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Abstract. Focal and zonal statistics are fundamental tools
in geographic information systems (GISs) for characterizing
spatial patterns, yet they have traditionally addressed spatial
stratified heterogeneity (SSH) and spatial positional depen-
dence (SPD) in isolation. To overcome this limitation, we
introduce FZStats v1.0, a Python 3/QT5-based toolbox that
not only integrates conventional focal and zonal statistics,
but also implements a novel focal-zonal mixed statistics ap-
proach capable of jointly capturing both SSH and SPD. First,
we formally develop the focal-zonal mixed statistics model
to address stratified heterogeneity, spatial dependence, and
their interactions within a unified framework — filling a key
methodological gap left by traditional approaches that can-
not accommodate their co-occurrence in real-world spatial
data. Second, FZStats v1.0 provides a user-friendly graphi-
cal interface for flexible configuration of neighborhood win-
dow shapes (e.g., rectangular, circular, elliptical), sizes, and
statistical operations (e.g., mean, percentiles). It also sup-
ports multiprocessing and batch operations, enabling scal-
able computation across diverse spatial analysis tasks. Third,
we validate the effectiveness and robustness of the new
method through a geothermal anomaly detection case study.
Across multiple years, seasons, representative target sizes,
and local window radii, the focal-zonal mixed statistics con-
sistently outperforms both focal and zonal statistics, demon-
strating its superior capability in enhancing anomaly signals
under complex spatial conditions. In summary, FZStats v1.0
is not only a theoretically grounded and methodologically

novel tool, but also a highly adaptable and practical solution
for spatial data analysis in diverse application domains.

1 Introduction

Geographic information systems (GISs) represent a mile-
stone in the evolution of geography by providing a new
paradigm for the integrated management, analysis, and vi-
sualization of spatial data (Goodchild, 1992; Bernhardsen,
2002; Longley et al., 2015). As a vital analytical module
within GIS, spatial statistics enable researchers to quan-
tify and interpret spatial patterns and relationships on the
Earth’s surface with unprecedented precision (Fischer and
Getis, 2010; Fotheringham and Rogerson, 1994). With con-
tinued advances in GIS technology, investigators can now
more easily explore the distribution, temporal evolution, and
driving mechanisms of spatial variables, and spatial statis-
tical theories and methods play an increasingly prominent
role in geographical studies. Two foundational concepts in
spatial statistical analysis are spatial heterogeneity and po-
sitional dependence (Goodchild and Haining, 2004). Corre-
spondingly, zonal statistics and focal (neighborhood) statis-
tics offer two complementary approaches. Zonal statistics
partitions raster units representing the target variable into
discrete zones based on predefined schemes; computes sum-
mary metrics such as mean, maximum, minimum, and sum
within each zone; and renders the results as a mosaic raster
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layer (Singla and Eldawy, 2018; Haag et al., 2020; Win-
semius and Braaten, 2024). In contrast, focal statistics de-
fines a neighborhood around each cell according to specified
window shape and size, calculates the same set of summary
metrics within that neighborhood, and assigns the resulting
value to the central cell; by sliding this window across all
locations, it thereby quantifies how these statistics vary with
the window’s movement (Mathews and Jensen, 2012; Kas-
sawmar et al., 2019; Zhang et al., 2021).

Mainstream GIS platforms such as ArcGIS and QGIS in-
clude dedicated modules for zonal statistics and focal statis-
tics, both of which have been widely adopted in practice.
From an application standpoint, zonal statistics primarily
deals with spatial stratified heterogeneity (SSH) by partition-
ing the study area into zones based on environmental charac-
teristics, thereby capturing SSH (Wang et al., 2016; Wang
and Xu, 2017; Gao et al., 2022). For instance, vegetation
growth or potential often varies markedly among zones de-
lineated by slope and aspect, which are key drivers of vege-
tation dynamics (Zhang et al., 2018, 2019; Xu et al., 2020).
Conversely, focal statistics focuses on spatial positional de-
pendence (SPD) by employing moving-window or geograph-
ically weighted techniques to detect and mitigate positional
effects (Tobler, 1970; Wolter et al., 2009; Wagner et al.,
2018). For example, even soils or rocks with the same texture
exhibit geochemical variations that diminish with decreasing
distance, reflecting underlying positional dependence; conse-
quently, spatial interpolation of element concentrations typ-
ically assigns greater weight to nearer samples (Krige and
Magri, 1982; Trangmar et al., 1986; Zuo, 2014).

In practice, SSH and SPD often co-occur, manifesting as
abrupt and gradual variations respectively. At broad scales,
terrestrial vegetation patterns illustrate SPD through merid-
ional, latitudinal, and altitudinal gradients driven by land-
sea distribution, solar radiation, and elevation (Qiu et al.,
2013; Dong et al., 2019; Shams Eddin and Gall, 2024).
Conversely, local topography, microclimate, and human ac-
tivity introduce sharp boundaries in vegetation cover, gen-
erating SSH — for example, stark contrasts between shady
and sunny slopes (Alvarez—Martfnez et al.,, 2014; Zhang
and Zhang, 2022) and between urban and rural landscapes
(Zhang et al., 2023b). Similarly, in mineral geology, strati-
graphic age differences produce SSH in resource distribution
(Zhao, 2002; Zuo, 2020), while internal and external geolog-
ical processes impart SPD to mineralization patterns (Cheng,
2006, 2012), as modeled by geostatistics and kriging (Krige,
1951; Goovaerts, 1997; Miiller et al., 2022). Therefore, effec-
tive spatial statistical analysis must integrate both SSH and
SPD.

To address these challenges, previous studies have inte-
grated SSH and SPD, developing specialized hybrid models
for specific spatial—statistical objectives. For example, Zhu
et al. (2019) extended traditional spatial interpolation meth-
ods — normally focused solely on spatial dependence — by
introducing environmental similarity constraints and formal-
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ized the “Third Law of Geography”, which states that geo-
graphically similar contexts yield similar target-variable val-
ues (Zhu et al., 2018, 2020). In a similar vein, Zhang et
al. (2019) incorporated spatial sliding-window techniques
into vegetation potential assessment, resulting in a model
that simultaneously considers spatial proximity and environ-
mental similarity (Xu et al., 2020; Zhang, 2023a). More re-
cently, Lessani and Li (2024) developed the Similarity and
Geographically Weighted Regression (SGWR) model, which
combines distance-based and similarity-based weights to
overcome limitations of traditional geographically weighted
methods that address only spatial dependency.

