gmd-16-2565-2023, https://doi.org/10.5194/gmd-16-2565-2023, 2023
Short summary
Short summary
Simulating global ocean from deep basins to coastal areas is a daunting task but is important for disaster mitigation efforts. We present a new 3D global ocean model on flexible mesh to study both tidal and nontidal processes and total water prediction. We demonstrate the potential for
seamlesssimulation, on a single mesh, from the global ocean to a few estuaries along the US West Coast. The model can serve as the backbone of a global tide surge and compound flooding forecasting framework.
Hao-Cheng Yu, Yinglong Joseph Zhang, Lars Nerger, Carsten Lemmen, Jason C. S. Yu, Tzu-Yin Chou, Chi-Hao Chu, and Chuen-Teyr Terng
EGUsphere, https://doi.org/10.5194/egusphere-2022-114, https://doi.org/10.5194/egusphere-2022-114, 2022
Preprint archived
Short summary
Short summary
We develop a new data assimilative approach by combining two parallel frameworks: PDAF and ESMF. This allows maximum flexibility and easy implementation of data assimilation for fully coupled earth system model applications. It is also validated by using a simple benchmark and applied to a realistic case simulation around Taiwan. The real case test shows significant improvement for temperature, velocity and surface elevation before, during and after typhoon events.
Fei Ye, Wei Huang, Yinglong J. Zhang, Saeed Moghimi, Edward Myers, Shachak Pe'eri, and Hao-Cheng Yu
Nat. Hazards Earth Syst. Sci., 21, 1703–1719, https://doi.org/10.5194/nhess-21-1703-2021, https://doi.org/10.5194/nhess-21-1703-2021, 2021
Short summary
Short summary
Compound flooding is caused by multiple mechanisms contributing to elevated water level simultaneously, which poses higher risks than conventional floods. This study uses a holistic approach to simulate the processes on a wide range of spatial and temporal scales that contributed to the compound flooding during Hurricane Florence in 2018. Sensitivity tests are used to isolate the contribution from each mechanism and identify the region experiencing compound effects, thus supporting management.
Cited articles
Andres, M.: Spatial and temporal variability of the Gulf Stream near Cape Hatteras, J. Geophys. Res.-Oceans, 126, e2021JC017579, https://doi.org/10.1029/2021JC017579, 2021.
Ator, S. W., Blomquist, J. D., Webber, J. S., and Chanat, J. G.: Factors driving nutrient trends in streams of the Chesapeake Bay watershed, Environ. Qual., 49, 812–834, https://doi.org/10.1002/jeq2.20101, 2020.
Barlow, P. M. and Reichard, E. G.: Saltwater intrusion in coastal regions of North America, Hydrogeol. J., 18, 247–260, https://doi.org/10.1007/s10040-009-0514-3, 2010.
Blanton, B. O., Werner, F. E., Seim, H. E., Luettich Jr, R. A., Lynch, D. R., Smith, K. W., and Way, F.: Barotropic tides in the South Atlantic Bight, J. Geophys. Res.-Oceans, 109, https://doi.org/10.1016/j.ocemod.2017.09.002, 2004.
Cai, X., Qin, Q., Shen, J., and Zhang, Y. J.: Bifurcate responses of tidal range to sea-level rise in estuaries with marsh evolution, Limnol. Oceanogr. Lett., 7, 210–217, https://doi.org/10.1002/lol2.10256, 2022a.
Cai, X., Zhang, Y. J., Shen, J., Wang, H., Wang, Z., Qin, Q., and Ye, F.: A numerical study of hypoxia in Chesapeake Bay using an unstructured grid model: Validation and sensitivity to bathymetry representation, J. Am. Water Resour. Assoc., 58, 898–921, https://doi.org/10.1111/1752-1688.12887, 2022b.
Cai, X., Shen, J., Zhang, Y. J., Qin, Q., and Linker, L.: The roles of tidal marshes in the estuarine biochemical processes: A numerical modeling study, J. Geophys. Res.-Biogeo., 128, e2022JG007066, https://doi.org/10.1029/2022JG007066, 2023.
Cai, X., Qin, Q., Cui, L., Yang, X., Shen, J., and Zhang, Y. J.: A Seamless Cross-Scale Simulation from the North Atlantic Coast to Tidal Wetlands, Zenodo [code], https://doi.org/10.5281/zenodo.16787106, 2025a.
Cai, X., Qin, Q., Cui, L., Yang, X., Shen, J., and Zhang, Y. J.: NAAC (v1.0): A Seamless Two-Decade Cross-Scale Simulation from the North American Atlantic Coast to Tidal Wetlands Using the 3D Unstructured-grid Model SCHISM (v5.11.0), Zenodo [data set], https://doi.org/10.5281/zenodo.16787120, 2025b.
