Cheng, Q.: Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China, Ore Geol. Rev., 32, 314–324, https://doi.org/10.1016/j.oregeorev.2006.10.002, 2007.
Cheng, Q.: Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas, J. Geochem. Explor., 122, 55–70, https://doi.org/10.1016/j.gexplo.2012.07.007, 2012.
Dong, S., Sha, W., Su, X., Zhang, Y., Shuai, L., Gao, X., Liu, S., Shi, J., Liu, Q., and Hao, Y.: The impacts of geographic, soil and climatic factors on plant diversity, biomass and their relationships of the alpine dry ecosystems: Cases from the Aerjin Mountain Nature Reserve, China, Ecol. Eng., 127, 170–177, https://doi.org/10.1016/j.ecoleng.2018.10.027, 2019.
Duveiller, G., Hooker, J., and Cescatti, A.: The mark of vegetation change on Earth's surface energy balance, Nat. Commun., 9, 679, https://doi.org/10.1038/s41467-017-02810-8, 2018.
Fawcett, T.: An introduction to ROC analysis, Pattern Recogn. Lett., 27, 861–874, https://doi.org/10.1016/j.patrec.2005.10.010, 2006.
Fischer, M. M. and Getis, A.: Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications, Springer, Berlin, Germany, ISBN 978-3-642-03647-7, https://doi.org/10.1007/978-3-642-03647-7, 2010.
Gao, B., Wang, J., Stein, A., and Chen, Z.: Causal inference in spatial statistics, Spat. Stat-Neth., 50, 100621, https://doi.org/10.1016/j.spasta.2022.100621, 2022.
Gemitzi, A., Dalampakis, P., and Falalakis, G.: Detecting geothermal anomalies using Landsat 8 thermal infrared remotely sensed data, Int. J. Appl. Earth Obs., 96, 102283, https://doi.org/10.1016/j.jag.2020.102283, 2021.
Goldstein, B., Hiriart, G., Bertani, R., Bromley, C., Gutiérrez-Negrín, L., Huenges, E., Muraoka, H., Ragnarsson, A., Tester, J., and Zui, V.: Geothermal energy, in: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, edited by: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., and von Stechow, C., Cambridge University Press, 71–80, ISBN 978-92-9169-131-9, 2011.
Goodchild, M. F.: Geographical information science, Int. J. Geogr. Inf. Syst., 6, 31–45, https://doi.org/10.1080/02693799208901893, 1992.
Goodchild, M. F. and Haining, R. P.: GIS and spatial data analysis: Converging perspectives, in: Fifty Years of Regional Science, edited by: Florax, R. J. G. M. and Plane, D. A., Springer, Berlin, Germany, 363–385, ISBN 978-3-662-07223-3, https://doi.org/10.1007/978-3-662-07223-3_16, 2004.
Goovaerts, P.: Geostatistics for Natural Resources Evaluation, Oxford University Press, ISBN 9780195115383, https://doi.org/10.1093/oso/9780195115383.001.0001, 1997.
Haag, S., Tarboton, D., Smith, M., and Shokoufandeh, A.: Fast summarizing algorithm for polygonal statistics over a regular grid, Comput. Geosci., 142, 104524, https://doi.org/10.1016/j.cageo.2020.104524, 2020.
Hanczar, B., Hua, J. P., Sima, C., Weinstein, J., Bittner, M., and Dougherty, E. R.: Small-sample precision of ROC-related estimates, Bioinformatics, 26, 822–830, https://doi.org/10.1093/bioinformatics/btq037, 2010.
Huang, S. and Liu, J.: Geothermal energy stuck between a rock and a hot place, Nature, 463, 293, https://doi.org/10.1038/463293d, 2010.
Hyndman, R. J. and Fan, Y.: Sample quantiles in statistical packages, Am. Stat., 50, 361–365, https://doi.org/10.2307/2684934, 1996.
Jimenez-Munoz, J. C., Cristobal, J., Sobrino, C. J., Soria, J. A., Soria, G., Ninyerola, M., and Pons, X.: Revision of the single-channel algorithm for land surface temperature retrieval from landsat thermal-infrared data, IEEE T. Geosci. Remote, 47, 339–349, https://doi.org/10.1109/TGRS.2008.2007125, 2009.
Jimenez-Munoz, J. C., Sobrino, J. A., Skokovic, D., Mattar, C., and Cristobal, J.: Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data, IEEE Geosci. Remote S., 11, 1840–1843, https://doi.org/10.1109/LGRS.2014.2312032, 2014.
Kassawmar, T., Murty, K. S. R., Abraha, L., and Bantider, A.: Making more out of pixel-level change information: using a neighbourhood approach to improve land-change characterisation across large heterogeneous areas, Geocarto Int., 34, 977–999, https://doi.org/10.1080/10106049.2018.1458252, 2019.
Krige, D. G.: A statistical approach to some basic mine valuation problems on the Witwatersrand, J. S. Afr. I. Min. Metall., 52, 119–139, 1951.