Although these methods successfully integrate SSH and
SPD in specific tasks such as interpolation and regression,
there is still no general-purpose GIS toolbox comparable to
focal and zonal statistics within standard GIS workflows.
To fill this gap, this study presents FZStats v1.0 (Ren and
Zhang, 2024a), which unifies traditional zonal statistics and
focal statistics with the novel focal-zonal mixed statistics
model. Leveraging multiprocessing and batch-processing ca-
pabilities, FZStats v1.0 improves computational efficiency
and optimizes usability. Moreover, from a logical perspec-
tive, focal-zonal mixed statistics can be viewed as a general-
ization of the two traditional approaches. Specifically, when
the moving window covers — or substantially exceeds — the
entire study area (i.e., window size — 00), the method con-
verges to zonal statistics, effectively addressing SSH. Con-
versely, when only a single zone is defined, it simplifies to
focal statistics, capturing SPD. In the more common and
complex scenarios where both SSH and SPD coexist, only
the mixed approach is capable of simultaneously account-
ing for both characteristics. Consequently, FZStats v1.0 is
positioned to function as a comprehensive analytical frame-
work for spatial studies necessitating simultaneous evalua-
tion of SSH and SPD parameters across diverse application
domains.

2 Models
2.1 Focal statistics model

The focal statistics method addresses spatial positional de-
pendence by computing summary statistics within a defined
neighborhood around each raster cell. The implementation
involves three main steps: (1) defining the neighborhood win-
dow — specifying its shape (e.g., square, circular, elliptical)
and size, (2) identifying the neighboring cells — locating all
raster cells within the neighborhood of the focal cell, and
(3) computing statistics — applying a selected statistical func-
tion (e.g., mean, sum, minimum, maximum) to the identified
neighboring cells and assigning the result to the focal cell.
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2.1.1 Defining the neighborhood window

Defining the neighborhood window is a fundamental step in
focal statistics. This step involves specifying two key param-
eters: the window’s shape and size. These parameters should
be determined according to the spatial characteristics of the
data and the research objectives. Common shape options in-
clude circular, square, and rectangular, while the window size
is typically defined by the number of cells.

To implement these neighborhood windows within a com-
putational framework, we developed three dedicated classes,
each corresponding to one of the geometric shapes: rectangu-
lar, circular, and elliptical. The class structure for each win-
dow type is presented in Listing 1.

The mathematical essence of a neighborhood window lies
in its formal specification of a spatial domain of influence.
This domain is typically discretized into a two-dimensional
binary mask matrix, which defines the neighborhood struc-
ture centered on a focal cell. Specifically, the mask indicates
whether each cell in the local neighborhood should be con-
sidered for subsequent analysis or computation. The matrix
can be formally expressed as

1 if (x, y) € Qy
0 otherwise,

NMcx,cy(xa y) = { (1)
where Qw denotes the neighborhood spatial domain centered
on cell (cx, cy), whose geometric properties are jointly de-
termined by the shape and size parameters of the window.
As shown in Listing 1, the _generate_mask_matrix method
implemented in each window class is responsible for generat-
ing the neighborhood mask matrix according to the specified
window parameters (e.g., height, width, radius). For exam-
ple, the implementation for a circular window is shown in
Listing S1 in the Supplement.

2.1.2 Identifying cells within the neighborhood

After the mathematical formulation of the neighborhood
window is established (as defined in Eq. 1), the spatial sliding
window technique can be employed to identify cells within
predefined neighborhoods centered on each focal cell for lo-
calized analysis (Hyndman and Fan, 1996). For a given focal
cell located at position (i, j), the effective neighborhood cell
set can be obtained through the following two computational
stages.

1. Alignment of the neighborhood mask matrix. To ensure
accurate spatial correspondence, the geometric center
of the neighborhood mask matrix NM € {0, 1}™*" is
aligned with the focal cell located at (i, j) on the raster
grid. A mapping is then established from each element
in the mask matrix to its corresponding location in the
raster data domain. Let the center of the mask matrix
be located at (cx, cy), and let («, v) denote the row and
column offsets from the center. Then, the mapping from
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mask coordinates to raster coordinates is defined as
(x,y)=(>G+u, j+v), (2

where (x, y) denotes the coordinate of a neighboring
cell in the raster grid, derived from the relative offset
(u, v) with respect to the focal cell. This mapping en-
sures that the neighborhood window is precisely aligned
with the focal cell.

2. Identification of the valid neighborhood cell set. To han-
dle boundary effects when the neighborhood window
extends beyond the raster extent, a boundary-clipping
strategy is adopted. That is, only the cells that are en-
tirely located within the raster data domain Qp are re-
tained. The valid neighborhood cell set Cg_vaia (i, j) is
defined as

CF_valia(@, j) =
{(x,y) €| NMey, oy(x, y) =1}, 3)

where NM ¢y (x, y) €0, 1 is the corresponding value
in the neighborhood mask matrix. A value of 1 indicates
inclusion as a valid neighbor for subsequent analysis,
while a value of 0 signifies exclusion.

2.1.3 Calculating the focal statistics

After identifying the valid neighborhood cells, their corre-
sponding values are retrieved from the raster dataset and or-
ganized into a two-dimensional array. Based on these val-
ues, statistical measures such as mean, percentiles, and other
user-defined metrics can be computed. The resulting statistic
is then assigned to the corresponding position in the output
raster.

This procedure can be implemented through a function
that obtains the neighborhood mask matrix, identifies valid
neighborhood values for the focal cell, and computes the
specified statistic. Listing 2 presents a representative imple-
mentation of this workflow.

The computation is performed for every cell in the input
raster, and the resulting values are written to the output raster,
producing the final focal statistics result.

2.2 Zonal statistics model

Unlike focal statistics, which operate solely on a single value
raster, zonal statistics requires two input raster layers: a value
raster and a zone raster. The zone raster defines the spatial
configuration and categorical labels of zones, where each cell
is assigned to exactly one zone. Zonal statistics computes
summary metrics (e.g., mean, sum, minimum, maximum) for
each zone by summarizing the values of the corresponding
cells in the value raster. The resulting statistic is then uni-
formly assigned to all cells within that zone. After all zones
are processed, the individual results are combined to generate
the final output raster.

Geosci. Model Dev., 18, 7165-7184, 2025
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class KDGeoRectNbhWindow:
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def __init__(self, height: int, width: int):

self.height = height
self.width = width

self.mask_matrix = self._generate_mask_matrix()

def _generate_mask_matrix(self):...

class KDGeoCircleNbhWindow:
def __init__(self, radius: int):

self.radius = radius

self.mask_matrix = self._generate_mask_matrix()

def _generate_mask_matrix(self):...

class KDGeoEllipseNbhWindow:

def __init__(self, semi_major_axis: int, axis_ratio: float, azimuth: fleoat):
self.semi_major_axis = semi_major_axis

self.axis_ratio = axis_ratio
self.azimuth = azimuth

self.mask_matrix = self._generate_mask_matrix()

def _generate_mask_matrix(self):...