Chen, C., Huang, H., Beardsley, R. C., Xu, Q., Limeburner, R., Cowles, G. W., Sun, Y., Qi, J., and Lin, H.: Tidal dynamics in the Gulf of Maine and New England Shelf: An application of FVCOM, J. Geophys. Res.-Oceans, 116, https://doi.org/10.1029/2011JC007054, 2011.
Chen, J.-L., Ralston, D. K., Geyer, W. R., Sommerfield, C. K., and Chant, R. J.: Wave generation, dissipation, and disequilibrium in an embayment with complex bathymetry, J. Geophys. Res.-Oceans, 123, 7856–7876, https://doi.org/10.1029/2018JC014381, 2018.
Clunies, G. J., Mulligan, R. P., Mallinson, D. J., and Walsh, J. P.: Modeling hydrodynamics of large lagoons: Insights from the Albemarle-Pamlico Estuarine System, Estuar. Coast. Shelf Sci., 189, 90–103, https://doi.org/10.1016/j.ecss.2017.03.012, 2017.
Cui, L., Ye, F., Zhang, Y. J., Yu, H., Wang, Z., Moghimi, S., Seroka, G., Riley, J., Pe'eri, S., Mani, S., and Myers, E.: Total water level prediction at continental scale: Coastal ocean, Ocean Model., 192, 102451, https://doi.org/10.1016/j.ocemod.2024.102451, 2024.
Dubois, R. N.: Seasonal changes in beach topography and beach volume Delaware, Mar. Geol., 81, 79–96, https://doi.org/10.1016/0025-3227(88)90019-9, 1988.
He, R., Chen, K., Fennel, K., Gawarkiewicz, G. G., and McGillicuddy Jr., D. J.: Seasonal and interannual variability of physical and biological dynamics at the shelfbreak front of the Middle Atlantic Bight: nutrient supply mechanisms, Biogeosciences, 8, 2935–2946, https://doi.org/10.5194/bg-8-2935-2011, 2011.
Heiss, J. W. and Michael, H. A.: Saltwater-freshwater mixing dynamics in a sandy beach aquifer over tidal, spring-neap, and seasonal cycles, Water Resour. Res., 50, 6747–6766, https://doi.org/10.1002/2014WR015574, 2014.
Hobbs III, C. H.: Geological history of Chesapeake Bay, USA, Quaternary Sci. Rev., 23, 641–661, https://doi.org/10.1016/j.quascirev.2003.08.003, 2004.
Hofmann, E. E., Druon, J.-N., Fennel, K., Friedrichs, M., Haidvogel, D., Lee, C., Mannino, A., McClain, C., Najjar, R., Siewert, J., O’Reilly, J., Pollard, D., Previdi, M., Seitzinger, S., Signorini, S., and Wilkin, J.: Eastern U.S. Continental Shelf Carbon Budget: Integrating Models, Data Assimilation, and Analysis, Oceanography, 21, 86–104, https://doi.org/10.5670/oceanog.2008.70, 2008.
Huntington, T. G. and Billmire, M.: Trends in precipitation, runoff, and evapotranspiration for rivers draining to the Gulf of Maine in the United States, J. Hydrometeorol., 15, 726–743, https://doi.org/10.1175/JHM-D-13-018.1, 2014.
Kauffman, G. J., Homsey, A. R., Belden, A. C., and Sanchez, J. R.: Water quality trends in the Delaware River Basin (USA) from 1980 to 2005, Environ. Monit. Assess., 177, 193–225, https://doi.org/10.1007/s10661-010-1628-8, 2011.
Knebel, H. J., Signell, R. P., Rendigs, R. R., Poppe, L. J., and List, J. H.: Seafloor environments in the Long Island Sound estuarine system, Mar. Geol., 155, 277–318, https://doi.org/10.1016/S0025-3227(98)00129-7, 1999.
Li, D., Wang, Z., Xue, H., Thomas, A. C., and Etter, R. J.: Wind-Modulated Western Maine Coastal Current and Its Connectivity With the Eastern Maine Coastal Current, J. Geophys. Res.-Oceans, 127, e2022JC018469, https://doi.org/10.1029/2022JC018469, 2022.
Li, M., Zhong, L., and Boicourt, W. C.: Simulations of Chesapeake Bay estuary: Sensitivity to turbulence mixing parameterizations and comparison with observations, J. Geophys. Res.-Oceans, 110, https://doi.org/10.1029/2004JC002585, 2005.
Liu, J., Hetland, R., Yang, Z., Wang, T., and Sun, N.: Response of salt intrusion in a tidal estuary to regional climatic forcing, Environ. Res. Lett., https://doi.org/10.1088/1748-9326/ad4fa1, 2024.