Krige, D. G. and Magri, E. J.: Geostatistical case studies of the advantages of lognormal-de Wijsian kriging with mean for a base metal mine and a gold mine, Math. Geol., 14, 547–555, https://doi.org/10.1007/BF01033878, 1982.
Lessani, M. N. and Li, Z.: SGWR: Similarity and geographically weighted regression, Int. J. Geogr. Inf. Sci., 38, 1232–1255, https://doi.org/10.1080/13658816.2024.2342319, 2024.
Longley, P. A., Goodchild, M. F., Maguire, D. J., and Rhind, D. W.: Geographic Information Systems and Science, 4th ed., John Wiley & Sons Inc., ISBN 978-1118676950, 2015.
Mathews, A. J. and Jensen, J. L.: An airborne LiDAR-based methodology for vineyard parcel detection and delineation, Int. J. Remote Sens., 33, 5251–5267, https://doi.org/10.1080/01431161.2012.663114, 2012.
Müller, S., Schüler, L., Zech, A., and Heße, F.: GSTools v1.3: a toolbox for geostatistical modelling in Python, Geosci. Model Dev., 15, 3161–3182, https://doi.org/10.5194/gmd-15-3161-2022, 2022.
NASA JPL: NASA Shuttle Radar Topography Mission Global 1 arc second [data set], NASA Land Processes Distributed Active Archive Center, https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003, 2013.
Qiu, B., Zeng, C., Chen, C., Zhang, C., and Zhong, M.: Vegetation distribution pattern along altitudinal gradient in subtropical mountainous and hilly river basin, China, J. Geogr. Sci., 23, 247–257, https://doi.org/10.1007/s11442-013-1007-9, 2013.
Ren, N. and Zhang, D.: FZStats v1.0 operation data, Zenodo [data set], https://doi.org/10.5281/zenodo.16009159, 2024b.
Romaguera, M., Vaughan, R. G., Ettema, J., Izquierdo-Verdiguier, E., Hecker, C. A., and Van der Meer, F. D.: Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data, Remote Sens. Environ., 204, 534–552, https://doi.org/10.1016/j.rse.2017.10.003, 2018.
Shams Eddin, M. H. and Gall, J.: Focal-TSMP: deep learning for vegetation health prediction and agricultural drought assessment from a regional climate simulation, Geosci. Model Dev., 17, 2987–3023, https://doi.org/10.5194/gmd-17-2987-2024, 2024.
Singla, S. and Eldawy, A.: Distributed zonal statistics of big raster and vector data, in: Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, Washington, USA, 536–539, https://doi.org/10.1145/3274895.3274985, 2018.
Tobler, W. R.: A computer movie simulating urban growth in the Detroit region, Econ. Geogr., 46, 234–240, https://doi.org/10.2307/143141, 1970.
Tran, D. X., Pla, F., Latorre-Carmona, P., Myint, S. W., Gaetano, M., and Kieu, H. V.: Characterizing the relationship between land use land cover change and land surface temperature, ISPRS J. Photogramm., 124, 119–132, https://doi.org/10.1016/j.isprsjprs.2017.01.001, 2017.
Trangmar, B. B., Yost, R. S., and Uehara, G.: Spatial dependence and interpolation of soil properties in West Sumatra, Indonesia: I. Anisotropic variation, Soil Sci. Soc. Am. J., 50, 1391–1395, https://doi.org/10.2136/sssaj1986.03615995005000060004x, 1986.
U.S. Geological Survey: Landsat 8–9 Operational Land Imager/Thermal Infrared Sensor Level-2, Collection 2 [data set], Earth Resources Observation and Science (EROS) Center, https://doi.org/10.5066/P9OGBGM6, 2020.
Wagner, F. H., Ferreira, M. P., Sanchez, A., Hirye, M. C., Zortea, M., Gloor, E., Phillips, O. L., de Souza Filho, C. R., Shimabukuro, Y. E., and Aragão, L. E.: Individual tree crown delineation in a highly diverse tropical forest using very high resolution satellite images, ISPRS J. Photogramm., 145, 362–377, https://doi.org/10.1016/j.isprsjprs.2018.09.013, 2018.
Wang, J. and Xu, C.: Geodetector: Principle and prospective, Acta Geographica Sinica, 72, 116–134, https://doi.org/10.11821/dlxb201701010, 2017 (in Chinese with English abstract).
Wang, J., Zhang, T., and Fu, B.: A measure of spatial stratified heterogeneity, Ecol. Indic., 67, 250–256, https://doi.org/10.1016/j.ecolind.2016.02.052, 2016.
Wang, X., Xu, S., Zhang, B., and Zhao, S.: Deep-penetrating geochemistry for sandstone-type uranium deposits in the Turpan–Hami basin, north-western China, Appl. Geochem., 26, 2238–2246, https://doi.org/10.1016/j.apgeochem.2011.08.006, 2011.