Listing 1. Code fragment for the three types of neighborhood window classes: the rectangular window class (KDGeoRectNbhWindow), the
circular window class (KDGeoCircleNbhWindow), and the elliptical window class (KDGeoEllipseNbhWindow).

def caleulate_focal_statistics_result(
nbh_window_mask: np.ndarray,
data_arr: np.ndarray,
data_align_pos: Tuple[int, int],
stats_parameters_list: List[str]

) -> float:

cur_nbh_mask, cur_nbh_data = calculate_current_nbh(nbh_window_mask, data_arr, data_align_pos)

valid_valwe_arr = cur_nbh_data[cur_nbh_mask]

return calculate_statistics(valid_value_arr, stats_parameters_list)

Listing 2. Python function calculate_focal_statistics_result for computing focal statistics. The function identifies valid values from a neigh-
borhood centered at the focal cell, filters them using a predefined mask, and then calculates the specified statistics.

The implementation of zonal statistics typically involves
two primary steps: (1) identifying the set of cells in the value
raster, corresponding to each zone based on the zone raster,
and (2) calculating summary statistics across those cell val-
ues within each zone.

2.2.1 Identifying cells in the value raster falling into
each zone

In zonal statistics, spatial overlay analysis is employed to as-
sociate each cell in the value raster with a specific zone, as
defined by a corresponding zone raster (Hyndman and Fan,
1996). This process maps each cell in the value raster to its
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corresponding zone based on spatial alignment. Based on this
mapping, cells in the value raster are grouped according to
their zone membership resulting in a set of raster cells for
each zone.

2.2.2 Calculating the zonal statistics

Once the set of raster cells belonging to each zone has been
identified, a summary statistic is computed based on the cor-
responding cell values. The result is then uniformly assigned
to all cells within that zone. After all zones are processed,
the individual zone-level results are mosaicked to generate
the final output raster.
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Listing 3 demonstrates the implementation of this zonal
statistics procedure. The calculate_zonal_statistics_result
function accepts a value raster (data_arr), a zone raster (fea-
ture_arr), and a list of statistical parameters. For each unique
zone code identified in the zone raster, the function identifies
the corresponding cell values from the value raster, performs
the specified statistical computation, and assigns the result to
all cells within the zone, ultimately yielding a complete zonal
statistics output raster.

2.3 Focal-zonal mixed statistics

Similar to zonal statistics, focal-zonal mixed statistics oper-
ates on two raster inputs: a value raster and a zone raster.
However, this method uniquely integrates both spatial and
categorical criteria, combining the localized analysis of focal
statistics with the zone-based constraints of zonal statistics.
The computation involves two primary stages, detailed here.

2.3.1 Identifying neighborhood cells belonging to the
same zone

In this step, the selection of relevant cells for analysis is gov-
erned by two criteria, the spatial proximity, as defined by a
neighborhood window centered on the focal cell, and zone
homogeneity, requiring that all selected cells belong to the
same zone as the focal cell.

For a focal cell located at position (7, j), the valid neigh-
borhood cell set Crz_vaiid(i, j) can be defined as

CFZ_valid(ia ]) = {(x, )7) € QD |NMcx,cy(-x’ y)
=1AZ(x,y)=Z(, )}, 4)

where NM,, ¢y(x, ¥) €0, 1 is the corresponding value in
the neighborhood mask matrix. A value of 1 indicates inclu-
sion as a candidate valid neighbor for subsequent analysis,
whereas a value of 0 indicates that the cell is excluded. Qp
denotes the spatial domain of the raster dataset; (x, y) de-
notes the relative positions of candidate neighboring cells;
and Z(i, j) is the zone code of the focal cell, which serves
as the categorical constraint.

2.3.2 Calculating the focal-zonal mixed statistics

Once the set of valid neighboring cells is determined based
on both spatial proximity and zone membership, the next step
is to compute the desired statistical measures using the iden-
tified cell values. For each focal cell, only those neighbor-
ing cells that lie within the defined spatial window and share
the same zone code are included in the statistical calculation.
This dual constraint ensures that the resulting focal-zonal
mixed statistics reflects localized variation while maintain-
ing consistency within categorical spatial units.

Listing 4 demonstrates the implementation of the
focal-zonal mixed statistics procedure. The calcu-
late_focal_zonal_statistics_result function computes a
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localized statistic for a given focal cell by integrating both
spatial and zonal constraints. It first identifies the neighbor-
hood data and associated zone codes based on the predefined
window mask centered at the target position. Then, it applies
a zonal constraint by retaining only those neighboring cells
whose zone codes match that of the focal cell. After applying
the combined focal-zonal mask, the specified statistic is
computed on the resulting valid value set.

The computation is performed for every cell in the input
raster, where the neighborhood is constrained both spatially
and categorically. The resulting values are written to the out-
put raster, producing the final focal-zonal mixed statistics re-
sult.

3 Module design
3.1 Modeling process for focal-zonal mixed statistics

The detailed modeling process for focal-zonal mixed statis-
tics is described as follows.

1. Preparation of the value raster and the environmen-
tal factor rasters. This initial step involves collecting
and preprocessing the spatial datasets required for the
analysis. The value raster typically represents the pri-
mary variable of interest, such as temperature, pollution
levels, or vegetation indices. The environmental factor
rasters characterize variables that potentially influence
the spatial heterogeneity of the target variable, includ-
ing elevation, slope, land cover, and other relevant ge-
ographical or ecological attributes. Preprocessing pro-
cedures typically include resampling, reprojection, and
normalization to ensure that all raster layers share a con-
sistent spatial extent, resolution, and coordinate refer-
ence system.