López, A. G., Wilkin, J. L., and Levin, J. C.: Doppio – a ROMS (v3.6)-based circulation model for the Mid-Atlantic Bight and Gulf of Maine: configuration and comparison to integrated coastal observing network observations, Geosci. Model Dev., 13, 3709–3729, https://doi.org/10.5194/gmd-13-3709-2020, 2020.
Mathis, M., Logemann, K., Maerz, J., Lacroix, F., Hagemann, S., Chegini, F., Ramme, L., Ilyina, T., Korn, P., and Schrum, C.: Seamless integration of the coastal ocean in global marine carbon cycle modeling, J. Adv. Model. Earth Syst., 14, e2021MS002789, https://doi.org/10.1029/2021MS002789, 2022.
McNinch, J. E.: Geologic control in the nearshore: shore-oblique sandbars and shoreline erosional hotspots, Mid-Atlantic Bight, USA, Mar. Geol., 211, 121–141, https://doi.org/10.1016/j.margeo.2004.07.006, 2004.
Mondal, P., Walter, M., Miller, J., Epanchin-Niell, R., Gedan, K., Yawatkar, V., Nguyen, E., and Tully, K. L.: The spread and cost of saltwater intrusion in the US Mid-Atlantic, Nat. Sustain., 6, 1352–1362, https://doi.org/10.1038/s41893-023-01186-6, 2023.
Murphy, R. R., Kemp, W. M., and Ball, W. P.: Long-term trends in Chesapeake Bay seasonal hypoxia, stratification, and nutrient loading, Estuar. Coasts, 34, 1293–1309, https://doi.org/10.1007/s12237-011-9413-7, 2011.
Najjar, R. G., Herrmann, M., Alexander, R., Boyer, E. W., Burdige, D. J., Butman, D., Cai, W.-J., Canuel, E. A., Chen, R. F., Friedrichs, M. A. M., Feagin, R. A., Griffith, P. C., Hinson, A. L., Holmquist, J. R., Hu, X., Kemp, W. M., Kroeger, K. D., Mannino, A., McCallister, S. L., McGillis, W. R., Mulholland, M. R., Pilskaln, C. H., Salisbury, J., Signorini, S. R., St-Laurent, P., Tian, H., Tzortziou, M., Vlahos, P., Wang, Z. A., and Zimmerman, R. C.: Carbon budget of tidal wetlands, estuaries, and shelf waters of Eastern North America, Global Biogeochem. Cy., 32, 389–416, https://doi.org/10.1002/2017GB005790, 2018.
Paldor, A. and Michael, H. A.: Storm surges cause simultaneous salinization and freshening of coastal aquifers, exacerbated by climate change, Water Resour. Res., 57, e2020WR029213, https://doi.org/10.1029/2020WR029213, 2021.
Ralston, D. K., Geyer, W. R., and Lerczak, J. A.: Subtidal salinity and velocity in the Hudson River estuary: Observations and modeling, J. Phys. Oceanogr., 38, 753–770, https://doi.org/10.1175/2007JPO3808.1, 2008.
Ray, R. D.: Secular changes of the M2 tide in the Gulf of Maine, Cont. Shelf Res., 26, 422–427, https://doi.org/10.1016/j.csr.2005.12.005, 2006.
Ross, A. C., Najjar, R. G., Li, M., Mann, M. E., Ford, S. E., and Katz, B.: Sea-level rise and other influences on decadal-scale salinity variability in a coastal plain estuary, Estuar. Coast. Shelf Sci., 157, 79–92, https://doi.org/10.1016/j.ecss.2015.01.022, 2015.
Sanford, L. P., Boicourt, W. C., and Rives, S. R.: Model for estimating tidal flushing of small embayments, J. Waterway Port Coast. Ocean Eng., 118, 635–654, https://doi.org/10.1061/(ASCE)0733-950X(1992)118:6(635), 1992.
Seidov, D., Mishonov, A., and Parsons, R.: Recent warming and decadal variability of Gulf of Maine and Slope Water, Limnol. Oceanogr., 66, 3472–3488, https://doi.org/10.1002/lno.11892, 2021.
Tian, R., Cai, X., Testa, J. M., Brady, D. C., Cerco, C. F., and Linker, L. C.: Simulation of high-frequency dissolved oxygen dynamics in a shallow estuary, the Corsica River, Chesapeake Bay, Front. Mar. Sci., 9, 1058839, https://doi.org/10.3389/fmars.2022.1058839, 2022.
Uchupi, E. and Bolmer, S. T.: Geologic evolution of the Gulf of Maine region, Earth-Sci. Rev., 91, 27–76, https://doi.org/10.1016/j.earscirev.2008.09.002, 2008.