Winsemius, S. and Braaten, J.: Zonal statistics, in: Cloud-Based Remote Sensing with Google Earth Engine, edited by: Cardille, J. A., Crowley, M. A., Saah, D., and Clinton, N. E., Springer, Cham, 463–485, ISBN 978-3-031-26587-7, https://doi.org/10.1007/978-3-031-26588-4_24, 2024.
Wolter, P. T., Townsend, P. A., and Sturtevant, B. R.: Estimation of forest structural parameters using 5 and 10 meter SPOT-5 satellite data, Remote Sens. Environ., 113, 2019–2036, https://doi.org/10.1016/j.rse.2009.05.009, 2009.
Xu, X., Zhang, D., Zhang, Y., Yao, S., and Zhang, J.: Evaluating the vegetation restoration potential achievement of ecological projects: A case study of Yan'an, China, Land Use Policy, 90, 104293, https://doi.org/10.1016/j.landusepol.2019.104293, 2020.
Yan, B., Qiu, S., Xiao, C., and Liang, X.: Potential geothermal fields remote sensing identification in Changbai Mountain basalt area, Journal of Jilin University (Earth Science Edition), 47, 1819–1828, 2017 (in Chinese with English abstract).
Zhang, D., Cheng, Q., Agterberg, F. P., and Chen, Z.: An improved solution of local window parameters setting for local singularity analysis based on Excel VBA batch processing technology, Comput. Geosci., 88, 54–66, https://doi.org/10.1016/j.cageo.2015.12.012, 2016a.
Zhang, D., Jia, Q., Xu, X., Yao, S., Chen, H., and Hou, X.: Contribution of ecological policies to vegetation restoration: A case study from Wuqi County in Shaanxi Province, China, Land Use Policy, 73, 400–411, https://doi.org/10.1016/j.landusepol.2018.02.020, 2018.
Zhang, D., Xu, X., Yao, S., Zhang, J., Hou, X., and Yin, R.: A novel similar habitat potential model based on sliding-window technique for vegetation restoration potential mapping, Land Degrad. Dev., 31, 760–772, https://doi.org/10.1002/ldr.3494, 2019.
Zhang, D.: Theoretical exploration, model construction and application of ecological policy effect evaluation from the potential-realisation perspective of vegetation restoration, Geographical Research, 42, 3099–3114, https://doi.org/10.11821/dlyj020230215, 2023a (in Chinese with English abstract).
Zhang, J., Ye, Z., and Zheng, K.: A parallel computing approach to spatial neighboring analysis of large amounts of terrain data using Spark, Sensors, 21, 365, https://doi.org/10.3390/s21020365, 2021.
Zhang, Y. and Zhang, D.: Improvement of terrain niche index model and its application in vegetation cover evaluation, Acta Geographica Sinica, 77, 2757–2772, https://doi.org/10.11821/dlxb202211005, 2022 (in Chinese with English abstract).
Zhang, Y., Li, J., Liu, X., Bai, J., and Wang, G.: Do carbon sequestration and food security in urban and rural landscapes differ in patterns, relationships, and responses?, Appl. Geogr., 160, 103100, https://doi.org/10.1016/j.apgeog.2023.103100, 2023b.
Zhang, Z., He, G., Wang, M., Long, T., Wang, G., and Zhang, X.: Validation of the generalized single-channel algorithm using Landsat 8 imagery and SURFRAD ground measurements, Remote Sens. Lett., 7, 810–816, https://doi.org/10.1080/2150704X.2016.1190475, 2016b.
Zhao, P.: Three-component quantitative resource prediction and assessments: theory and practice of digital mineral prospecting, Earth Science-Journal of China University of Geosciences, 27, 482–489, 2002 (in Chinese with English abstract).
Zhao, W. and Duan, S. B.: Reconstruction of daytime land surface temperatures under cloud-covered conditions using integrated MODIS/Terra land products and MSG geostationary satellite data, Remote Sens. Environ., 247, 111931, https://doi.org/10.1016/j.rse.2020.111931, 2020.
Zhu, A., Lu, G., Liu, J., Qin, C., and Zhou, C.: Spatial prediction based on Third Law of Geography, Ann. GIS, 24, 225–240, https://doi.org/10.1080/19475683.2018.1534890, 2018.
Zhu, A., Miao, Y., Liu, J., Bai, S., Zeng, C., Ma, T., and Hong, H.: A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-driven methods, Catena, 183, 104188, https://doi.org/10.1016/j.catena.2019.104188, 2019.
Zhu, A., Lv, G., Zhou, C., and Qin, C.: Geographic similarity: Third Law of Geography?, Journal of Geo-Information Science, 22, 673–679, https://doi.org/10.12082/dqxxkx.2020.200069, 2020 (in Chinese with English abstract).
Zuo, R.: Identification of weak geochemical anomalies using robust neighborhood statistics coupled with GIS in covered areas, J. Geochem. Explor., 136, 93–101, https://doi.org/10.1016/j.gexplo.2013.10.011, 2014.
Zuo, R.: Geodata science-based mineral prospectivity mapping: A review, Nat. Resour. Res., 29, 3415–3424, https://doi.org/10.1007/s11053-020-09700-9, 2020.