2. Construction of Unique-Value Environmental Charac-
teristic Zonal Raster (UV-ECZR). In this step, envi-
ronmental factor rasters — whether continuous or cat-
egorical — are reclassified into discrete categories us-
ing a well-defined discretization scheme. For continu-
ous variables, the classification method should be se-
lected according to the data distribution and research
objectives: natural breaks (Jenks) are recommended
for datasets exhibiting clear clustering, equal inter-
val classification suits uniformly distributed data, and
quantile classification ensures balanced representation
across value ranges. For categorical variables, original
classes are typically retained unless aggregating cate-
gories improves analytical validity. The optimal num-
ber of classes, usually between 5 and 8, should bal-
ance environmental heterogeneity with adequate sam-
ple size within each zone. Classification performance
can be evaluated by minimizing within-zone variance,
maximizing between-zone variance, and assessing clus-
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def calculate_zonal_statistics_result(
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data_arr: np.ndarray, feature_arr: np.ndarray, stats_parameters_list: List[str]

) -* np.ndarray:

stats_result_arr = np.full_like(data_arr, np.nan)

zone_code_list = np.unique(feature_arr)
for code in zone_code_list:

code_mask = (feature_arr == code)

masked_data_arr = data_arr[code_mask]

stats_result = calculate_statistics(masked_data_arr, stats_parameters_List)

stats_result_arr[code_mask] = stats_result

return stats_resuvlt_arr

Listing 3. Python implementation of the zonal statistics computation. The calculate_zonal_statistics_result function computes a specified
statistic for each zone defined in the zone raster and assigns the result to all corresponding cells in the output raster.

def calculate_focal_zonal_statistics_result(
nbh_window_mask: np.ndarray,
data_arr: np.ndarray,
feature_arr: np.ndarray,
data_align_pos: Tuple[int, int],
stats_parameters_list: List[str]

) -=» float:

cur_nbh_mask, cur_nbh_data = calculate_current_nbh(nbh_window_mask, data_arr, data_align_pos)

_, cur_nbh_feature = calculate_current_nbh(nbh_window_mask, feature_arr, data_align_pos)

cur_feature = feature_arr[data_align_pos]

cur_feature_mask = (cur_nbh_feature == cur_feature)

fz_mask = cur_nbh_mask & cur_feature_mask

valid_value_arr = cur_nbh_data[fz_mask]

return calculate_statistics(valid_value_arr, stats_parameters_list)

Listing 4. Python implementation of the focal-zonal mixed statistics computation. The function filters neighborhood cells based on both
spatial proximity and zone code consistency and then calculates a user-specified statistic on the resulting valid subset.

tering validity through the silhouette coefficient. After
reclassification, the final UV-ECZR is produced via spa-
tial overlay analysis, wherein each unique combination
of reclassified layers is assigned a Unique-Value Envi-
ronmental Characteristic Code (UV-ECC). Cells shar-
ing the same UV-ECC form a Similar Environmental
Unit (SEU), ensuring that resulting zones capture mean-
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ingful ecological thresholds while maintaining suffi-
cient sample sizes for statistical reliability. A detailed
methodological workflow for this process is provided in
Sect. 3.2.1.

. Determination of neighborhood window and statistical

parameters. This process involves specifying the neigh-
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borhood window and selecting appropriate statistical
parameters for the focal-zonal mixed statistics. The
window size should be selected based on several consid-
erations, including the spatial scale of the studied phe-
nomenon (e.g., local versus regional patterns), the reso-
lution of the input rasters (with coarser resolution favor-
ing larger windows), and computational efficiency (as
larger windows significantly increase processing time).
The window shape should be chosen according to the
nature of spatial anisotropy (elliptical for directional
patterns), processing efficiency (rectangular shapes are
computationally faster), mitigation of edge effects (cir-
cular windows help reduce boundary artifacts), and data
characteristics (rectangular for grid-aligned features and
circular for isotropic phenomena). The selection of the
statistical function should align with the analytical ob-
jectives: the mean is suitable for general smoothing and
trend detection, the standard deviation is appropriate for
identifying variability and anomalies, the minimum and
maximum help detect extreme values, percentiles (such
as the 90th percentile) support robust threshold analy-
ses, and the sum is useful for aggregation tasks.

4. Preparation of output raster. This step involves gener-
ating an output raster that matches the input rasters in
terms of spatial extent, resolution, and coordinate refer-
ence system to ensure seamless spatial alignment. The
output raster serves as a container to store the results
of the focal-zonal mixed statistics computations. Before
processing, the output raster is typically initialized with
null values (e.g., NoData or NaN) to indicate that no
computation has yet been performed. As the computa-
tion proceeds, each computed statistic is written into the
output raster at the spatial location corresponding to the
focal cell.

5. Calculation of the statistics. In this step, the moving
window technique is employed to systematically tra-
verse each focal cell across the study area. For each fo-
cal cell, its local neighborhood is first determined based
on the predefined neighborhood window parameters (re-
fer to Sect. 2.1.1). Within this neighborhood, cells be-
longing to the same SEU as the focal cell are identified
by comparing their UV-ECC values. The specified sta-
tistical measure is then calculated using the correspond-
ing values from the value raster for the selected cells.
The computed statistic is assigned to the focal cell’s po-
sition in the output raster. This procedure is repeated it-
eratively for all focal cells until the output layer is fully
generated.

6. Save of output raster. After all cells have been iteratively
processed, the output raster is finalized and saved to
disk. Ensuring proper saving procedures, such as spec-
ifying an appropriate file format (e.g., GeoTIFF) and
maintaining consistent georeferencing information, is
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essential to preserve data integrity and facilitate subse-
quent spatial analyses.

3.2 Core algorithm design for focal-zonal mixed
statistics

3.2.1 Algorithm design for the UV-ECZR construction

Assume there are p continuous environmental variables, de-
noted as {E7, E3, ..., E,}, and their corresponding reclassi-
fied variables are {CE, CE, ..., CE,}. The number of cate-
gories for CE, is denoted as S, and the required digit length
D, is computed as

Dq = I_logl()SqJ =+ 1, (5)

where log; denotes the base-10 logarithm, |.] represents the
floor function, and ¢ =1, 2, ..., p. The category values for
each environmental variable must be positive integers, and
the value range for the reclassified raster CE, is [1, S, ]. Itis
necessary to prepend a sufficient number of “0”s to ensure
the code has a consistent digit length of D,,.

Thus, each pixel at location (i, j) in the raster can be rep-
resented by the vector of its p reclassified environmental cat-
egory values:

CE(, j) = (CE1(, j), CE2(, j), ..., CEp(, j)), (6)

where each component CE, (i, j) is the integer category code
of the gth environmental variable at pixel (i, j).

The UV-ECC at pixel (i, j) is defined as a unique scalar
encoding of the vector CE (i, j). One efficient way to con-
struct this code is by decimal digit concatenation:

UV-ECC (i, j):Z;’ZICEq(i, ) 10Zk=g+1 Pk )

Based on the framework of raster map algebra, the UV-ECZR
is constructed through a spatial overlay operation applied to
the p reclassified environmental variable layers. This process
corresponds to a local operation in raster algebra, where the
categorical values from each layer are combined on a cell-
by-cell basis to generate a multi-dimensional representation.
A more realistic and pertinent code sample is provided in
Listing 5.