Warner, J. C., Armstrong, B., He, R., and Zambon, J. B.: Development of a coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system, Ocean Model., 35, 230–244, https://doi.org/10.1016/j.ocemod.2010.07.010, 2010.
Werner, A. D., Bakker, M., Post, V. E., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C. T., and Barry, D. A.: Seawater intrusion processes, investigation, and management: Recent advances and future challenges, Adv. Water Resour., 51, 3–26, https://doi.org/10.1016/j.advwatres.2012.03.004, 2013.
Xia, M., Xie, L., and Pietrafesa, L. J.: Modeling of the Cape Fear River estuary plume, Estuar. Coasts, 30, 698–709, https://doi.org/10.1007/BF02841966, 2007.
Xue, P., Chen, C., Ding, P., Beardsley, R. C., Lin, H., Ge, J., and Kong, Y.: Saltwater intrusion into the Changjiang River: A model-guided mechanism study, J. Geophys. Res.-Oceans, 114, https://doi.org/10.1029/2008JC004831, 2009.
Xue, Z., He, R., Liu, J. P., and Warner, J. C.: Modeling transport and deposition of the Mekong River sediment, Cont. Shelf Res., 37, 66–78, https://doi.org/10.1016/j.csr.2012.02.010, 2012.
Yang, X., Zhu, Z., Qiu, S., Kroeger, K. D., Zhu, Z., and Covington, S.: Detection and characterization of coastal tidal wetland change in the northeastern US using Landsat time series, Remote Sens. Environ., 276, 113047, https://doi.org/10.1016/j.rse.2022.113047, 2022.
Ye, F., Zhang, Y. J., Wang, H. V., Friedrichs, M. A., Irby, I. D., Alteljevich, E., Valle-Levinson, A., Wang, Z., Huang, H., Shen, J., and Du, J.: A 3D unstructured-grid model for Chesapeake Bay: Importance of bathymetry, Ocean Model., 127, 16–39, https://doi.org/10.1016/j.ocemod.2018.05.002, 2018.
Ye, F., Zhang, Y. J., Yu, H., Sun, W., Moghimi, S., Myers, E., Nunez, K., Zhang, R., Wang, H. V., Roland, A., and Martins, K.: Simulating storm surge and compound flooding events with a creek-to-ocean model: Importance of baroclinic effects, Ocean Model., 145, 101526, https://doi.org/10.1016/j.ocemod.2019.101526, 2020.
Zhang, Y., Svyatsky, D., Rowland, J. C., Moulton, J. D., Cao, Z., Wolfram, P. J., Xu, C., and Pasqualini, D.: Impact of coastal marsh eco-geomorphologic change on saltwater intrusion under future sea level rise, Water Resour. Res., 58, e2021WR030333, https://doi.org/10.1029/2021WR030333, 2022.
Zhang, Y. J., Ateljevich, E., Yu, H. C., Wu, C. H., and Jason, C. S.: A new vertical coordinate system for a 3D unstructured-grid model, Ocean Model., 85, 16–31, https://doi.org/10.1016/j.ocemod.2014.10.003, 2015.
Zhang, Y. J., Ye, F., Stanev, E. V., and Grashorn, S.: Seamless cross-scale modeling with SCHISM, Ocean Model., 102, 64–81, https://doi.org/10.1016/j.ocemod.2016.05.002, 2016.
Zhang, Y. J., Fernandez-Montblanc, T., Pringle, W., Yu, H. C., Cui, L., and Moghimi, S.: Global seamless tidal simulation using a 3D unstructured-grid model (SCHISM v5.10.0), Geosci. Model Dev., 16, 2565–2581, https://doi.org/10.5194/gmd-16-2565-2023, 2023.
Zhang, Y. J., Ye, F., wzhengui, Lemmen, C., Cai, N., Khan, J. U., Wang, Q., cuill, Calzada, J. R., Yu, D., Velissariou, P., Nam, K., cseaton, Mentaschi, L., Turunçoğlu, U., Wyrwa, J., Breyiannis, G., qiangshu, lllavaud, …, and Sandhu, N.: schism-dev/schism: v5.11.0 (v5.11.0), Zenodo [code], https://doi.org/10.5281/zenodo.14834163, 2025.
Short summary
We presented NAAC, a high-resolution, two-decade simulation of coastal hydrodynamics using the 3D unstructured-grid model SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model; v5.11.0). This model seamlessly integrates simulations from the North American Atlantic coastal ocean to tidal tributaries and wetlands. By bridging the gap between large-scale regional ocean models and fine-scale shallow water systems and intertidal zones, this work helps fill observational gaps and provides valuable insights into studies like saltwater intrusion.
We presented NAAC, a high-resolution, two-decade simulation of coastal hydrodynamics using the...