3.2.2 Algorithm design for determining the valid range
for statistics under the sliding window technique

Rectangular windows, which align with the row and column
structure of raster data, are widely used in the sliding win-
dow operations due to their simplicity and computational ef-
ficiency. However, their drawback is also evident: cells lo-
cated at the four corners are significantly farther from the
focal cell than those along the horizontal and vertical axes
(Zhang et al., 2016a). Despite this, rectangular windows re-
main among the most commonly employed window shapes.
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import os
import arcpy
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feature_dir = r"E:\rn\paper\pl\A_data\f_z\L_20230928\feature"

ce_layers = ["slope_rc9.tif", "aspect_rc9.tif"]

ce_rasters = [arcpy.sa.Raster(raster) for raster in ce_layers]

uv_eczr_raster = ce_rasters[6]
for raster in ce_rasters[1:]:
uv_eczr_raster += raster

+ar]

uv_eczr_path = os.path.join(feature_dir, "slope_rc9_aspect_rc9.tif")

uv_eczr_raster.save(uv_eczr_path)

Listing 5. Python implementation of UV-ECZR generation using arcpy-based raster map algebra. Each input raster layer represents a reclas-
sified environmental variable (e.g., slope or aspect), and the local overlay operation combines their category codes to produce a unique zone

identifier for each pixel.

In this study, we consider not only rectangular windows
but also circular and elliptical window shapes. Since a circle
is a special case of an ellipse, the ellipse is used as a gener-
alized example to illustrate the algorithm for determining the
valid range of cells for statistics under the sliding window
technique in the context of focal-zonal mixed statistics.

1. Mask matrix for elliptical window. An elliptical window
is defined by three key parameters: the length of major
axis, the ratio of the minor axis to the major axis, and the
deflection angle of major axis. Let (xq, yo) represent the
center of the ellipse, i.e., the current location; a denote
the semi-major axis length; » be the minor-to-major axis
ratio; and 6 be the deflection angle. Then the elliptical
window can be mathematically expressed as

ellipse((xo, yo),a, r, 0) =

[(x — x0) cos® + (y — yo) sinf]?
a2
_ _ : _ 2
n [— (x — x0) sm(o; ;r) 2(y Yo)cos 0] ®)

Based on Eq. (8), the bounding box of
the elliptical window can be represented as
BBoXellipse (MinX, maxX, minY, maxY), where
minX, maxX, minY, maxY are as follows:

minX, maxX = xo + —Bz4c4ic 9
- , )
minY, maxY = yg £ —324f4ixc

Geosci. Model Dev., 18, 7165-7184, 2025

where
A = a?(sin%6 + rZcos20)
B =24? (r2 — 1) sin6 cos 6
C = a?*(cos?0 + r’sin’0)
F =—3(Dxo+ Eyo) —r%a*

(10)

The bounding box BBoXenipse provides a simplified
and direct spatial reference for constructing a Boolean
mask matrix for the elliptical window, i.e., MEripse_mask>
where cells inside and outside the BBoXcjjjpse are as-
signed values of “true” and “false”, respectively. In fo-
cal statistics, this binary mask is used directly to iden-
tify the valid neighborhood cells for statistical opera-
tions (see Fig. 1a).

2. Mask matrix for the similar environment in the bound-

ing box. SEU is the basic object of zonal statistics. In
focal-zonal mixed statistics, for the current cell, the el-
liptical window similar environmental unit (EW-SEU)
is established according to the environmental character-
istic codes within the initial neighborhood window de-
fined by the bounding box. Using Msimilarity_mask tO Tep-
resent this unit, cells with the same environmental char-
acteristic code as the current cell are assigned a value of
“true”, while others are assigned a value of “false”, as
shown in Fig. 1b.

3. Mask matrix for the similar environment in the elliptical

window.

The matrices of steps (1) and (2) share the same di-
mensions, and thus the similar environment mask ma-
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trix for the current cell in the elliptical window can be
constructed using a logical “AND” operation between
these two matrices, as expressed in the following equa-
tion:

ME_s_mask = MSimilarity_mask
A MEllipse_masks (11)

where A denotes the logical “AND” operator.
ME_s_mask serves as the basis for determining the
valid range for focal-zonal mixed statistics, as illus-
trated in Fig. 1c.

3.2.3 Algorithm design for the statistics calculation

The core algorithm for statistical computation within the
focal-zonal mixed statistics framework consists of the fol-
lowing steps:

1. Determination of valid statistical cells in the value
raster. Using Myq)ue to represent the cell array from
the value raster within the bounding box defined
above, then by performing a bitwise multiplication of
ME_s_mask With Myape, the final valid statistical value
matrix Myjjiq 1S obtained:

MValid = ME_S_mask &® MValues (1 2)

where ® denotes bitwise multiplication. This opera-
tion collects cells from the value raster that are located
within the neighborhood and share the same UV-ECC
as the current cell, while masking out other cells that
could interfere with the statistical results. In Mvqjiq, the
masked cells can be represented with “NaN”.

2. Design of the calculation function for the statistics. Tak-
ing Myaiig as the final input, the calculation functions
for focal-zonal mixed statistics can be designed based
on scientific computing tools such as NumPy. This li-
brary provides a range of statistical methods, including
minimum, maximum, mean, standard deviation, per-
centiles, and more. For instance, the numpy.nanmax()
function automatically ignores missing values (“NaN”s)
when computing the maximum of Myyjiq. Similarly, the
numpy.nanpercentile() function calculates the nth per-
centile of Myyjig while excluding “NaN’’s.

3.3 User interface design

The focal-zonal mixed statistics, along with traditional zonal
statistics and focal statistics, are included in the newly de-
veloped toolbox, FZStats v1.0, using Python3 and QT5. The
user interface is organized into three tabs, each dedicated to
one of the three methods, allowing users to switch among
them (see Fig. 2). Taking the tab for focal-zonal mixed statis-
tics as an example, the interface is divided into four main sec-
tions, and the detailed description of the user interface design
is given as follows.

https://doi.org/10.5194/gmd-18-7165-2025
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1. Input and output design. Users can load the value raster
and UV-ECZR layers as inputs. Additionally, the output
path and filename for the result raster can be specified.

2. Neighborhood window design. Users can define the
shape (e.g., rectangular, circular, elliptical) and size of
the neighborhood window. For rectangular and circular
windows, size is controlled by the half-side length and
radius, respectively. Elliptical windows are configured
via three parameters: the length of the major axis, the
ratio of the minor axis to the major axis, and the deflec-
tion angle of major axis.

3. Statistical measure design. A dropdown menu allows
users to choose from various statistical measures (mean,
max, standard deviation, etc.). For percentile-based
statistics, the desired percentile value (e.g., 50th, 75th,
98th) must be specified.

4. Optimization settings. This section presents optimized
parameter configurations to enhance computational ef-
ficiency:

- Chunk processing. Divide large raster layers into
smaller chunks to manage memory usage effi-
ciently.

- Parallel processing. Specify the number of proces-
sors to enable parallel computation and reduce run-
time on multi-core systems.

- Threshold setting. Define a minimum sample
threshold for statistical operations to ensure robust
and meaningful results.

Additionally, a batch processing mode is provided for au-
tomation. Users can prepare a configuration file (config.ini)
to set parameters for multiple runs. This facilitates efficient
task management, parameter reuse, and error tracking.

4 Experimental study
4.1 Background of the case

Geothermal resources, similar to coal, oil, and natural gas,
are valuable energy mineral resources, whose development
and utilization play a crucial role in alleviating energy sup-
ply pressures and improving the global environment (Huang
and Liu, 2010; Goldstein et al., 2011). The primary indicator
for geothermal exploration is the detection of thermal anoma-
lies (Romaguera et al., 2018; Gemitzi et al., 2021). In recent
years, with the rapid advancement of remote sensing tech-
nologies, land surface temperature (LST) derived from ther-
mal infrared bands has become a key parameter for identify-
ing geothermal anomalies. However, LST is influenced not
only by geothermal activity but also by environmental fac-
tors such as slope, aspect, and surface vegetation cover (Tran
et al., 2017; Duveiller et al., 2018; Zhao and Duan, 2020).

Geosci. Model Dev., 18, 7165-7184, 2025
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Figure 1. Heatmaps for the Boolean mask matrix: (a) the elliptical window of focal statistics, (b) the similar environmental unit (SEU) of
zonal statistics, and (c) the elliptical window similar environmental unit (EW-SEU) of focal-zonal mixed statistics.

To effectively extract LST anomalies directly related to
geothermal activity, it is essential to suppress the confound-
ing effects of surface environmental variables. Within the an-
alytical framework of the focal-zonal mixed statistics devel-
oped in this study, terrain features are incorporated into envi-
ronmental zoning, and the spatial sliding window technique
is employed to mitigate environmental interference and en-
hance the detection of geothermal anomaly signals.

4.2 Data preprocessing
4.2.1 Spatial distribution of LST

In this study, Landsat 8 imagery (Orbit Number: 116031;
https://earthexplorer.usgs.gov, last access: 3 August 2024)
acquired during the spring, summer, and autumn seasons of
2015, 2019, and 2023, covering the Changbai Mountain re-
gion, was utilized for land surface temperature (LST) map-

Geosci. Model Dev., 18, 7165-7184, 2025

ping and geothermal anomaly detection. The selection of
multi-temporal images across different seasons and years
was intended to robustly validate the effectiveness of the pro-
posed method and to explore the temporal evolution patterns
of geothermal anomalies, thereby providing improved sup-
port for geothermal exploration.

Following standard preprocessing procedures, including
radiometric calibration and atmospheric correction, the Uni-
versal Single-Channel Algorithm (Jimenez-Munoz et al.,
2009, 2014; Zhang et al., 2016b) was applied to retrieve LST
across the study area. The resulting LST distributions are il-
lustrated in Fig. 3.

Taking the LST retrieved from the Landsat 8 image ac-
quired on 20 March 2023, as an example, a comparison be-
tween Fig. 3 and the terrain information presented in Fig. 4
reveals a strong spatial correlation between LST patterns
and topographic factors, particularly slope aspect. Given that

https://doi.org/10.5194/gmd-18-7165-2025
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Figure 2. User interface design of FZStats v1.0 (Ren and Zhang, 2024a).

the local overpass time of Landsat 8 over the study area
was approximately 11:00a.m. local solar time (10:11 a.m.
China standard time, UTC+S8), with a corresponding so-
lar azimuth angle of 153°, LST values were significantly
higher on southeast-facing slopes compared to northwest-
facing slopes (Fig. 4a). This highlights the pronounced in-
fluence of solar radiation on the spatial variability of LST
within the study area.

4.2.2 Mapping of unique-value environmental
characteristic zones

Slope and aspect, derived from the original elevation data ob-
tained via https://earthexplorer.usgs.gov (last access: 3 Au-
gust 2024), were selected as the environmental factors for
constructing the UV-ECZR (see Fig. 4a and b). As previously
discussed, these two variables exhibit a strong spatial cou-
pling relationship with LST. Although elevation and vegeta-
tion coverage were not directly included in the environmen-
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tal zoning process, their variability can be considered rela-
tively homogeneous within the defined neighborhood win-
dow (Zhang et al., 2019). Thus, their confounding effects are
indirectly mitigated. In the framework of focal-zonal mixed
statistics modeling, sample heterogeneity arising from long-
range spatial variables can be effectively controlled by spatial
proximity, while heterogeneity caused by short-range spatial
variables is suppressed through environmental similarity.

Geosci. Model Dev., 18, 7165-7184, 2025
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Figure 3. Spatial distribution of land surface temperature (LST) in the study area on 20 March 2023.

4.3 Enhancement of geothermal anomalies based on
focal-zonal mixed statistics

In mineral prospectivity mapping, standard deviation nor-
malization (Z-score transformation) is commonly employed
to assist in constructing indicator variables for anomaly de-
tection (Journel and Huijbregts, 1978; Goovaerts, 1997).
This procedure involves subtracting the mean from the orig-
inal value, dividing it by the standard deviation, and rescal-
ing variables to a uniform range to mitigate scale-dependent
biases and enhance comparability of multi-source geochemi-
cal data in predictive modeling (Carranza, 2008). The result-
ing standardized value quantifies the deviation of the orig-
inal measurement from the mean in units of standard de-
viations. The core principle lies in defining an appropri-
ate sample range for calculating local background statistics
(e.g., mean and standard deviation), which ensures meaning-
ful comparisons between the current value and its spatial con-
text (Cheng, 2007; Wang et al., 2011).

In this study, focal-zonal mixed statistics was adopted to
define the comparable sample range by simultaneously con-
sidering spatial proximity and environmental similarity. The
source data are provided in Ren and Zhang (2024b). Specifi-
cally, for each current location, the level of land surface tem-

Geosci. Model Dev., 18, 7165-7184, 2025

perature (LST) was assessed within a sample set determined
jointly by the local moving window and similar terrain fea-
tures. This method effectively suppresses the influence of ter-
rain, vegetation, and other confounding factors, allowing the
resulting LST anomaly distribution to predominantly reflect
geothermal activity. Using a circular moving window with
a radius of 4.2km, the enhanced geothermal anomaly map
derived from Fig. 3 is shown in Fig. 5.

By comparing Figs. 5 and 3, it is evident that the LST
anomalies enhanced through focal-zonal mixed statistics
show a stronger spatial correlation with known geothermal
wells (as referenced by Yan et al., 2017). The higher values
in Fig. 5 more effectively highlight these geothermal wells,
suggesting that areas with high values in this figure have an
increased likelihood of indicating new geothermal resources.

4.4 Performance comparison

Following the standard deviation normalization approach de-
scribed above, zonal statistics and focal statistics were also
applied to the LST dataset (Fig. 3) to enhance geother-
mal anomalies, thereby facilitating comparative evaluation of
the models. Specifically, the receiver operating characteristic
(ROC) curve was employed to assess the predictive perfor-

https://doi.org/10.5194/gmd-18-7165-2025
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Figure 4. Maps of environmental factors: (a) slope aspect, (b) slope degree, and (c) the composite Unique-Value Environmental Characteristic

Zonal Raster (UV-ECZR).

mance of the original LST and the three enhancement indices
derived from focal statistics, zonal statistics, and focal-zonal
mixed statistics.

The ROC curve plots the false positive rate (FPR) against
the true positive rate (TPR) (Fawcett, 2006; Hanczar et al.,
2010), and the area under the curve (AUC) is used as a quan-
titative metric for model evaluation. AUC values range from
0.5 to 1, where higher values indicate better predictive accu-
racy and model performance.

The ROC curves for the LST dataset and the three en-
hancement indices are presented in Fig. 6, where subfigures
a—d correspond to the four observation dates: 20 March, 24
June, 28 September, and 25 December 2023. Focal statis-
tics and focal-zonal mixed statistics were both implemented
using a circular window with a radius of 4.2km. It is ev-
ident that, across all seasons, the enhancement indices de-
rived from the focal-zonal mixed statistics approach con-
sistently outperform the others. For instance, in Fig. 6a, the
AUC value under focal-zonal mixed statistics reaches 0.734,
notably higher than that of zonal statistics (0.508), focal
statistics (0.669), and the original LST (0.474). Although

https://doi.org/10.5194/gmd-18-7165-2025

both zonal statistics and focal statistics demonstrate slight
improvements over the raw LST, their enhancement effects
remain limited. Furthermore, comparison of Fig. 6a—d indi-
cates that our enhanced model performs best in autumn, as
evidenced by the highest AUC value observed in this season.

5 Discussion

5.1 Significance and necessity of the new statistical
method

Firstly, from a theoretical standpoint, traditional methods
each address only one aspect of spatial variation: focal statis-
tics primarily captures SPD, while zonal statistics is designed
to account for SSH. However, real-world spatial problems
often exhibit both characteristics simultaneously. This un-
derscores the theoretical necessity and practical relevance of
developing the new method — focal-zonal mixed statistics —
which bridges the methodological gap between focal statis-
tics and zonal statistics.

Geosci. Model Dev., 18, 7165-7184, 2025
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Figure 5. Enhanced geothermal anomaly map based on focal-zonal mixed statistics with a local window radius of 4.2 km.

Secondly, from a conceptual perspective, focal-zonal
mixed statistics can be viewed as a generalization of the two
conventional approaches. When the moving window encom-
passes — or far exceeds — the entire study area (i.e., the win-
dow size approaches infinity), the method converges to zonal
statistics, effectively capturing stratified heterogeneity. Con-
versely, when the analysis is confined to a single environmen-
tal zone, the method reduces to focal statistics, thereby focus-
ing on spatial positional dependence. This flexibility enables
the new method to seamlessly adapt to different spatial struc-
tures.

Thirdly, in terms of practical performance (see Fig. 6),
although traditional methods show some ability to enhance
geothermal anomaly detection — for example, focal statis-
tics improves AUC values by 3.9% to 41.1 % over the
original LST — the proposed method demonstrates signif-
icantly greater efficacy, with AUC improvements ranging
from 9.9 % to as high as 54.9 %. These results clearly high-
light the superior performance of focal-zonal mixed statis-
tics.

Finally, regarding broader applicability, although geother-
mal anomaly enhancement serves as the illustrative case
in this study, the utility of the proposed method extends
well beyond this specific context. It is particularly well

Geosci. Model Dev., 18, 7165-7184, 2025

suited for applications requiring both improved sample pu-
rity and simultaneous control over SSH and SPD. Potential
domains include mineral resource potential evaluation, veg-
etation restoration potential assessment, cropland productiv-
ity analysis, and terrestrial vegetation carbon sink estimation.
Furthermore, the method can be employed to assess the spa-
tial variability of target variables under specific environmen-
tal constraints and to evaluate the effectiveness of environ-
mental factors in delineating spatial patterns of interest.

5.2 Robustness of the new method

To ensure that the superior performance of the proposed
method, as demonstrated in Sect. 4.4, is not due to chance,
it is essential to test its robustness under varying conditions.
This involves adjusting key parameters such as the size of
the local analysis window, the year and season of image ac-
quisition, and the representative area assigned to geothermal
wells. Through multi-scenario comparative experiments, the
consistency and reliability of the model’s advantages can be
systematically evaluated.

To rigorously assess the robustness of the proposed
method, we conducted a series of controlled experiments
involving multiple scenarios. Specifically, Landsat imagery

https://doi.org/10.5194/gmd-18-7165-2025
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Figure 6. Receiver operating characteristic (ROC) curves of the land surface temperature (LST) and its three enhancement indicators derived
from focal statistics, zonal statistics, and focal-zonal mixed statistics, respectively. Parameter settings: the local window used for both focal
statistics and focal-zonal mixed statistics is a circle with a radius of 4.2 km, the zoning categories used for zonal statistics are identical to
those employed in focal-zonal mixed statistics, and a geothermal well represents an area of 0.035 km? surrounding it.

from the years 2015, 2019, and 2023 was selected, covering
all four seasons — spring, summer, autumn, and winter — for
each year. Due to cloud contamination and other data qual-
ity issues, some missing seasonal scenes were replaced with
imagery from adjacent years and similar months. In addition,
two representative areas were defined for individual geother-
mal wells: 0.0009 km? (equivalent to a single 30m x 30m
pixel) and 0.035km? . To further test the model’s sensitivity
to spatial scale, we varied the radius of circular local win-
dows from 0.3 to 9km in 0.3 km increments. These selec-
tions of years, seasons, neighborhood sizes, and point repre-
sentativeness were all deliberately designed to evaluate the
stability and generalizability of the proposed method relative
to the two traditional approaches.

When the representative area for a geothermal well is de-
fined as a circle with an area of 0.035km?, and imagery
from the year 2023 is used for modeling, the AUC values
of the original LST and its enhancement indices are calcu-
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lated across different seasons and a range of local window
sizes. Specifically, circular windows with radii ranging from
0.3 to 9km (at 0.3 km intervals) are applied to evaluate model
performance. The AUC values obtained under these varying
seasonal and spatial conditions — across different models —
are plotted in a Cartesian coordinate system, as illustrated in
Fig. 7.

Figures S1 and S2 present the modeling results for the
years 2015 and 2019, respectively, under the condition that
each geothermal well is represented by a circular area of
0.035km? .

Figures S3 to S5 show the results for the years 2015, 2019,
and 2023, respectively, where the representative area for each
geothermal well is defined as a single pixel (30m x 30 m,
i.e., 0.0009 km?).

Overall, the two enhancement models incorporating
neighborhood windows — focal statistics and focal-zonal
mixed statistics — consistently outperform both the zonal

Geosci. Model Dev., 18, 7165-7184, 2025
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and winter of 2023, respectively.

statistics model and the original, unenhanced LST. The rel-
atively poor performance of zonal statistics is primarily at-
tributed to the strong spatial variability of LST and the limi-
tations of the simple classification scheme employed. More-
over, since neighborhood-based methods are inherently sen-
sitive to spatial scale, the effectiveness of both focal statistics
and focal-zonal mixed statistics varies with changes in win-
dow size.

However, regardless of the specific modeling configura-
tion — including different years (2015, 2019, or 2023), sea-
sons (spring, summer, autumn, or winter), definitions of the
geothermal well representative area (either a single pixel of
0.0009 km? or a circular area of 0.035 kmz), and a wide range
of local window sizes (radii from 0.3 to 9km in 0.3 km in-
tervals) — focal-zonal mixed statistics consistently delivers
superior performance compared to focal statistics. This con-
sistent advantage across diverse scenarios and parameter set-
tings clearly demonstrates the robustness and broader appli-
cability of the proposed method.

5.3 Advancements of the toolbox

The FZStats v1.0 toolbox developed in this study not only
integrates traditional focal statistics and zonal statistics — ad-
dressing SPD and SSH, respectively — but also innovatively
implements focal-zonal mixed statistics by combining spa-
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tial proximity and environmental similarity, enabling simul-
taneous handling of both SPD and SSH. This toolbox thus of-
fers a novel and versatile solution for spatial statistical anal-
ysis.

To enhance its applicability across diverse scenarios and
computing environments, the toolbox provides a variety of
parameter-setting interfaces. In terms of neighborhood win-
dow configuration, users can select from rectangular, circu-
lar, or elliptical windows, with the elliptical option allow-
ing the expression of spatial anisotropy through adjustable
parameters. Regarding statistical measures, the toolbox sup-
ports traditional metrics such as mean, standard deviation,
minimum, and maximum, as well as flexible calculation of
arbitrary percentiles to suit specific analytical needs. To op-
timize memory usage and computational efficiency, FZStats
v1.0 supports both raster chunk processing and multi-process
operation modes. This design accommodates different hard-
ware capacities and enables efficient parallel processing on
multi-core CPUs. Additionally, users can specify a minimum
number of cells for valid statistics through the “threshold”
parameter, effectively preventing low-precision and unreli-
able results caused by insufficient sample sizes.

Finally, to improve automation and multitasking effi-
ciency, the toolbox offers a batch processing solution. Users
can define processing parameters within a multi-section INI-
format configuration file, thus avoiding repetitive manual
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operations. This functionality supports one-time parame-
ter setup, automatic execution of multiple tasks, parameter
reuse, and error tracking, significantly enhancing operational
efficiency and reliability.

6 Conclusions

This study developed the FZStats v1.0 toolbox based on
Python 3 and QTS, integrating traditional focal statistics,
zonal statistics, and the newly proposed focal-zonal mixed
statistics. Detailed algorithmic implementations and model-
ing processes for these methods were presented, and their
performance was evaluated through geothermal anomaly de-
tection experiments. The main conclusions are summarized
as follows:

— First, the development of focal-zonal mixed statistics
is crucial, as it addresses the limitations of traditional
focal statistics and zonal statistics, providing a unified
solution for simultaneously handling SPD and SSH.

— Second, FZStats v1.0 offers extensive parameter-setting
capabilities, supporting flexible configurations of win-
dow shapes and statistical measures. Additionally,
through adjustable processing options such as raster
chunking and multi-processing, the toolbox can main-
tain efficient performance across a range of computing
environments.

— Third, case study analyses demonstrate that focal-zonal
mixed statistics significantly enhance the detection of
geothermal anomalies compared to conventional zonal
and focal statistics methods, with this advantage prov-
ing robust across different conditions.

In summary, FZStats v1.0 not only contributes theoreti-
cal innovation to spatial statistical methods but also exhibits
strong functionality and flexibility in practical applications.
It holds considerable promise for geothermal anomaly detec-
tion and broader fields requiring integrated spatial statistical
solutions.

Code availability. The source code for FZStats v1.0 is available
on GitHub at https://github.com/Rennal 1/FocalZonalStatistics (last
access: 4 May 2025), and the latest version of the software can
be obtained at https://doi.org/10.5281/zenodo.15333217 (Ren and
Zhang, 2024a).

Data availability. The sources of the original data supporting the
case study in this paper are as follows:

1. Landsat 8 images used in this research were downloaded from
the Landsat 8-9 OLI/TIRS Level-2, Collection 2 data set
(https://doi.org/10.5066/POOGBGM6, U.S. Geological Sur-
vey, 2020).
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2. Original elevation data used for calculating slope and
aspect were obtained from the Shuttle Radar Topog-
raphy Mission (SRTM) Global 1 Arc-Second dataset
(https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003,
NASA JPL, 2013).

3. Geothermal well data are sourced from Yan et al. (2017).

Sample data can be found at
https://doi.org/10.5281/zenodo.16009159 (Ren and Zhang,
2024b). Readers can refer to the instructions provided
in the “README.md” file on the code repository
(https://github.com/Rennal 1/FocalZonalStatistics, last access:
5 May 2025) for guidance on software use, which allows for the
reproduction of the case analysis using the aforementioned original
data.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-7165-2025-supplement.
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